Fixed-Point Designer™
Reference

MATLAB

R2020b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Reference
© COPYRIGHT 2013-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)
October 2014 Online Only Revised for Version 4.3 (R2014b)
March 2015 Online Only Revised for Version 5.0 (R2015a)
September 2015 Online Only Revised for Version 5.1 (R2015b)
October 2015 Online only Rereleased for Version 5.0.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 5.2 (R2016a)
September 2016 Online only Revised for Version 5.3 (R2016b)
March 2017 Online only Revised for Version 5.4 (R2017a)
September 2017 Online only Revised for Version 6.0 (R2017b)
March 2018 Online only Revised for Version 6.1 (R2018a)
September 2018 Online only Revised for Version 6.2 (R2018b)
March 2019 Online only Revised for Version 6.3 (R2019a)
September 2019 Online only Revised for Version 6.4 (R2019b)
March 2020 Online only Revised for Version 7.0 (R2020a)

September 2020 Online only Revised for Version 7.1 (R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Apps

1
Blocks

2
Properties

3
fi Object Properties 3-2
03 3-2
data 3-2
QBC it e 3-2
double 3-2
fimath 3-2
heX . e 3-2
Nt L 3-3
NUmeriCType . .. oot 3-3
OCE o et e 3-3
Value .. e 3-3
quantizer Object Properties 3-4
DataMode . . v vt 3-4
Format 3-4
OverflowMode i 3-5
RoundingMode e 3-5

iii

Functions

4

Classes

S|

Methods

6|

Selected Bibliography

A

iv Contents

Apps

1 Apps

1-2

Fixed-Point Converter

Convert MATLAB code to fixed point

Description
The Fixed-Point Converter app converts floating-point MATLAB® code to fixed-point MATLAB code.

Using the app, you can:

Propose data types based on simulation range data, static range data, or both.

Propose fraction lengths based on default word lengths or propose word lengths based on default
fraction lengths.

Optimize whole numbers.
Specify safety margins for simulation min/max data.
View a histogram of bits used by each variable.

Specify replacement functions or generate approximate functions for functions in the original
MATLAB algorithm that do not support fixed point.

Test the numerical behavior of the fixed-point code. You can then compare its behavior against the
floating-point version of your algorithm using either the Simulation Data Inspector or your own
custom plotting functions.

If your end goal is to generate fixed-point C code, use the MATLAB Coder™ app instead. See “Convert
MATLAB Code to Fixed-Point C Code” (MATLAB Coder).

If your end goal is to generate HDL code, use the HDL Coder™ workflow advisor instead. See
“Floating-Point to Fixed-Point Conversion” (HDL Coder).

Fixed-Point Converter

-

u‘-'j,Fixed—PointCon\rerter-ex_2r1d0rder_filter.prj | = || =] || 125 |
D> Convert to Fixed Point SETTINGS v ANALYZE v @ F
W Source Code ’E 1[-]function ¥y = ex 2ndOrder filter(x) 3%#codegen
£] ex_2ndOrder_filter 2 persistent z
3 if i=empty(z)
4 z = zeros(2,1):
5 end
[% [b,a] = butter(2, 0.25)
7 b = [0.0976310729378175, ©0.195262145875635, 0.0976310729378175];
g a =1 1, -0.942809041582063, 0.3333333333333333]»
9
10
11 ¥ = zeros(size(x)):
12 for i=l:length(x)
13 vi(i) = b{1)*x(i) + z(1):
14 Z(1) = b(2)*=x(i) + z(2) - a(2) * v(i):
15 z(2) = b(3)*x(i) - a(3) * yv(i);
16 end
17 -end
“ariables | Function Replacements | Qutput
Variable Type Sirn Min Sim Max Whole Number Proposed Type
B e
® 1:x 256 double Mo
=] =
Y 1 236 double Ma
=
z 2x1double Mo
B -

Open the Fixed-Point Converter App

* MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.

* MATLAB command prompt: Enter fixedPointConverter.

* To open an existing Fixed-Point Converter app project, either double-click the .prj file or open
the app and browse to the project file.
Creating a project or opening an existing project causes any other Fixed-Point Converter or
MATLAB Coder projects to close.

* A MATLAB Coder project opens in the MATLAB Coder app. To convert the project to a Fixed-Point
Converter app project, in the MATLAB Coder app:

1
Click and select Reopen project as.

2 Select Fixed-Point Converter.

1-3

1 Apps

1-4

Examples
. “Propose Data Types Based on Simulation Ranges”
. “Propose Data Types Based on Derived Ranges”

Programmatic Use
fixedPointConverter opens the Fixed-Point Converter app.

fixedPointConverter -tocode projectname converts the existing project named
projectname.prj to the equivalent script of MATLAB commands. It writes the script to the
Command Window.

fixedPointConverter -tocode projectname -script scriptname converts the existing
project named projectname.prj to the equivalent script of MATLAB commands. The script is
named scriptname.m.

* If scriptname already exists, fixedPointConverter overwrites it.
* The script contains the MATLAB commands to:

* Create a floating-point to fixed-point conversion configuration object that has the same fixed-
point conversion settings as the project.

* Run the fiaccel command to convert the floating-point MATLAB function to a fixed-point
MATLAB function.

Before converting the project to a script, you must complete the Test step of the fixed-point
conversion process.

See Also

Functions
fiaccel

Topics

“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Derived Ranges”
“Fixed-Point Conversion Workflows”

“Automated Fixed-Point Conversion”

“Generated Fixed-Point Code”

“Automated Fixed-Point Conversion in MATLAB”

Introduced in R2014b

Fixed-Point Tool

Fixed-Point Tool

Convert floating-point model to fixed-point

Description

In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides convenient access
to:

* An interactive automatic data typing feature that proposes fixed-point data types for appropriately
configured objects in your model, and then allows you to selectively accept and apply the data
type proposals

* Model and subsystem parameters that control the signal logging, fixed-point instrumentation
mode, and data type override

» Plotting capabilities that enable you to plot data that resides in the MATLAB workspace

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software.
However, even if you do not have Fixed-Point Designer software, you can configure data type override
settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink®

software temporarily overrides fixed-point data types with floating-point data types when simulating
the model.

Open the Fixed-Point Tool

* In the Simulink Apps tab, select Fixed-Point Tool.
* From a subsystem context (right-click) menu, select Fixed-Point Tool.

* From the MATLAB command prompt, enter fxptdlg(system name) where system name is the
name of the model or system you want to convert, specified as a string.

Examples

. “Convert Floating-Point Model to Fixed Point”
. “Convert a Model to Fixed Point Using the Command Line”

See Also
“Autoscaling Using the Fixed-Point Tool” | “The Command-Line Interface for the Fixed-Point Tool” |
fxptdlg

Topics
“Convert Floating-Point Model to Fixed Point”
“Convert a Model to Fixed Point Using the Command Line”

Introduced before R2006a

1-5

1 Apps

Lookup Table Optimizer

Optimize an existing lookup table or approximate a function with a lookup table

Description

Use the Lookup Table Optimizer to obtain an optimized (memory-efficient) lookup table that
approximates an existing Simulink block, including Subsystem blocks and math function blocks, or a
function handle. The optimizer supports any combination of floating-point and fixed-point data types.
The original input and output data types can be kept or changed as desired. To minimize memory
used, the optimizer selects the data types of breakpoints and table data, as well as the number and
spacing of breakpoints.

Objective
About
{*] ”L
3/ b Weicome to the Lookup Table (LUT) Optimizer Use the Lookup Table Optimizer app to
J replace a Simulink block with an
optimized loockup table, or create an
Select the source for memory efficient LUT optimized lockup table from a MATLAB
function handle. By replacing a block or
@) Simulink block function handle with a fixed-point lookup
table, or optimizing the spacing and data
Create a memory efficient LUT for a Simulink block types of an existing lookup table, the

memory-efficiency of your algorithm can
MATLAE Function Handle be improved.

Create a memory efficient LUT for a MATLAB function handie To begin, select the algorithm to optimize.

Next

Open the Lookup Table Optimizer

* In a Simulink model, on the Apps tab, click the arrow on the far right of the Apps section. In the
Code Generation gallery, click Lookup Table Optimizer.

* In a Simulink model with a Lookup Table block, select the Lookup Table block, in the Lookup
Table tab, select Lookup Table Optimizer.

1-6

Lookup Table Optimizer

See Also

Classes

FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare | displayallsolutions |displayfeasiblesolutions |
solutionfromID | solve | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

1-7

1 Apps

1-8

Single Precision Converter

Convert double-precision system to single precision

Description

The Single Precision Converter automatically converts a double-precision system to single precision.

During the conversion process, the converter replaces all user-specified double-precision data types,
as well as output data types that compile to double precision, with single-precision data types. The
converter does not change built-in integer, Boolean, or fixed-point data types.

Open the Single Precision Converter

* From the Simulink Apps tab, select Single Precision Converter.

Examples

. “Convert a System to Single Precision”

Programmatic Use

report = DataTypeWorkflow.Single.convertToSingle(systemToConvert) converts the
system specified by systemToConvert to single-precision and returns a report. The
systemToConvert must be open before you begin the conversion.

See Also

Functions
DataTypeWorkflow.Single.convertToSingle

Topics

“Convert a System to Single Precision”
“Getting Started with Single Precision Converter”

Introduced in R2016b

Blocks

2 Blocks

2-2

Complex Burst Matrix Solve Using Q-less QR
Decomposition

Compute the value of X in the equation A'AX = B for complex-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

T TE=0
i)

\\\\\\\\

Description

The Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued matrices.

Creation

fixed.getQlessQRMatrixSolveModel (A, B) generates a template model containing a Complex
Burst Matrix Solve Using Q-less QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value is 1

Complex Burst Matrix Solve Using Q-less QR Decomposition

(true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn valueis 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(1i,:) — Rows of matrix X

scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

2-3

2 Blocks

2-4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

Complex Burst Matrix Solve Using Q-less QR Decomposition

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve
Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020a

2-5

2 Blocks

2-6

Complex Burst Matrix Solve Using QR

Decomposition
Compute the value of x in the equation Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers
0 .
et 5] (C ready
Description

The Complex Burst Matrix Solve Using QR Decomposition block solves the system of linear equations
Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x = A, set
B to be the identity matrix.

Creation

fixed.getMatrixSolveModel (A, B) generates a template model containing a Complex Burst
Matrix Solve Using QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Complex Burst Matrix Solve Using QR Decomposition

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(1i,:) — Rows of matrix X

scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(4,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

2-7

2 Blocks

2-8

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

Complex Burst Matrix Solve Using QR Decomposition

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-
less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

Functions
fixed.qrMatrixSolve

Introduced in R2019b

2-9

2 Blocks

2-10

Complex Burst Q-less QR Decomposition

Q-less QR decomposition for complex-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
AL A W Rii.:)
+
restart “h C ready
Description

The Complex Burst Q-less QR Decomposition block uses QR decomposition to compute the economy
size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued matrix,
without computing Q. The solution to A'Ax = B is x = R\R'\b.

Creation

fixed.getQlessQRDecompositionModel(A,B) generates a template model containing a Complex
Burst Q-less QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is a m-by-n matrix where m=2andn = 2. IfAisa
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input

samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Complex Burst Q-less QR Decomposition

Data Types: Boolean
Output

R(i, :) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper-
triangular matrix. The output at R(i,:) has the same data type as the input at A(i,:).

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

2-11

2 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also

Blocks

Complex Partial-Systolic Q-less QR Decomposition | Complex Burst QR Decomposition | Real Burst Q-
less QR Decomposition

Functions
fixed.qlessQR

2-12

Complex Burst Q-less QR Decomposition

Introduced in R2020a

2-13

2 Blocks

2-14

Complex Burst QR Decomposition

QR decomposition for complex-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations

A0.0) ﬂ R(i.:)

B(.:) -»> @il

v [C

Description

The Complex Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = Bis x =
R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be
the identity matrix.

Creation

fixed.getQRDecompositionModel(A,B) generates a template model containing a Complex Burst
QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and n = 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

Complex Burst QR Decomposition

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

R(1i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. R has the same data type as A.

Data Types: single | double | fixed point

C(i,:) — Rows of matrix C=Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

The number of rows in matrices A and B, specified as a positive integer-valued scalar.

2-15

2 Blocks

2-16

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see

“ConstrainedOutputPipeline” (HDL Coder).

Complex Burst QR Decomposition

General

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic QR Decomposition | Complex Burst Q-less QR Decomposition | Real Burst

QR Decomposition

Functions
fixed.qrAB

Introduced in R2019b

2-17

2 Blocks

2-18

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition

Compute the value of X in A'AX = B for complex-valued matrices using Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers

uuuuuuuu
aldins.
,,,,,,

uuuuuuuu

yyyyyy

Description

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued
matrices.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
vector

Matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B must be
the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point scaling,
and have the same word length as A. Slope-bias representation is not supported for fixed-point data

types.

Data Types: single | double | fixed point
Complex Number Support: Yes

validInA — Whether input A is valid
Boolean scalar

Whether input A is valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value at readyA is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the value at readyB is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X — Matrix X
matrix | vector

Matrix X, returned as a vector or matrix.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of matrix X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

2-19

2 Blocks

2-20

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation |Ready Latency Area Sample block or
example
Systolic C O(n) O(mn?) “Implement

Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) 0(n?) * Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C O(n) 0(n?) “Fixed-Point HDL-
with Forgetting Optimized

Factor Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?3) O(n) ¢ Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2-21

2 Blocks

2-22

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor |
Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve

Using Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics

“Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer”

Introduced in R2020b

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition with Forgetting Factor

Compute the value of X in A'AX = B for complex-valued matrices with infinite number of rows using
Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

44444444

vaicins.

======
44444444

yyyyyy

Description

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block solves the system of linear equations, A'AX = B, using Q-less QR decomposition, where A and B
are complex-valued matrices. A is an infinitely tall matrix representing streaming data.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
matrix | vector

Matrix B, specified as a vector or a matrix. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(j, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

2-23

2 Blocks

2-24

Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X — Matrix X
matrix | vector

Matrix X, returned as a matrix or vector.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Parameters

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use

Block Parameter: forgettingFactor
Type: character vector

Values: positive integer-valued scalar
Default: 0.99

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

2-25

2 Blocks

2-26

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation |[Ready Latency Area Sample block or
example
Systolic C O(n) 0O(mn?) “Implement

Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) 0(n?) * Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C O(n) 0(n?) “Fixed-Point HDL-
with Forgetting Optimized

Factor Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?) O(n) * Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Burst Q-less QR Decomposition | Complex Partial Systolic Q-less QR Decomposition | Real
Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Partial-
Systolic Q-less QR Decomposition with Forgetting Factor

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

2-27

2 Blocks

2-28

Complex Partial-Systolic Matrix Solve Using QR
Decomposition

Compute value of x in Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers

Description

The Complex Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x
= A’l, set B to be the identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value is 1
(true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Complex Partial-Systolic Matrix Solve Using QR Decomposition

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn valueis 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(i, :) — Rows of matrix X
scalar | vector
Rows of matrix X, returned as a scalar or vector.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(j,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in input matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

2-29

2 Blocks

2-30

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | non-negative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use

Block Parameter: k

Type: character vector

Values: positive integer-valued scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Complex Partial-Systolic Matrix Solve Using QR Decomposition

Implementation |[Ready Latency Area Sample block or
example
Systolic C O(n) O(mn?) “Implement

Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) 0(n?) * Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C O(n) 0(n?) “Fixed-Point HDL-
with Forgetting Optimized

Factor Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?) O(n) ¢ Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2-31

2 Blocks

2-32

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Complex Burst Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve Using
Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Introduced in R2020b

Complex Partial-Systolic Q-less QR Decomposition

Complex Partial-Systolic Q-less QR Decomposition

Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations

Description

The Complex Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R"\b.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and n = 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input

samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean

2-33

2 Blocks

2-34

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is @ (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Complex Partial-Systolic Q-less QR Decomposition

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation |[Ready Latency Area Sample block or
example
Systolic C O(n) O(mn?) “Implement

Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) 0(n?) * Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C O(n) 0(n?) “Fixed-Point HDL-
with Forgetting Optimized

Factor Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?) O(n) » Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)

Real Partial-Systolic QR c=w+38 v=cm+n-1)

Decomposition

Complex Partial-Systolic QR c=2w+ 15 v=cim+n-1)

Decomposition

2-35

2 Blocks

2-36

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

QR Decomposition with
Forgetting Factor

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cim+n-1)
Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)
QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)
Decomposition with Forgetting

Factor

Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

Extended Capabilities

C/C++ Code Generation

If the data type of A is fixed point, then w is the word length.
If the data type of A is double, then w is 53.
If the data type of A is single, then w is 24.

Generate C and C++ code using Simulink® Coder™.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

Complex Partial-Systolic Q-less QR Decomposition

General

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-

point data types.

See Also

Blocks

Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Burst Q-less QR
Decomposition | Real Partial-Systolic Q-less QR Decomposition

Functions

fixed.qlessQR

Introduced in R2020b

2-37

2 Blocks

2-38

Complex Partial-Systolic Q-less QR Decomposition
with Forgetting Factor

Q-less QR decomposition for complex-valued matrices with infinite number of rows

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
BN
tart 7 C dy
Description

The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall complex-valued matrix representing streaming data.

The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input

samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Data Types: Boolean
Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use

Block Parameter: forgettingFactor
Type: character vector

Values: positive integer-valued scalar
Default: 0.99

2-39

2 Blocks

2-40

Algorithms

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and

solving systems of linear equations.

Implementation |[Ready

Latency

Area

Sample block or
example

Systolic C

O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst

O(mn?)

* Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

Decomposition

Real Partial-Systolic QR c=w+38 v=cm+n-1)
Decomposition
Complex Partial-Systolic QR c=2w+ 15 v=cim+n-1)

Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cim+n-1)

Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)

QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)

Decomposition with Forgetting

Factor

Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

QR Decomposition with

Forgetting Factor

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

+ If the data type of A is fixed point, then w is the word length.
» Ifthe data type of A is double, then w is 53.
» If the data type of A is single, then w is 24.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2-41

2 Blocks

2-42

General

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also

Blocks

Complex Partial-Systolic QR Decomposition | Complex Burst Q-less QR Decomposition | Complex

Partial Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with
Forgetting Factor

Functions
fixed.qlessQR

Introduced in R2020b

Complex Partial-Systolic QR Decomposition

Complex Partial-Systolic QR Decomposition

QR decomposition for complex-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
(ALL} D ﬂ R
L reay
Description

The Complex Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C =
Q'B, where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = B is
x = R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to
be the identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and n = 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

2-43

2 Blocks

2-44

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

R — Matrix R
matrix

Economy-size QR decomposition matrix R, returned as a matrix. R is an upper triangular matrix. R
has the same data type as A.
Data Types: single | double | fixed point

C — Matrix C=Q'B
matrix

Economy-size QR decomposition matrix C=Q'B, returned as a matrix or vector. C has the same
number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in input matrices A and B
4 (default) | positive integer-valued scalar

The number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Complex Partial-Systolic QR Decomposition

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | non-negative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use

Block Parameter: k

Type: character vector

Values: positive integer-valued scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

2-45

2 Blocks

2-46

Implementation |[Ready

Latency

Area

Sample block or
example

Systolic C

O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst

O(mn?)

¢ Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

Decomposition with Forgetting
Factor

Real Partial-Systolic QR c=w+38 v=cim+n-1)
Decomposition

Complex Partial-Systolic QR c=2w+ 15 v=cm+n-1)
Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cm+n-1)
Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)
QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)

Complex Partial-Systolic QR Decomposition

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)
Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

QR Decomposition with
Forgetting Factor

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

If the data type of A is fixed point, then w is the word length.
If the data type of A is double, then w is 53.
If the data type of A is single, then w is 24.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

2-47

2 Blocks

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Burst QR Decomposition | Complex Partial Systolic Q-less QR Decomposition | Real Partial
Systolic QR Decomposition

Functions
fixed.qrAB

Introduced in R2020b

2-48

Hyperbolic Tangent HDL Optimized

Hyperbolic Tangent HDL Optimized

Computes CORDIC-based hyperbolic tangent and generates optimized HDL code
Library: Fixed-Point Designer / Math Operations

S v

tanh walidOut [

)vali::lln ready b

Hyperbolic Tangent HOL Optimized

Description

The Hyperbolic Tangent HDL Optimized block returns the hyperbolic tangent of x, computed using a
CORDIC-based implementation optimized for HDL code generation.

Ports
Input

x — Angle in radians
real finite scalar

Angle in radians, specified as a real finite scalar. If x is a fixed-point or scaled double data type, x
must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the x input port is valid. When this value is 1 (true), the block captures the value on the x input port.
When this value is 0 (false), the block ignores the input samples.

Data Types: Boolean
Output

y — Hyperbolic tangent of x
scalar

Hyperbolic tangent of the value at x, returned as a scalar. The value at y is the CORDIC-based
approximation of the hyperbolic tangent of x. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is a fixed-point data type, the
output has the same word length as the input and a fraction length equal to 2 less than the word
length.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

2-49

2 Blocks

2-50

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output y. When this value is 0 (false), the output
data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers.

The block automatically determines the number of iterations, niters, the CORDIC algorithm
performs based on the data type of the input.

Data type of input x niters

single 23

double 52

fixed point One less than the word length of x. The minimum
number of CORDIC iterations is 7.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther,].S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Hyperbolic Tangent HDL Optimized

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

x must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

See Also

Functions
cordictanh

Topics
“Implement Hardware-Efficient Hyperbolic Tangent”

Introduced in R2020a

2-51

2 Blocks

2-52

Normalized Reciprocal HDL Optimized

Computes normalized reciprocal and generates optimized HDL code
Library: Fixed-Point Designer / Math Operations

Description

The Normalized Reciprocal HDL Optimized block computes the normalized reciprocal of u, returned
as y and t such that 0.5 < |y| = 1 and 2¢y = 1/u.

¢ Ifu=0and u is a fixed-point or scaled-double data type, then y = 2 - eps(y) and e = 2nextpow2w) _ v
+ f, where w is the word length of u and fis the fraction length of u.

o Ifu=0and u is a floating-point data type, then y = Inf and t = 1.

Ports
Input

u — Value to take normalized reciprocal of
real scalar

Value to take the normalized reciprocal of, specified as a real scalar.

Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the u input port is valid. When this value is 1 (true), the block captures the value at the u input port.
When this value is 0 (false), the block ignores the input samples.

Data Types: Boolean
Output

y — Normalized reciprocal
scalar

Normalized reciprocal that satisfies 0.5 < |y| = 1 and 2¢y = 1/u, returned as a scalar.
» If the input at port u is a signed fixed-point or scaled-double data type with word length w, then y

is a signed fixed-point or scaled-double data type with word length w and fraction length w - 2.

» If the input at port u is an unsigned fixed-point or scaled-double data type with word length w,
then y is an unsigned fixed-point or scaled-double data type with word length w and fraction
length w - 1.

Normalized Reciprocal HDL Optimized

+ If the input at port u is a double, then y is a double.
» Ifthe input at port u is a single, the y is a single.

Data Types: single | double | fixed point

e — Exponent
integer scalar

Exponent that satisfies 0.5 < |y| = 1 and 2°y = 1/u, returned as an integer scalar.

Data Types: int32

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the outputs at ports y and e. When this value is 0
(false), the output data is not valid.

Data Types: Boolean

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2-53

2 Blocks

2-54

General

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also

Functions
normalizedReciprocal

Blocks
HDL Reciprocal

Topics
“How to Use HDL Optimized Normalized Reciprocal”

Introduced in R2020a

Real Burst Matrix Solve Using Q-less QR Decomposition

Real Burst Matrix Solve Using Q-less QR
Decomposition

Compute the value of X in the equation A'AX = B for real-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

uuuuuuuu

aaaaaaa

.....

Description

The Real Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

Creation

fixed.getQlessQRMatrixSolveModel (A,B) generates a template model containing a Real Burst
Matrix Solve Using Q-less QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

2-55

2 Blocks

2-56

1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(1i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Real Burst Matrix Solve Using Q-less QR Decomposition

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2-57

2 Blocks

2-58

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Partial-
Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Introduced in R2020a

Real Burst Q-less QR Decomposition

Real Burst Q-less QR Decomposition

Q-less QR decomposition for real-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
,
restart H R reay
Description

The Real Burst Q-less QR Decomposition block uses QR decomposition to compute the economy size
upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued matrix, without
computing Q. The solution to A'Ax = B is x = R\R'\b.

Creation

fixed.getQlessQRDecompositionModel (A, B) generates a template model containing a Real
Burst Q-less QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i, :) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m=2andn=2.IfAisa
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.

2-59

2 Blocks

2-60

Data Types: Boolean
Output

R(i, :) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. The output at R(i,:) has the same data type as the input at A(i,:).

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Real Burst Q-less QR Decomposition

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also

Blocks

Complex Burst Q-less QR Decomposition | Real Burst QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qlessQR

2-61

2 Blocks

Introduced in R2020a

2-62

Real Burst Matrix Solve Using QR Decomposition

Real Burst Matrix Solve Using QR Decomposition

Compute the value of x in the equation Ax = B for real-valued matrices using QR decomposition

Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers
AL XG5
won P R
Description

The Real Burst Matrix Solve Using QR Decomposition block solves the system of linear equations Ax
= B using QR decomposition, where A and B are real-valued matrices. To compute x = A1, set B to be
the identity matrix.

Creation

fixed.getMatrixSolveModel (A, B) generates a template model containing a Real Burst Matrix
Solve Using QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

2-63

2 Blocks

2-64

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(1i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(j,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Real Burst Matrix Solve Using QR Decomposition

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2-65

2 Blocks

2-66

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qrAB

Introduced in R2019b

Real Burst QR Decomposition

Real Burst QR Decomposition

QR decomposition for real-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations

AL) ﬂ R,)

Bii.) -»> cli.2)

wer Pl R

Description

The Real Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B, where QR
= A, and A and B are real-valued matrices. The least-squares solution to Ax = Bis x = R\C. R is an
upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the identity
matrix.

Creation

fixed.getQRDecompositionModel (A,B) generates a template model containing a Real Burst QR
Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and n = 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

2-67

2 Blocks

2-68

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

R(1i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. R has the same data type as A.

Data Types: single | double | fixed point

C(i,:) — Rows of matrix C = Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Real Burst QR Decomposition

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

2-69

2 Blocks

2-70

General

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.
See Also

Blocks
Complex Burst QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qrAB

Introduced in R2019b

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition

Compute value of X in A'AX = B for real-valued matrices using Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers

uuuuuuuu
\\\\\\\\

yyyyyy
vvvvvvvv

Description

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B — Matrix B
vector | matrix

Real matrix B, specified as a vector or matrix. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(j, :) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

Data Types: Boolean

2-71

2 Blocks

2-72

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X — Matrix X
vector | matrix

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A(i, :), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

Parameters

Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following

2-73

2 Blocks

table illustrates the tradeoffs between the implementations available for matrix decompositions and

solving systems of linear equations.

Implementation

Ready

Latency

Area

Sample block or
example

Systolic

C

O(n)

0O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance

Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?3) O(n) ¢ Real Burst QR

Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2-74

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve
Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
with Forgetting Factor | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

2-75

2 Blocks

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor

Compute value of X in A'AX = B for real-valued matrices with infinite number of rows using Q-less QR

decomposition

Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers

VVVVVVV FIR s

Description

The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
solves the system of linear equations A'AX = B using Q-less QR decomposition, where A and B are
real-valued matrices. A is an infinitely tall matrix representing streaming data.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B — Matrix B
matrix

Real matrix B, specified as a matrix. B is an m-by-p matrix where m = 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.

Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(j, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

Data Types: Boolean

2-76

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are both 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X — Matrix X

vector | matrix

Matrix X, returned as a vector or matrix.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.

Data Types: Boolean

2-77

2 Blocks

2-78

Parameters

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use

Block Parameter: forgettingFactor
Type: character vector

Values: positive integer-valued scalar
Default: 0.99

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)"' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation |[Ready Latency Area Sample block or
example
Systolic C O(n) 0O(mn?) “Implement

Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) 0(n?) * Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C O(n) 0(n?) “Fixed-Point HDL-
with Forgetting Optimized

Factor Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn?) O(n) * Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

2-79

2 Blocks

2-80

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline

Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real
Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

Real Partial-Systolic Matrix Solve Using QR Decomposition

Real Partial-Systolic Matrix Solve Using QR
Decomposition

Compute value of x in Ax = B for real-valued matrices using QR decomposition

Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear
System Solvers
AlL:) H ﬂ Xi.:
AR s
Description

The Real Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are real-valued matrices. To compute x =
A7, set B to be the identity matrix.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and m = n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

2-81

2 Blocks

2-82

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

X(1i,:) — Rows of matrix X

scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(j,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.

Data Types: Boolean

Parameters

Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Real Partial-Systolic Matrix Solve Using QR Decomposition

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use

Block Parameter: k

Type: character vector

Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use

Block Parameter: OutputType

Type: character vector

Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)"' | '<data type
expression>'

Default: 'fixdt(1,18,14)"

Algorithms

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following

table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

2-83

2 Blocks

2-84

Implementation

Ready

Latency

Area

Sample block or
example

Systolic

O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst

O(mn?)

¢ Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has a single, default HDL architecture.

Real Partial-Systolic Matrix Solve Using QR Decomposition

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks
Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

Functions
fixed.qrMatrixSolve

Introduced in R2020b

2-85

2 Blocks

2-86

Real Partial-Systolic Q-less QR Decomposition

Q-less QR decomposition for real-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
| AfL.:) D ﬂ R
-
; R ready
Description

The Real Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2andn = 2. IfAis a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.

Data Types: Boolean

Real Partial-Systolic Q-less QR Decomposition

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R, returned as a vector or matrix. R is an upper triangular
matrix. The output at R has the same data type as the input at A(i,:).

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

Data Types: Boolean

Parameters

Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: m

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

2-87

2 Blocks

2-88

Algorithms

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and

solving systems of linear equations.

Implementation |[Ready

Latency

Area

Sample block or
example

Systolic C

O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst

O(mn?)

* Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

Decomposition

Real Partial-Systolic QR c=w+38 v=cm+n-1)
Decomposition
Complex Partial-Systolic QR c=2w+ 15 v=cim+n-1)

Real Partial-Systolic Q-less QR Decomposition

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cim+n-1)

Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)

QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)

Decomposition with Forgetting

Factor

Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

QR Decomposition with

Forgetting Factor

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

+ If the data type of A is fixed point, then w is the word length.
» Ifthe data type of A is double, then w is 53.
» If the data type of A is single, then w is 24.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2-89

2 Blocks

2-90

General

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also

Blocks

Complex Partial Systolic Q-less QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial
Systolic QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Functions
fixed.qlessQR

Introduced in R2020b

Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Real Partial-Systolic Q-less QR Decomposition with
Forgetting Factor

Q-less QR decomposition for real-valued matrices with infinite number of rows

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations
Al S - ﬂ R
AR dy
Description

The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall real-valued matrix representing streaming data.

The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A uses a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.

Data Types: Boolean

2-91

2 Blocks

2-92

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R multiplied by the Forgetting factor parameter,
returned as a matrix. R is an upper triangular matrix. The output at R has the same data type as the
input at A(i,:).

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.

Data Types: Boolean

Parameters

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use

Block Parameter: forgetting factor
Type: character vector

Values: positive integer-valued scalar
Default: 0.99

Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Algorithms

Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and

solving systems of linear equations.

Implementation |[Ready

Latency

Area

Sample block or
example

Systolic C

0O(n) O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n)

O(mn?) O(n)

* Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

Decomposition

Real Partial-Systolic QR c=w+38 v=cm+n-1)
Decomposition
Complex Partial-Systolic QR c=2w+ 15 v=cim+n-1)

2-93

2 Blocks

2-94

Block

validIn to ready (c cycles)

validIn to validOut (v
cycles)

QR Decomposition with
Forgetting Factor

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cim+n-1)
Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)
QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)
Decomposition with Forgetting

Factor

Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

Extended Capabilities

C/C++ Code Generation

If the data type of A is fixed point, then w is the word length.
If the data type of A is double, then w is 53.
If the data type of A is single, then w is 24.

Generate C and C++ code using Simulink® Coder™.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General

ConstrainedOutputPipeline

Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

General

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions
Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported.

See Also
Blocks
Complex Partial Systolic Q-less QR Decomposition with Forgetting Factor | Real Burst Q-less QR

Decomposition | Real Partial Systolic QR Decomposition | Real Partial-Systolic Q-less QR
Decomposition

Functions
fixed.qlessQR

Introduced in R2020b

2-95

2 Blocks

2-96

Real Partial-Systolic QR Decomposition

QR decomposition for real-valued matrices

Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix
Factorizations

A(L) D ﬂ R

B(.}} - [

rastart ;ﬂ.]R ready

Description

The Real Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are real-valued matrices. The least-squares solution to Ax = B is x = R\C.
R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the
identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m = 2 and n = 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.

Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m = 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.

Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

Data Types: Boolean

Real Partial-Systolic QR Decomposition

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

Data Types: Boolean
Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.

Data Types: single | double | fixed point

C—MatrixC=Q'B
scalar | vector

Economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the same
number of rows as R. C has the same data type as B.

Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.

Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

Data Types: Boolean

Parameters

Number of rows in input matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector

2-97

2 Blocks

2-98

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: n

Type: character vector

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use

Block Parameter: p

Type: character vector

Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use

Block Parameter: k

Type: character vector

Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Real Partial-Systolic QR Decomposition

Implementation |[Ready

Latency

Area

Sample block or
example

Systolic C

O(mn?)

“Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C

* Real Partial-
Systolic QR
Decomposition

* Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic C
with Forgetting
Factor

“Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst

O(mn?)

¢ Real Burst QR
Decomposition

* Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Decomposition with Forgetting
Factor

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)

Real Partial-Systolic QR c=w+38 v=cim+n-1)

Decomposition

Complex Partial-Systolic QR c=2w+ 15 v=cm+n-1)

Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=cm+n-1)

Decomposition

Complex Partial-Systolic Q-less |c = 2w + 15 v=cim+n-1)

QR Decomposition

Real Partial-Systolic Q-lessQR |[c=w + 8 v=c(2n-1)

2-99

2 Blocks

Block validIn to ready (c cycles) |validIn to validOut (v
cycles)
Complex Partial-Systolic Q-less |c = 2w + 15 v=c(2n-1)

QR Decomposition with
Forgetting Factor

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

If the data type of A is fixed point, then w is the word length.
If the data type of A is double, then w is 53.
If the data type of A is single, then w is 24.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

General

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

2-100

Real Partial-Systolic QR Decomposition

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also

Blocks

Complex Partial-Systolic QR Decomposition | Real Burst QR Decomposition | Real Partial-Systolic Q-
less QR Decomposition

Functions
fixed.qrAB

Introduced in R2020b

2-101

Properties

* “fi Object Properties” on page 3-2
* “quantizer Object Properties” on page 3-4

3 Properties

fi Object Properties

3-2

The properties associated with fi objects are described in the following sections in alphabetical

order.

You can set these properties when you create a fi object. For example, to set the stored integer value

of a i object:

x = fi(0,true, 16,15, 'int"',4);

Note The fimath properties and numerictype properties are also properties of the fi object.
Refer to “fimath Object Properties” and “numerictype Object Properties” for more information.

bin

Stored integer value of a fi object in binary.

data

Numerical real-world value of a fi object.

dec

Stored integer value of a fi object in decimal.

double

Real-world value of a i object stored as a MATLAB double.

fimath

fimath properties associated with a fi object. fimath properties determine the rules for
performing fixed-point arithmetic operations on fi objects. fi objects get their fimath properties
from a local fimath object or from default values. The factory-default fimath values have the

following settings:

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:

Nearest
Saturate
FullPrecision
FullPrecision

To learn more about fimath objects, refer to “fimath Object Construction”. For more information
about each of the fimath object properties, refer to “fimath Object Properties”.

hex

Stored integer value of a fi object in hexadecimal.

fi Object Properties

int
Stored integer value of a i object, stored in a built-in MATLAB integer data type.

NumericType

The numerictype object contains all the data type and scaling attributes of a fixed-point object. The
numerictype object behaves like any MATLAB structure, except that it only lets you set valid values
for defined fields. For a table of the possible settings of each field of the structure, see “Valid Values
for numerictype Object Properties” in the Fixed-Point Designer User's Guide.

Note You cannot change the numerictype properties of a fi object after fi object creation.

oct

Stored integer value of a fi object in octal.

Value

Full-precision real world value of a fi object, stored as a character vector.

3-3

3 Properties

quantizer Object Properties

The properties associated with quantizer objects are described in the following sections in
alphabetical order.

DataMode

Type of arithmetic used in quantization. This property can have the following values:

+ fixed — Signed fixed-point calculations

+ float — User-specified floating-point calculations

* double — Double-precision floating-point calculations
* single — Single-precision floating-point calculations
+ ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format property value
becomes read only.

Format

Data format of a quantizer object. The interpretation of this property value depends on the value of
the DataMode property.

For example, whether you specify the DataMode property with fixed- or floating-point arithmetic
affects the interpretation of the data format property. For some DataMode property values, the data
format property is read only.

The following table shows you how to interpret the values for the Format property value when you
specify it, or how it is specified in read-only cases.

DataMode Property Value |Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of bits for the
quantizer object word length is the first entry of this vector, and the number
of bits for the quantizer object fraction length is the second entry.

The word length can range from 2 to the limits of memory on your PC. The
fraction length can range from O to one less than the word length.

float You specify the Format property value as a vector. The number of bits you want
for the quantizer object word length is the first entry of this vector, and the
number of bits you want for the quantizer object exponent length is the
second entry.

The word length can range from 2 to the limits of memory on your PC. The
exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only) when you
set the DataMode property to double. The value is [64 11], specifying the
word length and exponent length, respectively.

3-4

quantizer Object Properties

DataMode Property Value |Interpreting the Format Property Values
single The Format property value is specified automatically (is read only) when you
set the DataMode property to single. The value is [32 8], specifying the word
length and exponent length, respectively.
OverflowMode

Overflow-handling mode. The value of the OverflowMode property can be one of the following:

Saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers (as specified by the data format properties), these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

Wrap — Overflows wrap to the range of representable values.
When the values of data to be quantized lie outside the range of the largest and smallest

representable numbers (as specified by the data format properties), these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number.

The default value of this property is Saturate. This property becomes a read-only property when you
set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to £inf.

RoundingMode

Rounding method. The value of the RoundingMode property can be one of the following:

Ceiling — Round up to the next allowable quantized value.

Convergent — Round to the nearest allowable quantized value. Numbers that are exactly
halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit (after rounding) would be set to 0.

Zero — Round negative numbers up and positive numbers down to the next allowable quantized
value.

Floor — Round down to the next allowable quantized value.

Nearest — Round to the nearest allowable quantized value. Numbers that are halfway between
the two nearest allowable quantized values are rounded up.

The default value of this property is Floor.

Functions

‘l Functions

4-2

abs

Absolute value of fi object

Syntax

y = abs(a)

y = abs(a,T)
y = abs(a,F)
y = abs(a,T,F)
Description

y = abs(a) returns the absolute value of fi object a with the same numerictype object as a.
Intermediate quantities are calculated using the fimath associated with a. The output fi object, vy,
has the same local fimath as a.

y = abs(a,T) returns a fi object with a value equal to the absolute value of a and numerictype
object T. Intermediate quantities are calculated using the fimath associated with a and the output
f1i object y has the same local fimath as a. See “Data Type Propagation Rules” on page 4-8.

y = abs(a,F) returns a fi object with a value equal to the absolute value of a and the same
numerictype object as a. Intermediate quantities are calculated using the fimath object F. The
output fi object, y, has no local fimath.

y = abs(a,T,F) returns a fi object with a value equal to the absolute value of a and the
numerictype object T. Intermediate quantities are calculated using the fimath object F. The output
f1i object, y, has no local fimath. See “Data Type Propagation Rules” on page 4-8.

Examples

Absolute Value of Most Negative Representable Value

This example shows the difference between the absolute value results for the most negative value
representable by a signed data type when the 'OverflowAction' property is set to 'Saturate' or
"Wrap'.

Calculate the absolute value when the 'OverflowAction' is set to the default value 'Saturate'.

P = fipref('NumericTypeDisplay','full',...
'FimathDisplay', 'full');
a = fi(-128)
y = abs(a)
a =
-128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

abs

FractionLength: 8
y =
127.9961
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8
abs returns 127.9961, which is a result of saturation to the maximum positive value.

Calculate the absolute value when the 'OverflowAction' issetto 'Wrap"'.

a.0OverflowAction = 'Wrap'
y = abs(a)
a =
-128
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision
y:

-128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

abs returns 128, which is a result of wrapping back to the most negative value.

Difference Between Absolute Values for Real and Complex fi Inputs

This example shows the difference between the absolute value results for complex and real fi inputs
that have the most negative value representable by a signed data type when the 'OverflowAction'
property is set to 'Wrap"'.

Define a complex fi object.

4-3

‘l Functions

re = fi(-1,1,16,15);
im = fi(0,1,16,15);
a = complex(re,im)
a =

-1.0000 + 0.00001

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

a is complex, but numerically equal to the real part, re.

Calculate the absolute value of the complex fi object.

y = abs(a,re.numerictype, fimath('OverflowAction', 'Wrap'))

y=
1.0000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Calculate the absolute value of the real fi object.

y = abs(re,re.numerictype,fimath('OverflowAction', '"Wrap"'))
y:
-1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Specify numerictype and fimath Inputs to Control the Result of abs for Real Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for real inputs. When you specify a fimath object as an
argument, that fimath object is used to compute intermediate quantities, and the resulting fi object
has no local fimath.

a = fi(-1,1,6,5, '0OverflowAction', 'Wrap');
y = abs(a)
y =

-1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

4-4

abs

WordLength: 6
FractionLength: 5

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

The returned output is identical to the input. This may be undesirable because the absolute value is
expected to be positive.

F = fimath('OverflowAction', 'Saturate');
y = abs(a,F)
y:

0.9688

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 5

The returned f1i object is saturated to a value of 0.9688 and has the same numerictype object as
the input.

Because the output of abs is always expected to be positive, an unsigned numerictype may be
specified for the output.

T = numerictype(a.numerictype, 'Signed', false);
y = abs(a,T,F)
y:

1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 6
FractionLength: 5

Specifying an unsigned numerictype enables better precision.

Specify numerictype and fimath Inputs to Control the Result of abs for Complex Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for complex inputs.

Specify a numerictype input and calculate the absolute value of a.

fi(-1-1i,1,16,15, 'OverflowAction', '"Wrap');
numerictype(a.numerictype, 'Signed', false);
abs(a,T)

< < Hdo

‘l Functions

4-6

1.4142
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

A f1i object is returned with a value of 1.4142 and the specified unsigned numerictype. The
fimath used for intermediate calculation and the fimath of the output are the same as that of the
input.

Now specify a fimath object different from that of a.

F = fimath('OverflowAction', 'Saturate', 'SumMode', ...
'KeepLSB', 'SumWordLength',a.WordLength, ...
'"ProductMode’, 'specifyprecision’, ...
'ProductWordLength',a.WordLength, ...
'ProductFractionLength',a.FractionLength);

y = abs(a,T,F)

y:

1.4142

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15

The specified fimath object is used for intermediate calculation. The fimath associated with the
output is the default fimath.

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as a scalar, vector, matrix, or multidimensional array.

abs only supports fi objects with trivial [Slope Bias] scaling, that is, when the bias is 0 and the
fractional slope is 1.

abs uses a different algorithm for real and complex inputs. For more information, see “Absolute
Value” on page 4-7.

Data Types: i

Complex Number Support: Yes

T — numerictype of the output
numerictype object

abs

numerictype of the output fi object y, specified as a numerictype object. For more information,
see “Data Type Propagation Rules” on page 4-8.

Example: T = numerictype(0,24,12, 'DataType’', 'Fixed"')

F — Fixed-point math settings to use
fimath object

Fixed-point math settings to use for the calculation of absolute value, specified as a fimath object.

Example: F = fimath('OverflowAction', 'Saturate', 'RoundingMethod', 'Convergent')

Algorithms

Absolute Value

The absolute value of a real number is the corresponding nonnegative value that disregards the sign.
For a real input, a, the absolute value, vy, is:

y=aifa>=0 (4-1)
y=-aifa<0 (4-2)

abs (-0) returns 0.

Note When the fi object a is real and has a signed data type, the absolute value of the most
negative value is problematic since it is not representable. In this case, the absolute value saturates
to the most positive value representable by the data type if the 'OverflowAction' property is set to
'Saturate'.If 'OverflowAction' is 'Wrap', the absolute value of the most negative value has no
effect.

For a complex input, a, the absolute value, vy, is related to its real and imaginary parts as follows:
y = sqrt(real(a)*real(a) + imag(a)*imag(a)) (4-3)
The abs function computes the absolute value of a complex input, a, as follows:
1 Calculate the real and imaginary parts of a.
re = real(a) (4-4)

im = imag(a) (4-5)
2 Compute the squares of re and im using one of the following objects:

* The fimath object F if F is specified as an argument.

* The fimath associated with a if F is not specified as an argument.
3 Ifthe input is signed, cast the squares of re and im to unsigned types.

Add the squares of re and im using one of the following objects:

+ The fimath object F if F is specified as an argument.
+ The fimath object associated with a if F is not specified as an argument.

4 Functions

4-8

5 Compute the square root of the sum computed in Step 4 using the sqrt function with the
following additional arguments:

* The numerictype object T if T is specified, or the numerictype object of a otherwise.
+ The fimath object F if F is specified, or the fimath object associated with a otherwise.

Note Step 3 prevents the sum of the squares of the real and imaginary components from being
negative. This is important because if either re or im has the maximum negative value and the
'OverflowAction' property is set to 'Wrap' then an error will occur when taking the square root
in Step 5.

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the abs function follows the data type
propagation rules listed in the following table. In general, these rules can be summarized as “floating-
point data types are propagated.” This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Object [Data Type of numerictype Data Type of Output y

a object T

fiFixed fi Fixed Data type of numerictype
object T

fi ScaledDouble fi Fixed ScaledDouble with properties
of numerictype object T

fidouble fi Fixed fidouble

fisingle fi Fixed fisingle

Any fi data type fidouble fidouble

Any fi data type fisingle fisingle

Note When the Signedness of the input numerictype object T is Auto, the abs function always
returns an Unsigned fi object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Double and complex data types are not supported.

See Also
fi| fimath | numerictype

Introduced before R2006a

accumneg

accumneg

Subtract two fi objects or values

Syntax

C
C
C

accumneg(a,b)
accumneg(a,b,RoundingMethod)
accumneg(a,b,RoundingMethod,OverflowAction)

Description

¢ = accumneg(a,b) subtracts b from a using the data type of a. b is cast into the data type of a. If
a is a fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used.
The fimath properties of a and b are ignored.

c = accumneg(a,b,RoundingMethod) subtracts b from a using the rounding method specified by
RoundingMethod if a is a fi object.

¢ = accumneg(a,b,RoundingMethod, OverflowAction) subtracts b from a using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction if a is
a fi object.

Examples

Subtract Two fi Objects or Values

This example shows how to subtract two fi numbers using accumneg.

Subtract two fi numbers

Subtract b from a, where a and b are both fi numbers, using the default rounding method of
'"Floor' and overflow action of 'Wrap"'.

a = fi(pi,1,16,13);
b =fi(1.5,1,16,14);
subtr default = accumneg(a,b)

subtr default =
1.6416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Subtract two fi numbers using specified rounding and overflow action

Subtract b from a, where a and b are both fi numbers, using specified rounding method of
‘Nearest' and overflow action of 'Saturate’.

4-9

‘l Functions

4-10

fi(pi,1,16,13);
fi(1.5,1,16,14);
ri

a
b
S custom = accumneg(a,b, 'Nearest', 'Saturate')

ubt
subtr custom =
1.6416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Input Arguments

a — Number to subtract from

f1i object (default) | double | single | logical | integer

Number from which to subtract. The data type of a is used to compute the output data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi

b — Number to subtract

f1i object (default) | double | single | logical | integer

Number to subtract.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: ¢ = accumneg(a,b, 'Ceiling')

Data Types: string

OverflowAction — Overflow action to take
'"Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: ¢ = accumneg(a,b, 'Ceiling', 'Saturate"')

Data Types: string

Output Arguments

c — Difference of inputs
fiobject | double | single | logical | integer

Result of subtracting input b from input a.

accumneg

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumpos

Topics
“Avoid Multiword Operations in Generated Code”

Introduced in R2012a

4-11

4 Functions

4-12

accumpos

Add two f1i objects or values

Syntax

C
C
C

accumpos(a,b)
accumpos(a,b,RoundingMethod)
accumpos(a,b,RoundingMethod,OverflowAction)

Description

Cc = accumpos(a,b) adds a and b using the data type of a. b is cast into the data type of a. If a is a
f1i object, the default 'Floor' rounding method and default ‘Wrap' overflow action are used. The
fimath properties of a and b are ignored.

Cc = accumpos(a,b,RoundingMethod) adds a and b using the rounding method specified by
RoundingMethod.

¢ = accumpos(a,b,RoundingMethod,OverflowAction) adds a and b using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction.

Examples

Add Two fi Objects or Values

This example shows how to add two fi numbers using accumpos.

Add two fi numbers

Add a and b, where a and b are both fi numbers, using the default rounding method of 'Floor"' and
overflow action of 'Wrap"'.

a = fi(pi,1,16,13);
b =fi(1.5,1,16,14);
add _default = accumpos(a,b)

add default
-3.3584

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Add two fi numbers using specified rounding and overflow action

Add a and b, where a and b are both fi numbers, using specified rounding method of 'Nearest'
and overflow action of 'Saturate'.

accumpos

a = fi(pi,1,16,13);
b =i(1.5,1,16,14);
add custom = accumpos(a,b, 'Nearest', 'Saturate')

add custom =
3.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Input Arguments

a — Number to add

f1i object (default) | double | single | logical | integer

Number to add. The data type of a is used to compute the output data type.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi

b — Number to add
f1i object (default) | double | single | logical | integer

Number to add.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: ¢ = accumpos(a,b, 'Ceiling')

Data Types: string

OverflowAction — Overflow action to take
'"Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: ¢ = accumpos(a,b, 'Ceiling', 'Saturate')
Data Types: string

Output Arguments

¢ — Sum of inputs
fiobject | double | single | logical | integer

Result of adding input a and input b.

4-13

4 Functions

4-14

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumneg

Topics
“Avoid Multiword Operations in Generated Code”

Introduced in R2012a

add

add

Add two f1i objects using fimath object

Syntax
Cc = add(F,a,b)

Description

¢ = add(F,a,b) adds fi objects a and b using fimath object F. This is helpful in cases when you
want to override the fimath objects of a and b, or if the fimath properties associated with a and b
are different. The output of fi object ¢ has no local fimath.

Examples

Add Two Fixed-Point Numbers

In this example, c is the 32-bit sum of a and b with a fraction length of 16.

fi(pi);

fi(exp(1));

fimath('SumMode', 'SpecifyPrecision’', ...
SumWordLength',32, 'SumFractionLength',16);

add(F,a,b)

a
b
F

(@]
Il

0
Il

5.8599
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 32
FractionLength: 16

Input Arguments

F — fimath
fimath object

fimath object to use for addition.

a,b — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays.

a and b must both be fi objects and must have the same dimensions unless one is a scalar. If either a
or b is scalar, then c has the dimensions of the nonscalar object.

Data Types: fi

4-15

‘l Functions

4-16

Complex Number Support: Yes

Algorithms
c = add(F,a,b)

is similar to

a.fimath = F;
b.fimath = F;
c=a+b

but not identical. When you use add, the fimath properties of a and b are not modified, and the
output fi object, ¢, has no local fimath. When you use the syntax ¢ = a + b, where a and b have
their own fimath objects, the output fi object, ¢, gets assigned the same fimath object as inputs a
and b.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* The syntax F.add (a,b) is not supported. You must use the syntax add(F,a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
divide | fi| fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Topics
“fimath Rules for Fixed-Point Arithmetic”

Introduced before R2006a

assignmentquantizer

assignmentquantizer

Assignment quantizer object of i object

Syntax

g = assignmentquantizer(a)

Description

g = assignmentquantizer(a) returns the quantizer object q that is used in assignment
operations for the fi object a.

See Also
quantize | quantizer

Introduced in R2008a

4-17

‘l Functions

atan2

Four-quadrant inverse tangent of fixed-point values

Syntax

z = atan2(y,x)

Description

z = atan2(y, x) returns the four-quadrant arctangent of fi inputs y and x.

Examples

Calculate Arctangent of Fixed-Point Input Values

Use the atan2 function to calculate the arctangent of unsigned and signed fixed-point input values.

Unsigned Input Values

This example uses unsigned, 16-bit word length values.

y = fi(0.125,0,16);
x = fi(0.5,0,16);
z = atan2(y,x)
zZ =

0.2450

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15

Signed Input Values

This example uses signed, 16-bit word length values.

y = fi(-0.1,1,16);
x = fi(-0.9,1,16);
z = atan2(y,x)
Z =

-3.0309

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

4-18

atan2

WordLength: 16
FractionLength: 13

Input Arguments

y — y-coordinates
scalar | vector | matrix | multidimensional array

y-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and X can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

+ f1isingle

* f1i double

+ f1i fixed-point with binary point scaling

+ f1i scaled double with binary point scaling

Data Types: i

X — x-coordinates
scalar | vector | matrix | multidimensional array

x-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and X can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

+ fisingle

» f1i double

+ f1i fixed-point with binary point scaling

» f1i scaled double with binary point scaling

Data Types: fi

Output Arguments

z — Four-quadrant arctangent
scalar | vector | matrix | multidimensional array

Four-quadrant arctangent, returned as a scalar, vector, matrix, or multidimensional array.

z is the four-quadrant arctangent of y and x. The numerictype of z depends on the signedness of y
and x:

+ Ifeither y or x is signed, then z is a signed, fixed-point number in the range [-pi,pi]. It has a 16-bit
word length and 13-bit fraction length (numerictype(1,16,13)).

» Ifboth y and x are unsigned, then z is an unsigned, fixed-point number in the range [0,pi/2]. It has
a 16-bit word length and 15-bit fraction length (numerictype(0,16,15)).

4-19

4 Functions

4-20

The output, z, is always associated with the default fimath.

More About
Four-Quadrant Arctangent
The four-quadrant arctangent is defined as follows, with respect to the atan function:

Patan(%) x>0

o+ atan(%) y=0,x<0

-+ atan(%) y<0,x<0

atan2(y,x) =
I >0,x=0
2 y=ux=
H —
—5 y<0,x=0
10 y=0,x=0
Algorithms

The atan2 function computes the four-quadrant arctangent of fixed-point inputs using an 8-bit lookup
table as follows:

1 Divide the input absolute values to get an unsigned, fractional, fixed-point, 16-bit ratio between 0
and 1. The absolute values of y and x determine which value is the divisor.

The signs of the y and x inputs determine in what quadrant their ratio lies. The input with the
larger absolute value is used as the denominator, thus producing a value between 0 and 1.

atan2

==

2 Compute the table index, based on the 16-bit, unsigned, stored integer value:

a Use the 8 most-significant bits to obtain the first value from the table.
b Use the next-greater table value as the second value.

3 Use the 8 least-significant bits to interpolate between the first and second values using nearest
neighbor linear interpolation. This interpolation produces a value in the range [0, pi/4).

4 Perform octant correction on the resulting angle, based on the values of the original y and x
inputs.

This arctangent calculation is accurate only to within the top 16 most-significant bits of the input.
fimath Propagation Rules

The atan2 function ignores and discards any fimath attached to the inputs. The output, z, is always
associated with the default fimath.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
angle | atan2 | cordicatan2 | cos | sin

Topics
“Calculate Fixed-Point Arctangent”

4-21

4 Functions

Introduced in R2012a

4-22

autofixexp

autofixexp

Automatically change scaling of fixed-point data types

Syntax

autofixexp

Description

The autofixexp script automatically changes the scaling for model objects that specify fixed-point
data types. However, if an object's Lock output data type setting against changes by the fixed-
point tools parameter is selected, the script refrains from scaling that object.

This script collects range data for model objects, either from design minimum and maximum values
that objects specify explicitly, or from logged minimum and maximum values that occur during
simulation. Based on these values, the tool changes the scaling of fixed-point data types in a model so
as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects using parameters typically
titled Qutput minimum and Output maximum. See “Blocks That Allow Signal Range Specification”
for a list of Simulink blocks that permit you to specify these values. In the autoscaling procedure that
the autofixexp script executes, design minimum and maximum values take precedence over the
simulation range.

If you intend to scale fixed-point data types using simulation minimum and maximum values, the
script yields meaningful results when exercising the full range of values over which your design is
meant to run. Therefore, the simulation you run prior to using autofixexp must simulate your
design over its full intended operating range. It is especially important that you use simulation inputs
with appropriate speed and amplitude profiles for dynamic systems. The response of a linear dynamic
system is frequency dependent. For example, a bandpass filter will show almost no response to very
slow and very fast sinusoid inputs, whereas the signal of a sinusoid input with a frequency in the
passband will be passed or even significantly amplified. The response of nonlinear dynamic systems
can have complicated dependence on both the signal speed and amplitude.

Note If you already know the simulation range you need to cover, you can use an alternate
autoscaling technique described in the fixptbestprec reference page.

To control the parameters associated with automatic scaling, such as safety margins, use the Fixed-
Point Tool.

To learn how to use the Fixed-Point Tool, refer to “Propose Fraction Lengths Using Simulation Range
Data”.

See Also
fxptdlg

Introduced before R2006a

4-23

4 Functions

4-24

bin
Unsigned binary representation of stored integer of i object

Syntax

b = bin(a)

Description

b = bin(a) returns the stored integer of fi object a in unsigned binary format as a character
vector.

Fixed-point numbers can be represented as

2—fractionlength

real-worldvalue = x storedinteger

or, equivalently as

real-worldvalue = (slope x storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Unsigned Binary Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a= fi([-11], 1, 8, 7)

a=1x2 object
-1.0000 0.9922

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 8
FractionLength: 7

Find the unsigned binary representation of the stored integers of fi object a.
b = bin(a)

b —
10000000 01111111"

bin

Input Arguments

a — Stored integer
f1i object

Stored integer, specified as a fi object.

Data Types: fi

See Also
dec | hex | oct | storedInteger

Introduced before R2006a

4-25

‘l Functions

4-26

bin2num

Convert two's complement binary string to number using quantizer object

Syntax

y = bin2num(q,b)

Description

y = bin2num(q,b) converts the binary character vector b to a numeric array y using the properties
of the quantizer object q.

If b is a cell array containing binary strings, then y will be a cell array of the same dimension
containing numeric arrays.

[yl,y2,...] = bin2num(q,b1,b2,...) converts the binary character vectors b1, b2, ... to numeric arrays
vl,y2, ..

Examples

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

g = quantizer([4 3])
q:
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

x = 1x16

0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250

bin2num

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b = num2bin(qg,x)

b = 16x4 char array
'0111"'
'0110'
'0101"'
'0100'
'0011"'
'0010'
'0001"
'0000'
'1111°
'1110'
'1101"'
'1100'
'1011"'
'1010'
'1001"'
'1000'

Use bin2num to perform the inverse operation.
y = bin2num(q,b)
y = 16x1

.8750
.7500
.6250
.5000
.3750
.2500
.1250

0
.1250
.2500

[ocNoNoNoNoNoNO]

[
[oNo)

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

g = quantizer([3 2]);
b=1['011 111°

‘010 110

‘001 101°

‘000 100'1];

Use bin2num to view the numeric equivalents of these values.

X

bin2num(qg,b)

X 4x2

4-27

4 Functions

4-28

0.7500 -0.2500
0.5000 -0.5000
0.2500 -0.7500

0 -1.0000

Input Arguments

q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.

Example: q = quantizer([16 15]);

b — Binary string to convert
character vector | character array | cell array

Binary string to convert, specified as a character vector, character array, or cell array containing
binary strings.

Data Types: string | char | cell

Tips

* bin2num and num2bin are inverses of one another. Note that num2bin always returns the binary
representations in a column.

Algorithms

* The fixed-point binary representation is two's complement.
» The floating-point binary representation is in IEEE® Standard 754 style.

» If there are fewer binary digits than are necessary to represent the number, then fixed-point zero-
pads on the left, and floating-point zero-pads on the right.

See Also
hex2num | num2bin | num2hex | num2int | quantizer

Introduced before R2006a

bitand

bitand

Bitwise AND of two f1i objects

Syntax

c = bitand(a, b)

Description
c = bitand(a, b) returns the bitwise AND of fi objects a and b.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath object, the fimath objects must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitand only supports fi objects with fixed-point data types.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitcmp | bitget | bitor | bitset | bitxor

Introduced before R2006a

4-29

‘l Functions

4-30

bitandreduce

Reduce consecutive slice of bits to one bit by performing bitwise AND operation

Syntax

c = bitandreduce(a)

c = bitandreduce(a, 1lidx)

c = bitandreduce(a, lidx, ridx)
Description

¢ = bitandreduce(a) performs a bitwise AND operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

¢ = bitandreduce(a, lidx) performs a bitwise AND operation on a consecutive range of bits,
starting at position 1idx and ending at the LSB (the bit at position 1).

Cc = bitandreduce(a, lidx, ridx) performs a bitwise AND operation on a consecutive range of
bits, starting at position 1idx and ending at position ridx.

The bitandreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise AND Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001
Perform a bitwise AND operation on the entire set of bits in a.

C bitandreduce(a)

C =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0O

Because the bits of a do not all have a value of 1, the output has a value of 0.

bitandreduce

Perform Bitwise AND Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12, 4, 8, 15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111
Perform a bitwise AND operation on the bits of each element of a, starting at position fi(4).
¢ = bitandreduce(a, fi(4))

c=1x4 object
0 0 0 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

The only element in output c with a value of 1 is the 4th element. This is because it is the only
element of a that had only 1's between positions fi(4) and 1.

Perform Bitwise AND Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7, 8, 1; 5, 9, 5; 8, 37, 21, 0, 8, 0);
disp(bin(a))

00000111 00001000 00000001

00000101 00001001 00000101
00001000 00100101 0OOOOO10O

Perform a bitwise AND operation on the bits of each element of matrix a beginning at position 3 and
ending at position 1.

c = bitandreduce(a, 3, 1)

c=3x3 object

1 0 0
0 0 0
0 0 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

There is only one element in output ¢ with a value of 1. This condition occurs because the
corresponding element in a is the only element with only 1's between positions 3 and 1.

4-31

4 Functions

4-32

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.
bitandreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitandreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. 1idx represents the position in the range
closest to the MSB.

Data Types: fi|single |double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64
Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
C is unsigned with word length 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL®, generates the bitwise AND operator operating on a set of individual slices.

For Verilog®, generates the reduce operator:

&a[lidx:ridx]

bitandreduce

See Also
bitconcat | bitorreduce | bitsliceget | bitxorreduce

Introduced in R2007b

4-33

‘l Functions

4-34

bitcmp

Bitwise complement of fi object

Syntax

Cc = bitcmp(a)

Description

¢ = bitcmp(a) returns the bitwise complement of fi object a. If a has a signed numerictype, the
bit representation of the stored integer is in two's complement representation.

bitcmp only supports fi objects with fixed-point data types. a can be a scalar fi object or a vector
f1i object.

Examples

This example shows how to get the bitwise complement of a fi object. Consider the following
unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010
Complement the values of the bits in a:

c = bitcmp(a);
disp(bin(c))

0101

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitget | bitor | bitset | bitxor

Introduced before R2006a

bitconcat

bitconcat

Concatenate bits of fi objects

Syntax

y = bitconcat(a)

y = bitconcat (a, b, ...)

Description

y = bitconcat(a) concatenates the bits of the elements of fixed-point fi input array, a.
y = bitconcat (a, b, ...) concatenates the bits of the fixed-point fi inputs.
Examples

Concatenate the Elements of a Vector

Create a fixed-point vector.

a=fi([1,2,5,71,0,4,0);
disp(bin(a))

0001 0010 0101 0111
Concatenate the bits of the elements of a.

y = bitconcat(a)

4695
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 0
disp(bin(y))
0001001001010111

The word length of the output, y, equals the sum of the word lengths of each element of a.

Concatenate the Bits of Two fi Objects

Create two fixed-point numbers.

a = fi(5,0,4,0);
disp(bin(a))

4-35

‘l Functions

0101

b = fi(10,0,4,0);
disp(bin(b))

1010

Concatenate the bits of the two inputs.

y = bitconcat(a,b)
y =
90
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
disp(bin(y))
01011010

The output, v, is unsigned with a word length equal to the sum of the word lengths of the two inputs,
and a fraction length of 0.

Perform Element-by-Element Concatenation of Two Vectors

When a and b are both vectors of the same size, bitconcat performs element-wise concatenation of
the two vectors and returns a vector.

Create two fixed-point vectors of the same size.

a=fi([1,2,5,71,0,4,0);
disp(bin(a))

0001 0010 0101 0111

b =fi([7,4,3,11,0,4,0);
disp(bin(b))

0111 0100 0011 0001
Concatenate the elements of a and b.
y = bitconcat(a,b)

y=1x4 object
23 36 83 113

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

WordLength: 8
FractionLength: 0

disp(bin(y))

4-36

bitconcat

00010111 00100100 01010011 01110001

The output, v, is a vector of the same length as the input vectors, and with a word length equal to the
sum of the word lengths of the two input vectors.

Perform Element-by-Element Concatenation of Two Matrices

When the inputs are both matrices of the same size, bitconcat performs element-wise
concatenation of the two matrices and returns a matrix of the same size.

Create two fixed-point matrices.

a = fi([112I5;7I4I5;311112]I0I4IO);
disp(bin(a))

0001 0010 0101
0111 0100 0101
0011 0001 1100

b =fi([e,1,7;7,8,1;9,7,8],0,4,0);
disp(bin(b))

01106 0001 0111
0111 1000 0001
1001 0111 1000

Perform element-by-element concatenation of the bits of a and b.
y = bitconcat(a,b)
y=3x3 object

22 33 87

119 72 81
57 23 200

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
disp(bin(y))
00010110 00100001 01010111

01110111 01001000 01010001
00111001 00010111 11001000

The output, vy, is a matrix with word length equal to the sum of the word lengths of a and b.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

4-37

4 Functions

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitconcat accepts varargin number of inputs for concatenation.

Data Types: fixed-point fi

b — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
b is nonscalar, it must have the same dimension as the other inputs.

Data Types: fixed-point fi

Output Arguments

y — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of unsigned fixed-point
f1i objects.

The output array has word length equal to the sum of the word lengths of the inputs and a fraction
length of zero. The bit representation of the stored integer is in two's complement representation.
Scaling does not affect the result type and value.

If the inputs are all scalar, then bitconcat concatenates the bits of the inputs and returns a scalar.

If the inputs are all arrays of the same size, then bitconcat performs element-wise concatenation of
the bits and returns an array of the same size.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the concatenation operator: (a & b).

For Verilog, generates the concatenation operator: {a , b}.

See Also
bitand | bitcmp | bitget | bitor | bitreplicate | bitset |bitsliceget |bitxor

Introduced in R2007b

4-38

bitget

bitget

Get bits at certain positions

Syntax

Cc = bitget(a, bit)

Description

c = bitget(a, bit) returns the values of the bits at the positions specified by bit in a as
unsigned integers of word length 1.

Examples

Get Bit When Input and Index Are Both Scalar

Consider the following unsigned fixed-point fi number with a value of 85, word length 8, and fraction
length 0:

a = fi(85,0,8,0);
disp(bin(a))

01010101
Get the binary representation of the bit at position 4:
C = bitget(a,4);

bitget returns the bit at position 4 in the binary representation of a.

Get Bit When Input Is a Matrix and the Index Is a fi

Begin with a signed fixed-point 3-by-3 matrix with word length 4 and fraction length 0.

a=fi([2 3 4;6 8 2;3 5 11,0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of the bits at a specified position.
Cc = bitget(a,fi(2))

c=3x3 object

1 1 0
1 0 1
1 0 0

4-39

‘l Functions

4-40

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

MATLAB® returns a matrix of the bits in position fi(2) of a. The output matrix has the same

dimensions as a, and a word length of 1.

Get Bit When Both Input and Index Are Vectors
Begin with a signed fixed-point vector with word length 16, fraction length 4.

a = fi([86 6 53 8 1],0,16,4);
disp(bin(a))

0000010101100000 0000000001100000 0000001101010000 00OEEEEO1OCOOOOO

Create a vector that specifies the positions of the bits to get.

bit [1,2,5,7,4]

bit = 1Ix5

Get the binary representation of the bits of a at the positions specified in bit.
c = bitget(a,bit)

c=1x5 object
0 0 1 0 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

0000000000010000

bitget returns a vector of the bits of a at the positions specified in bit. The output vector has the

same length as inputs, a and bit, and a word length of 1.

Get Bit When Input Is Scalar and Index Is a Vector

Create a default fi object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000

The default object is signed with a word length of 16.

bitget

Create a vector of the positions of the bits you want to get in a, and get the binary representation of
those bits.

bit = fi([15,3,8,2]);
c = bitget(a,bit)

c=1x4 object
1 0 1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

WordLength: 1
FractionLength: 0

MATLAB® returns a vector of the bits in a at the positions specified by the index vector, bit.

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a and bit are both nonscalar, they must have the same dimension. If a has a signed numerictype,
the bit representation of the stored integer is in two's complement representation.

Data Types: fixed-point fi

bit — Bit index

scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix or multidimensional array of fi objects or built-in data
types. If a and bit are both nonscalar, they must have the same dimension. bit must contain integer
values between 1 and the word length of a, inclusive. The LSB (right-most bit) is specified by bit

index 1 and the MSB (left-most bit) is specified by the word length of a. bit does not need to be a
vector of sequential bit positions; it can also be a variable index value.

11001001

MSB LSB

e | 811 711615(41]3]21
= | 111 1]0][0][1][0]| 0]/ 1

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

4-41

4 Functions

4-42

Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as an unsigned scalar, vector, matrix, or multidimensional array with
WordLength 1.

If a is an array and bit is a scalar, c is an unsigned array with word length 1. This unsigned array
comprises the values of the bits at position bit in each fixed-point element in a.

If ais a scalar and bit is an array, ¢ is an unsigned array with word length 1. This unsigned array
comprises the values of the bits in a at the positions specified in bit.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the slice operator: a(idx).

For Verilog, generates the slice operator: a[1idx].

See Also
bitand | bitcmp | bitor | bitset | bitxor

Introduced before R2006a

bitor

bitor

Bitwise OR of two fi objects

Syntax

c = bitor(a,b)

Description

¢ = bitor(a,b) returns the bitwise OR of fi ohjects a and b. The output is determined as follows:

* FElements in the output array c are assigned a value of 1 when the corresponding bit in either
input array has a value of 1.

* FElements in the output array c are assigned a value of @ when the corresponding bit in both input
arrays has a value of 0.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitor only supports fi objects with fixed-point data types.

Examples

The following example finds the bitwise OR of fi objects a and b.

fi(-30,1,6,0);
fi(12, 1, 6, 0);
bitor(a,b)

a
b
C

(g
Il

-18

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: ©

You can verify the result by examining the binary representations of a, b and c.

binary a = a.bin
binary b = b.bin
binary ¢ = c.bin
binary a =
100010

4-43

‘l Functions

binary b

001100

binary c

101110

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitset | bitxor

Introduced before R2006a

4-44

bitorreduce

bitorreduce

Reduce consecutive slice of bits to one bit by performing bitwise OR operation

Syntax

c = bitorreduce(a)

c = bitorreduce(a, lidx)

c = bitorreduce(a, lidx, ridx)
Description

¢ = bitorreduce(a) performs a bitwise OR operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

Cc = bitorreduce(a, lidx) performs a bitwise OR operation on a consecutive range of bits,
starting at position 1idx and ending at the LSB (the bit at position 1).

C = bitorreduce(a, lidx, ridx) performs a bitwise OR operation on a consecutive range of
bits, starting at position 1idx and ending at position ridx.

The bitorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise OR operation on the entire set of bits in a.

C bitorreduce(a)

C =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

Because there is at least one bit in a with a value of 1, the output has a value of 1.

4-45

‘l Functions

Perform Bitwise OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a=fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111
Perform a bitwise OR operation on the bits of each element of a, starting at position fi(4).
c=bitorreduce(a,fi(4))

c=1x4 object
1 1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

All of the entries of output ¢ have a value of 1 because all of the entries of a have at least one bit with
a value of 1 between the positions fi(4) and 1.

Perform Bitwise OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a=fi([7,8,1;5,9,5;8,37,21,0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise OR operation on the bits of each element of matrix a beginning at position 5, and
ending at position 2.

c = bitorreduce(a,5,2)

c=3x3 object

1 1 0
1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

There is only one element in output ¢ that does not have a value of 1. This condition occurs because
the corresponding element in a is the only element of a that does not have any bits with a value of 1
between positions 5 and 2.

4-46

bitorreduce

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling
properties do not affect the result type and value. bitorreduce performs the operation on a two's
complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. 1idx represents the position in the range
closest to the MSB.

Data Types: fi|single |double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64
Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
C is unsigned with word length 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the bitwise OR operator operating on a set of individual slices.

For Verilog, generates the reduce operator:

[al[lidx:ridx]

4-47

4 Functions

See Also
bitandreduce | bitconcat | bitsliceget | bitxorreduce

Introduced in R2007b

4-48

bitreplicate

bitreplicate

Replicate and concatenate bits of i object

Syntax

¢ = bitreplicate(a,n)

Description

¢ = bitreplicate(a,n) concatenates the bits in fi object a n times and returns an unsigned
fixed-point value. The word length of the output fi object c is equal to n times the word length of a
and the fraction length of c is zero. The bit representation of the stored integer is in two's
complement representation.

The input fi object can be signed or unsigned. bitreplicate concatenates signed and unsigned
bits the same way.

bitreplicate only supports fi objects with fixed-point data types.
bitreplicate does not support inputs with complex data types.

Sign and scaling of the input fi object does not affect the result type and value.

Examples

The following example uses bitreplicate to replicate and concatenate the bits of fi object a.
fi(14,0,6,0);

inary = a.bin
bitreplicate(a,2);

b
binary = c.bin

a
af
C
cf

MATLAB returns the following:
a binary =

001110

c_binary =

001110001110

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4-49

4 Functions

See Also
bitand | bitconcat | bitget | bitor | bitset | bitsliceget | bitxor

Introduced in R2008a

4-50

bitrol

bitrol

Bitwise rotate left

Syntax

c = bitrol(a, k)

Description

c = bitrol(a, k) returns the value of the fixed-point fi object, a, rotated left by k bits. bitrol
rotates bits from the most significant bit (MSB) side into the least significant bit (LSB) side. It
performs the rotate left operation on the stored integer bits of a.

bitrol does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and ¢ have the same fimath and numerictype properties.

Examples

Rotate the Bits of a fi Object Left

Create an unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0.

a = fi(10,0,4,0);
disp(bin(a))

1010

Rotate a left 1 bit.
disp(bin(bitrol(a,1)))
0101

Rotate a left 2 bits.
disp(bin(bitrol(a,2)))
1010

Rotate Bits in a Vector Left

Create a vector of fi objects.
a = fi([112I5I7]I0I4I0)

a=1x4 object
1 2 5 7

4-51

‘l Functions

4-52

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 4
FractionLength: 0

disp(bin(a))
0001 0010 0101 0111
Rotate the bits in vector a left 1 bit.
disp(bin(bitrol(a,1)))
0010 0100 1010 1110

Rotate Bits Left Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 10, word length 4, and fraction length 0.
a = fi(10,0,4,0);

disp(bin(a))

1010

Rotate a left 1 bit where k is a fi object.

disp(bin(bitrol(a,fi(1))))

0101

Input Arguments

a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi
Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod (a.WordLength, k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

bitrol

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the rol operator.

For Verilog, generates the following expression (where wl is the word length of a:

a << idx || a >> wl - idx

See Also
bitconcat | bitror|bitshift |bitsliceget|bitsll|bitsra|bitsrl

Introduced in R2007b

4-53

‘l Functions

4-54

bitror

Bitwise rotate right

Syntax

c = bitror(a, k)

Description

c = bitror(a, k) returns the value of the fixed-point fi object, a, rotated right by k bits. bitror
rotates bits from the least significant bit (LSB) side into the most significant bit (MSB) side. It
performs the rotate right operation on the stored integer bits of a.

bitror does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and ¢ have the same fimath and numerictype properties.

Examples

Rotate Bits of a fi Object Right

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit.
disp(bin(bitror(a,l1)))
1010

Rotate a right 2 bits.
disp(bin(bitror(a,2)))
0101

Rotate Bits in a Vector Right

Create a vector of fi objects.

a = fl([112I5I7]IOI4I0)I
disp(bin(a))

0001 0010 0101 0111

bitror

Rotate the bits in vector a right 1 bit.
disp(bin(bitror(a,fi(1))))
1000 0001 1010 1011

Rotate Bits Right Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit where k is a fi object.
disp(bin(bitror(a,fi(1))))
1010

Input Arguments

a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi
Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod(a.WordLength, k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the ror operator.

4-55

4 Functions

For Verilog, generates the following expression (where wl is the word length of a:

a >> idx || a << wl - idx

See Also
bitconcat | bitrol | bitshift |bitsliceget |bitsll|bitsra|bitsrl

Introduced in R2007b

4-56

bitset

bitset

Set bits at certain positions

Syntax

c = bitset(a, bit)

Cc = bitset(a, bit, v)

Description

¢ = bitset(a, bit) returns the value of a with position bit set to 1 (on).
Cc = bitset(a, bit, v) returns the value of a with position bit set to v.
Examples

Set the Bit at a Certain Position

Begin with an unsigned fixed-point fi number with a value of 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101
Set the bit at position 4 to 1 (on).

c = bitset(a,4);
disp(bin(c))

1101

Set the Bit at a Certain Position in a Vector

Consider the following fixed-point vector with word length 4 and fraction length 0.

a="fi([0 182 4],0,4,0);
disp(bin(a))

0000 0001 1000 0010 0100
In each element of vector a, set the bits at position 2 to 1.

Cc = bitset(a,2,1);
disp(bin(c))

0010 0011 1016 0010 0110

4-57

4 Functions

4-58

Set the Bit at a Certain Position with Fixed Point Index

Consider the following fixed-point scalar with a value of 5.

a = fi(5,0,4,0);
disp(bin(a))

0101
Set the bit at position fi(2) to 1.

c = bitset(a,fi(2),1);
disp(bin(c))

0111

Set the Bit When Index Is a Vector

Create a i object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000
In this case, a is signed with a word length of 16.

Create a vector of the bit positions in a that you want to set to on. Then, get the binary
representation of the resulting fi vector.

bit = fi([15,3,8,2]);
C = bitset(a,bit);
disp(bin(c))

0110010010001000 0110010010001100 ©0110010010001000 0110010010001010

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a has a signed numerictype, the bit representation of the stored integer is in two's complement
representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data
types. bit must be a number between 1 and the word length of a, inclusive. The LSB (right-most bit)
is specified by bit index 1 and the MSB (left-most bit) is specified by the word length of a.

bitset

a = fi(pi,0,8);
a.bin

11001001
MSB LSB

e | 811 711615(4]3]211
= | 111110110} 1]0/0J[1

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

v — Bit value
scalar | vector | matrix | multidimensional array

Bit value of a at index bit, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in data types. v can have values of 0, or 1. Any value other than 0 is automatically set
to 1. When v is nonscalar, it must have the same dimensions as one of the other inputs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitxor

Introduced before R2006a

4-59

4 Functions

4-60

bitshift

Shift bits specified number of places

Syntax

c = bitshift(a, k)

Description

c = bitshift(a, k) returns the value of a shifted by k bits. The input fi object a may be a scalar
value or a vector and can be any fixed-point numeric type. The output fi object ¢ has the same
numeric type as a. k must be a scalar value and a MATLAB built-in numeric type.

The OverflowAction property of a is obeyed, but the RoundingMethod is always Floor. If obeying
the RoundingMethod property of a is important, try using the pow2 function.

When the overflow action is Saturate the sign bit is always preserved. The sign bit is also preserved
when the overflow action is Wrap, and K is negative. When the overflow action is Wrap and k is
positive, the sign bit is not preserved.

When K is positive, 0-valued bits are shifted in on the right.

When K is negative, and a is unsigned, or a signed and positive fi object, 0-valued bits are shifted
in on the left.

When k is negative and a is a signed and negative fi object, 1-valued bits are shifted in on the
left.

Examples

This example highlights how changing the OverflowAction property of the fimath object can
change the results returned by the bitshift function. Consider the following signed fixed-point fi
object with a value of 3, word length 16, and fraction length 0:

a = fi(3,1,16,0);

By default, the OverflowAction fimath property is Saturate. When a is shifted such that it
overflows, it is saturated to the maximum possible value:

for k=0:16,b=bitshift(a,k);...
disp([num2str(k, '%02d'),'. ',bin(b)]);end

00.
01.
02.
03.
04.
05.
06.
07.
08.
09.

0000000000000011
0000000000000110
0000000000001100
0000000000011000
0000000000110000
0000000001100000
0000000011000000
0000000110000000
0000001100000000
0000011000000000

bitshift

10.
11.
12.
13.
14,
15.
16.

00001160000000000
0001100000000000
0011000000000000
0110000000000000
0111111111111111
0111111111111111
0111111111111111

Now change OverflowAction to Wrap. In this case, most significant bits shift off the “top” of a until
the value is zero:

a = fi(3,1,16,0, 'OverflowAction', 'Wrap');
for k=0:16,b=bitshift(a,k);...
disp([num2str(

00.
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14,
15.
16.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

0000000000000011
0000000000000110
0000000000001100
0000000000011000
0000000000110000
0000000001100000
0000000011000000
0000000110000000
0000001100000000
0000011000000000
00001160000000000
0001100000000000
0011000000000000
0110000000000000
1100000000000000
1000000000000000
0000000000000000

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For efficient HDL code generation, use bitsl1l, bitsrl, or bitsra instead of bitshift.

See Also

bitand | bitcmp | bitget | bitor | bitset | bitsll|bitsra|bitsrl|bitxor |pow2

Introduced before R2006a

,'%02d"),". ',bin(b)]);end

4-61

4 Functions

bitsliceget

Get consecutive slice of bits

Syntax

Cc = bitsliceget(a)

c = bitsliceget(a, lidx)

c = bitsliceget(a, lidx, ridx)

Description

c = bitsliceget(a) returns the entire set of bits in the fixed-point input a.

c = bitsliceget(a, lidx) returns a consecutive slice of bits from a, starting at position 1idx

and ending at the LSB (the bit at position 1).

¢ = bitsliceget(a, lidx, ridx) returns a consecutive slice of bits from a, starting at position
lidx and ending at position ridx.

The bitsliceget arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Get Entire Set of Bits

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101
Get the entire set of bits of a.

Cc = bitsliceget(a);
disp(bin(c))

01010101

Get a Slice of Consecutive Bits with Unspecified Endpoint

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

4-62

bitsliceget

Get the binary representation of the consecutive bits, starting at position 6.

Cc = bitsliceget(a,b);
disp(bin(c))

010101

Get a Slice of Consecutive Bits with Fixed-Point Indexes

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the consecutive bits from fi(6) to fi(2).

¢ = bitsliceget(a,fi(6),fi(2));
disp(bin(c))

01010

Get a Specified Set of Consecutive Bits from Each Element of a Matrix

Begin with the following unsigned fixed-point 3-by-3 matrix.

a=fi([2 3 4;6 8 2;3 5 11,0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of a consecutive set of bits of matrix a. For each element, start at
position 4 and end at position 2.

Cc = bitsliceget(a,4,2);
disp(bin(c))

001 001 o010
011 100 001
001 010 000

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a has a signed numerictype, the bit representation of the stored integer is in two’s complement
representation.

4-63

4 Functions

4-64

Data Types: fixed-point fi

lidx — Start position for slice
scalar

Start position of slice specified as a scalar of built-in type. 1idx represents the position in the slice
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position for slice
scalar

End position of slice specified as a scalar of built-in type. ridx represents the position in the slice
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64
Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Fixed-point fi output, specified as a scalar, vector, matrix, or multidimensional array with no scaling.
The word length is equal to slice length, 1idx- ridx+1.

If lidx and ridx are equal, bitsliceget only slices one bit, and bitsliceget(a, lidx, ridx)
is the same as bitget(a, lidx).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset | bitxor

Introduced in R2007b

bitsl!

bitsll

Bit shift left logical

Syntax

c = bitsll(a, k)

Description

¢ = bitsll(a, k) returns the result of a logical left shift by k bits on input a for fixed-point
operations. bits11 shifts zeros into the positions of bits that it shifts left. The function does not
check overflow or underflow. For floating-point operations, bits11 performs a multiply by 2*.

bitsll ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and ¢ have the same associated fimath and numerictype objects.

Examples

Shift Left a Signed fi Input
Shift a signed fi input left by 1 bit.

Create a i object, and display its binary value.

a = fi(10,0,4,0);
disp(bin(a))

1010

Shift a left by 1 bit, and display its binary value.
disp(bin(bitsll(a,1)))

0100

Shift a left by 1 more bit.
disp(bin(bitsll(a,2)))

1000

Shift Left Using a fi Shift Value

Shift left a built-in int8 input using a fi shift value.

k fi(2);
a int8(16);
bitsll(a, k)

4-65

4 Functions

ans = int8
64

Shift Left a Built-in int8 Input

Use bitsll to shift an int8 input left by 2 bits.

a = int8(4);
bitsll(a,2)

ans = int8
16

Shift Left a Floating-Point Input

Scale a floating-point double input by 23,

a = double(16);
bitsll(a,3)

ans = 128

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi | single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4-66

bitsl!

Usage notes and limitations:
* Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
* Generated code might not handle out of range shifting.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates s11 operator in VHDL code.

Generates << operator in Verilog code.

See Also
bitconcat | bitrol | bitror|bitshift |bitsra|bitsrl | pow2

Introduced in R2007b

4-67

4 Functions

4-68

bitsra

Bit shift right arithmetic

Syntax

c=bitsra(a,k)

Description

c=bitsra(a, k) returns the result of an arithmetic right shift by k bits on input a for fixed-point
operations. For floating-point operations, it performs a multiply by 2-k.

If the input is unsigned, bitsra shifts zeros into the positions of bits that it shifts right. If the input is
signed, bitsra shifts the most significant bit (MSB) into the positions of bits that it shifts right.

bitsra ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and ¢ have the same associated fimath and numerictype objects.

Examples

Shift Right a Signed fi Input

Create a signed fixed-point fi object with a value of -8, word length 4, and fraction length 0. Then
display the binary value of the object.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit.
disp(bin(bitsra(a,l)))
1100

bitsra shifts the MSB into the position of the bit that it shifts right.

Shift Right a Built-in int8 Input

Use bitsra to shift an int8 input right by 2 bits.

a = int8(64);
bitsra(a,?2)

ans = int8
16

bitsra

Shift Right Using a fi Shift Value

Shift right a built-in int8 input using a f1i shift value.

k fi(2);
a int8(64);
bitsra(a,k)

ans = int8
16

Shift Right a Floating-Point Input

Scale a floating-point double input by 273,

a = double(128);
bitsra(a,3)

ans = 16

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi |single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

4-69

4 Functions

* Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
* Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates sra operator in VHDL code.

Generates >>> operator in Verilog code.

See Also
bitshift | bitsll|bitsrl|pow2

Introduced in R2007b

4-70

bitsrl

bitsrl

Bit shift right logical

Syntax

c = bitsrl(a, k)

Description

¢ = bitsrl(a, k) returns the result of a logical right shift by k bits on input a for fixed-point
operations. bitsrl shifts zeros into the positions of bits that it shifts right. It does not check
overflow or underflow.

bitsrl ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and ¢ have the same associated fimath and numerictype objects.

Examples

Shift right a signed fi input
Shift a signed fi input right by 1 bit.

Create a signed fixed-point fi object with a value of -8, word length 4, and fraction length 0 and
display its binary value.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit, and display the binary value.
disp(bin(bitsrl(a,1)))

0100

bitsrl shifts a zero into the position of the bit that it shifts right.

Shift right using a fi shift value

Shift right a built-in int8 input using a fi shift value.

k fi(2);
a int8(64);
bitsrl(a,k)

ans = int8
16

4-71

‘l Functions

Shift right a built-in uint8 input
Use bitsrl to shift a uint8 input right by 2 bits.

a = uint8(64);
bitsrl(a,?2)

ans = uint8
16

Input Arguments

a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
* Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

4-72

bitsrl

See Also
bitconcat | bitrol |bitror |bitshift |bitsliceget|bitsll|bitsra|pow2

Introduced in R2007b

4-73

4 Functions

4-74

bitxor

Bitwise exclusive OR of two fi objects

Syntax

¢ = bitxor(a,b)

Description

¢ = bitxor(a,b) returns the bitwise exclusive OR of fi objects a and b. The output is determined
as follows:

* Elements in the output array c are assigned a value of 1 when exactly one of the corresponding
bits in the input arrays has a value of 1.

* FElements in the output array c are assigned a value of @ when the corresponding bits in the input
arrays have the same value (e.g. both 1's or both 0's).

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitxor only supports fi objects with fixed-point data types.

Examples

The following example finds the bitwise exclusive OR of fi objects a and b.

fl('28111610);
fi(12, 1, 6, 0);
bitxor(a,b)

a
b
C

0
Il

-24

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary a = a.bin
binary b = b.bin
binary ¢ = c.bin
binary a =
100100

bitxor

binary b

001100

binary c

101000

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset

Introduced before R2006a

4-75

4 Functions

4-76

bitxorreduce

Reduce consecutive slice of bits to one bit by performing bitwise exclusive OR operation

Syntax

c = bitxorreduce(a)

c = bitxorreduce(a, lidx)
c = bitxorreduce(a, lidx, ridx)
Description

¢ = bitxorreduce(a) performs a bitwise exclusive OR operation on the entire set of bits in the
fixed-point input, a. It returns the result as an unsigned integer of word length 1.

Cc = bitxorreduce(a, lidx) performs a bitwise exclusive OR operation on a consecutive range of
bits. This operation starts at position 1idx and ends at the LSB (the bit at position 1).

C = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR operation on a consecutive
range of bits, starting at position 1idx and ending at position ridx.

The bitxorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise Exclusive OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001
Perform a bitwise exclusive OR operation on the entire set of bits in a.

C bitxorreduce(a)

C =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

bitxorreduce

Perform Bitwise Exclusive OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111
Perform a bitwise exclusive OR operation on the bits of each element of a, starting at position fi(4).
c = bitxorreduce(a,fi(4))

c=1x4 object
0 1 1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

Perform a Bitwise Exclusive OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a=fi([7,8,1;5,9,5;8,37,21,0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise exclusive OR operation on the bits of each element of matrix a beginning at position
5 and ending at position 2.

c = bitxorreduce(a,5,2)

c=3x3 object

0 1 0
1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: 0

Input Arguments

a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.

4-77

4 Functions

4-78

bitxorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitxorreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. 1idx represents the position in the range
closest to the MSB.

Data Types: fi | single | double | int8 | intl1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

Output Arguments

¢ — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
C is unsigned with word length 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

~a[lidx:ridx]

See Also
bitandreduce | bitconcat | bitorreduce | bitsliceget

Introduced in R2007b

buildIinstrumentedMex

buildinstrumentedMex

Generate compiled C code function including logging instrumentation

Syntax

buildInstrumentedMex fcn -options
buildInstrumentedMex fcn 1... fcn n -options -coder
Description

buildInstrumentedMex fcn -options translates the MATLAB file fcn.mto a MEX function and
enables instrumentation for logging minimum and maximum values of all named and intermediate
variables. Optionally, you can enable instrumentation for log2 histograms of all named, intermediate
and expression values. The general syntax and options of buildInstrumentedMex and fiaccel are

the same, except buildIntstrumentedMex has no fi object restrictions and supports the ' -
coder' option.

buildInstrumentedMex fcn 1... fcn n -options -coder translates the MATLAB functions
fcn 1 through fcn_n to a MEX function and enables instrumentation for logging minimum and
maximum values of all named and intermediate variables. Generating a MEX function for multiple
entry-point functions requires the ' -coder' option.

Examples

Create an Instrumented MEX Function
Create an instrumented MEX function. Run a test bench, then view logged results.
Create a temporary directory, then import an example function from Fixed-Point Designer.
tempdirObj=fidemo.fiTempdir('buildInstrumentedMex")
copyfile(fullfile(matlabroot, 'toolbox','fixedpoint',...

'fidemos','fi m radix2fft withscaling.m'),...

'testfft.m','f'7

Define prototype input arguments.

n = 128;
x = complex(zeros(n,1l));
W = coder.Constant(fidemo.fi radix2twiddles(n));

Generate an instrumented MEX function. Use the -0 option to specify the MEX function name. Use
the -histogram option to compute histograms. (If you have a MATLAB Coder license, you may want
to also add the - coder option. In this case, use buildInstrumentedMex testfft -coder -o
testfft instrumented -args {x,W} instead of the following line of code.)

Note Like fiaccel, buildInstrumentedMex generates a MEX function. To generate C code, see
the MATLAB Coder codegen function.

4-79

‘l Functions

buildInstrumentedMex testfft -o testfft instrumented...
-args {x,W} -histogram

Run a test file to record instrumentation results. Call showInstrumentationResults to open the
report. View the simulation minimum and maximum values and whole number status by pausing over
a variable in the report. You can also see proposed data types for double precision numbers in the
table.

for i=1:20
y = testfft instrumented(randn(size(x)));
end

showInstrumentationResults testfft instrumented

[REPORT =ee
o GoTo~ 4
Back Forward () Find Editin
= MATLAB
NAVIGATE | eor | =
MATLAB SOURCE testitm
Funclion List Call Tree 1 function x = fi_m_radix2fft_withscaling(x, w)
2 testift 2 %FI_M_RADIX2FFT WITHSCALING Radix-2 FFT example with scaling at each stage.
=28 estitm §) 3 % ¥ = FI_M_RADIX2FFT_WITHSCALING(X, W) computes the radix-2 FFT of
Jfx fi_m_radixZfft_withscaling 4 % dnput vector X with twiddle-factors W with scaling by 1/2 at each stage.
E &) fi_bitreverse.m 5 % Input X is assumed to be complex.
i fi_bitreverse 6 %
7 % The length of vector X must be an exact power of two.
8 % Twiddle-factors W are computed via
9 % W = fidemo.fi_radix2twiddles(N)
18 % where N = length(x).
11 %
12 % This version of the algorithm has no scaling before the stages.
13 %
14 % See also FI_RADIX2FFT_DEMO.
15
16 % Reference:
17 % Charles Van Loan, Computational Frameworks for the Fast Fourier
18 % Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.
19 %
28 % Copyright 2ee4-2015 The MathWorks, Inc.
21 %
22 X#codegen
23
22 n = length(x); t = log2(n);
25 x - fidemo.fi_bitreverse(x,n);
26 R
27 % Generate index vari w2 so they are not computed in
28 % the loop. e .
20 LL = int32(2.7(1:t))5 - !
30 rr o= int32(n./LL); | O nis2
31 = int32(LL./2); < Complex o
32 fof it - m
. STR L)
33 LL(Q); P = v L Yos -
P VARIABLES
Name Type 64 Class Always Whole Sim Min Sim Max
Number
X o 128 <1 complex double No -3.722211247178794 3.325535825655795 [
w Input 127 =1 complex double No 1 1 Ll
n Local 1=1 double Yes 128 128 (M|
t Local 1=1 double Yes 7 7 [l
L Local 1=7 int32 Yes 2 128 |
" Local 1%7 int32 Yes 1 64 [
LL2 Local 1=7 int32 Yes 1 64 [
temp Local 1=1 complex double No -3.102703946701695 3.090313522579606 [l
L Local 1%1 int32 Yes 2 128 [
r Local 1=1 int32 Yes 1 64 [

View the histogram for a variable by clicking L] in the Variables tab.

4-80

M4

buildInstrumentedMex

4| NumericTypeScope - fi_m_radix2fft_withscaling: x - O X
File View Help k]
+ ¥ Legend AX| ~]
Signed numerictype(1,16,13)
20- I outsce range
= I r2nge
IL=3 FL=13 [] Below precision
18 1 0.0%
below| * ¥ Resulting Type ax
i precisionf numerictype(1,18,13)

¥ Data Details

Outside range 0 (0.0%)
Below precision 21 (0.0%)

14 7 SQNR -

¥ Type Details
Signedness: Signed
Word length: 16 bitzs
Integer length: 3 bits
Fraction length: 13 bits
Representable Max: +3.9999
Representabls Min: -4

s
M3
1

Occurrences (%)
=
o
1

8 - F ¥ Bit Allocation ax
Signedness: | Auto e
6 Word length: | Specify e
Value: |16
4 7)
|:| Graphical control
Specify constraint:
2 -
Max occurrences outside range
0 0/ Percent w
e
2@l gl g g g g gl g s Extra IL bits: |0
Data Values

For information on the figure, refer to the NumericTypeScope reference page.

Close the histogram display and then, clear the results log.
clearInstrumentationResults testfft instrumented;
Clear the MEX function, then delete temporary files.

clear testfft instrumented;
tempdirObj.cleanUp;

Build an Instrumented MEX Function for Multiple Entry Point Functions

In a local writable folder, create the functions epl.m and ep2.m.

function yl
yl = u;
end

epl(u) S#codegen

function y2
y2 = u + v;
end

ep2(u, v) S%#codegen

4-81

‘l Functions

Generate an instrumented MEX function for the two entry-point functions. Use the -0 option to
specify the name of the MEX function. Use the -histogram option to compute histograms. Use the -
coder option to enable generating multiple entry points with the buildInstrumentedMex function.

u=1:100;

v = 5:104;

buildInstrumentedMex -o sharedmex ...
epl -args {u} ... % Entry point 1
ep2 -args {u, v} ... % Entry point 2

-histogram -coder

Call the first entry-point function using the generated MEX function.
yl = sharedmex('epl', u);

Call the second entry-point function using the generated MEX function.
y2 = sharedmex('ep2', u, v);

Show the instrumentation results.

showInstrumentationResults sharedmex

" RepomT =@

fGeTo~ ‘0

Back Forward ({ Find ME\“T“L!:B

NAVIGATE [l e |
MATLAB SOURCE eplm
Funcion Lt Call Tree 1 function yl - epl(u) %#codegen
= Qeptm S
fxepl
= Fep2m
Sfxep2

1]

Name Type Size Class Always Whole Sim Min Sim Max
Number

y1 Qutput 1x100 double Yes 1 100

EIE

u Input 1=100 double Yes 1 100

4-82

buildInstrumentedMex

Note Generating a MEX function for multiple entry-point functions using the
buildInstrumentedMex function requires a MATLAB Coder license.

Input Arguments

fcn — Entry-point functions to instrument
function name

MATLAB entry-point functions to be instrumented, specified as a function existing in the current
working folder or on the path. The entry-point functions must be suitable for code generation. For
more information, see “Make the MATLAB Code Suitable for Code Generation” (MATLAB Coder).

options — Compiler options
option value | space delimited list of option values

Choice of compiler options. buildInstrumentedMex gives precedence to individual command-line
options over options specified using a configuration object. If command-line options conflict, the
rightmost option prevails.

-args example inputs Define the size, class, and complexity of all
MATLAB function inputs. Use the values in
example inputs to define these properties.
example inputs must be a cell array that
specifies the same number and order of inputs as
the MATLAB function.

-coder Use MATLAB Coder software to compile the MEX
file, instead of the default Fixed-Point Designer
fiaccel function. This option removes fiaccel
restrictions and allows for full code generation
support. You must have a MATLAB Coder license
to use this option.

-config config object Specify MEX generation parameters, based on
config object, defined as a MATLAB variable
using coder.mexconfig. For example:

cfg = coder.mexconfig;

4-83

4 Functions

4-84

-d out folder

-global global values

-histogram

-I include_path

Store generated files in the absolute or relative
path specified by out folder. If the folder
specified by out folder does not exist,
buildInstrumentedMex creates it for you.

If you do not specify the folder location,
buildInstrumentedMex generates files in the
default folder:

fiaccel/mex/fcn.

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

Compiles the MEX function in debug mode, with
optimization turned off. If not specified,
buildinstrumentedMex generates the MEX
function in optimized mode.

Specify initial values for global variables in
MATLARB file. Use the values in cell array
global values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with buildInstrumentedMex.
If you do not provide initial values for global
variables using the -global option,
buildInstrumentedMex checks for the variable
in the MATLAB global workspace. If you do not
supply an initial value, buildInstrumentedMex
generates an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

Compute the log2 histogram for all named,
intermediate and expression values. A histogram
column appears in the code generation report
table.

Add include path to the beginning of the code
generation path.

buildInstrumentedMex searches the code
generation path first when converting MATLAB
code to MEX code.

buildIinstrumentedMex

-launchreport Generate and open a code generation report. If

you do not specify this option,
buildInstrumentedMex generates a report
only if error or warning messages occur or you
specify the - report option.

-0 output file name Generate the MEX function with the base name

output file name plus a platform-specific
extension.

output file name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

-0 optimization option Optimize generated MEX code, based on the

value of optimization option:

* enable:inline — Enable function inlining
* disable:inline — Disable function inlining

If not specified, buildInstrumentedMex uses
inlining for optimization.

-report Generate a code generation report. If you do not

specify this option, buildInstrumentedMex
generates a report only if error or warning
messages occur or you specify the -
launchreport option.

Tips

You cannot instrument MATLAB functions provided with the software. If your top-level function is
such a MATLAB function, nothing is logged. You also cannot instrument scripts.

Instrumentation results are accumulated every time the instrumented MEX function is called. Use
clearInstrumentationResults to clear previous results in the log.

Some coding patterns pass a significant amount of data, but only use a small portion of that data.
In such cases, you may see degraded performance when using buildInstrumentedMex. In the
following pattern, subfun only uses one element of input array, A. For normal execution, the
amount of time to execute subfun once remains constant regardless of the size of A. The function
topfun calls subfun N times, and thus the total time to execute topfun is proportional to N.
When instrumented, however, the time to execute subfun once becomes proportional to N~ 2. This
change occurs because the minimum and maximum data are calculated over the entire array.
When A is large, the calculations can lead to significant performance degradation. Therefore,
whenever possible, you should pass only the data that the function actually needs.

function A = topfun(A)

N = numel(A);
for i=1:N

A(i) = subfun(A,i);
end

4-85

‘l Functions

end

function b = subfun(A,i)
b =0.5* A(i);

end

function A = topfun(A)
N = numel(A);
for i=1:N
A(i) = subfun(A(i));
end
end
function b = subfun(a)
b =0.5*a;
end

See Also

NumericTypeScope | clearInstrumentationResults | codegen | fiaccel | mex |
showInstrumentationResults

Introduced in R2011b

4-86

cast

cast

Cast variable to different data type

Syntax

b = cast(a, 'like',p)

Description

b = cast(a, 'like',p) converts a to the same numerictype, complexity (real or complex), and
fimath as p. If a and p are both real, then b is also real. Otherwise, b is complex.

Examples

Convert an int8 Value to Fixed Point

Define a scalar 8-bit integer.

a = int8(5);

Create a signed fi object with word length of 24 and fraction length of 12.
p=fi([],1,24,12);

Convert a to fixed point with numerictype, complexity (real or complex), and fimath of the
specified fi object, p.

b

cast(a, 'like', p)

b:

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 24
FractionLength: 12

Convert an Array to Fixed Point

Define a 2-by-3 matrix of ones.

A = ones(2,3);

Create a signed fi object with word length of 16 and fraction length of 8.
p=fi([],1,16,8);

Convert A to the same data type and complexity (real or complex) as p.

4-87

‘l Functions

4-88

B = cast(A, 'like',p)

B=2x3 object
1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 8

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my filter(b,a,x,z,T)
% Cast the coefficients to the coefficient type

b = cast(b,'like',T.coeffs);
a = cast(a, 'like',T.coeffs);
% Create the output using zeros with the data type
y = zeros(size(x),'like',T.data);
for i = 1l:length(x)
y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(1) - a(3) * y(i);
end
end

Write a MATLAB function, zeros ones cast example, that calls my filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros ones cast example

Define coefficients for a filter with specification

b,al = butter(2,0.25)
[0.097631072937818 0.195262145875635 0.097631072937818];
[1.000000000000000 -0.942809041582063 0.333333333333333];

Q T o° o°
nmn—

Define floating-point types
float.coeffs = double([]);

float.data double([]);

— — o°

Create a step input using ones with the
floating-point data type
= 0:20;

_float = ones(size(t),'like',T float.data);

X rt o° o°

cast

% Initialize the states using zeros with the
floating-point data type
z float = zeros(1,2,'like',T float.data);

o°

% Run the floating-point algorithm
y float = my filter(b,a,x float,z float,T float);

% Define fixed-point types
T fixed.coeffs = fi([],true,8,6);
T fixed.data = fi([],true,8,6);

reate a step input using ones with the
xed-point data type
xed = ones(size(t),'like',T fixed.data);

o® o°

C
fi

x_ fi
Initialize the states using zeros with the
fixed-point data type

_fixed = zeros(1,2,'like',T fixed.data);

o® o°

N

% Run the fixed-point algorithm
y fixed = my filter(b,a,x fixed,z fixed,T fixed);

% Compare the results
coder.extrinsic('clf', 'subplot', 'plot', 'legend")
clf
subplot(211)
plot(t,y float, 'co-',t,y fixed, "kx-")
legend('Floating-point output', 'Fixed-point output')
title('Step response')
subplot(212)
plot(t,y float - double(y fixed),'rs-')
legend('Error')
figure(gcf)

end

Input Arguments

a — Variable that you want to cast to a different data type
fi object | numeric variable

Variable, specified as a i object or numeric variable.
Complex Number Support: Yes

p — Prototype
fi object | numeric variable

Prototype, specified as a i object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

4-89

4 Functions

Tips

Using the b = cast(a, 'like',p) syntax to specify data types separately from algorithm code
allows you to:
* Reuse your algorithm code with different data types.

* Keep your algorithm uncluttered with data type specifications and switch statements for different
data types.

* Improve readability of your algorithm code.
» Switch between fixed-point and floating-point data types to compare baselines.
» Switch between variations of fixed-point settings without changing the algorithm code.

See Also
cast | ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”

“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2013a

4-90

cast64BitFiToInt

cast64BitFiToint

Cast f1i object types that can be exactly represented to a 64-bit integer data type

Syntax

y = castb64BitFiTolInt (u)

Description

y = cast64BitFiToInt (u) casts the input u to an equivalent 64-bit integer data type when
possible.

If the input u is a fi object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
yl = castFiToInt(u)

yl =
intl6
25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.
y2 = cast64BitFiToInt(u)
y2 =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 0

4-91

‘l Functions

4-92

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u= fi(25,1,64,0)
y3 = cast64BitFiToInt (u)

y3 =
int64
25

When the input is a i object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32
y5 = castFiToInt(u)
y> =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32

Input Arguments

u — Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: double | single | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments

y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

cast64BitFiToInt

If the input u is a i object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

See Also
cast64BitIntToF1i | castFiToInt | castFiToMATLAB | castIntToFi

Introduced in R2020a

4-93

4 Functions

4-94

cast64BitintToFi

Cast 64-bit integer types to an equivalent fi object type

Syntax

y = cast64BitIntToFi(u)

Description

y = cast64BitIntToFi(u) casts the input variable u to an equivalent 64-bit fi object when the
data type of u is a 64-bit integer type. Otherwise, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = 1int16(25);
yl = castIntToFi(u)

yl =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 0

The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int1l6.

y2 cast64BitIntToFi(u)
y2 =
intl6

25

cast64BitIntToFi

When you pass an int64 into the cast64BitIntToFi function, the outputis a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 64
FractionLength: 0

Input Arguments

u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: double | single | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fi

Complex Number Support: Yes

Output Arguments

y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is a 64-bit integer type, the output is a fi object with a 64-bit word length,
fraction length of zero, and the same signedness as the input. Otherwise, the output has the same
data type as the input.

See Also
cast64BitFiToInt | castFiToInt | castFiToMATLAB | castIntToFi

Introduced in R2020a

4-95

‘l Functions

castFiToint

Cast fi object to equivalent integer data type

Syntax

y = castFiToInt(u)

Description
y = castFiToInt(u) casts the input u to an equivalent MATLAB integer data type when possible.

If the input u is a fi object type that can be represented exactly by an integer data type, then the
output is this integer data type. If u is a i object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
yl = castFiToInt(u)

yl =
intl6
25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.
y2 = cast64BitFiToInt(u)
y2 =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 0

4-96

castFiToInt

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u= fi(25,1,64,0)
y3 = cast64BitFiToInt (u)

y3 =
int64
25

When the input is a i object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32
y5 = castFiToInt(u)
y> =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32

Input Arguments

u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: double | single | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fi

Complex Number Support: Yes

Output Arguments

y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

4-97

4 Functions

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToMATLAB | castIntToFi

Introduced in R2020a

4-98

castFiToMATLAB

castFiToMATLAB

Cast fi object type to an equivalent built-in MATLAB data type

Syntax

y = castFiToMATLAB(u)

Description

y = castFiToMATLAB (u) casts the input u to an equivalent MATLAB built-in data type when
possible.

If the input u is a fi object type that can be represented exactly by a built-in MATLAB data type, then
the output is this built-in data type. If u is a fi object type that cannot be exactly represented by a
built-in data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Built-In MATLAB Type
Use the castFiToMATLAB function to cast fi objects to equivalent built-in MATLAB data types.

Create a signed f1i variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent MATLAB data type using the
castFiToMATLAB function.

u = fi(25,1,16,0);
yl = castFiToMATLAB(u)

yl =
intl6
25

When the input is a fi object with a non-zero fraction length, the function returns the original fi
object because the input cannot be represented by a built-in data type.

u = fi(pi,1,64,32);
y2 = castFiToMATLAB(u)

y2 =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 32

When the input is a double-precision fi object, the function returns a double with the same value.

4-99

4 Functions

4-100

T = numerictype('Double"');
u= fi(25,T)
u =

25

DataTypeMode: Double

y3 = castFiToMATLAB(u)
class(y3)

y3 =
25
ans =

"double’

Input Arguments

u — Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: double | single | half | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uinteé4 | fi
Complex Number Support: Yes

Output Arguments

y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

If the input u is a i object that can be represented exactly by a built-in MATLAB data type, then the
output is this built-in data type. If u is a i object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castIntToFi

Introduced in R2020a

castIntToFi

castintToFi

Cast an integer data type to equivalent fi type

Syntax

y = castIntToFi(u)

Description

y = castIntToFi(u) casts the input variable u to an equivalent fi object when u is one of the
built-in MATLAB integer data types (int8, uint8, int16, uint16, int32, uint32, int64, uint64).

When u is not one of the built-in integer data types, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = intl6(25);
yl = castIntToFi(u)

yl =
25
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0
The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int1l6.

y2 = cast64BitIntToFi(u)
y2 =
intl6

25

4-101

4 Functions

4-102

When you pass an int64 into the cast64BitIntToFi function, the outputis a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =
25

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 64
FractionLength: 0

Input Arguments

u — Numeric input
scalar | vector | matrix | multidimensional array
Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: double | single | half | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments

y — Fixed-point output
f1i object | scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is an integer type, the output is a fi object with the same word length and

signedness as the input, and a fraction length of zero. Otherwise, the output has the same data type
as the input.

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castFiToMATLAB

Introduced in R2020a

ceil

ceil
Rounds toward positive infinity

Syntax

y = ceil(a)

Description

y = ceil(a) rounds fi object a to the nearest integer in the direction of positive infinity and
returns the result in i object y.

Examples

Use ceil on a Signed fi Object

The following example demonstrates how the ceil function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
3.1250

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

ceil(a)

<
1]

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

The following example demonstrates how the ceil function affects the numerictype properties of a
signed f1i object with a word length of 8 and a fraction length of 12.

a fi(0.025,1,8,12)

a =
0.0249

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

4-103

‘l Functions

ceil(a)

<
Il

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0

Compare Rounding Methods
The functions ceil, fix, and floor differ in the way they round fi objects:

* The ceil function rounds values to the nearest integer toward positive infinity.
* The fix function rounds values to the nearest integer toward zero.
* The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a=fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]1");
y = [a ceil(a) fix(a) floor(a)]
y=8x4 object

-2.5000 -2.0000 -2.0000 -3.0000
-1.7500 -1.0000 -1.0000 -2.0000
-1.2500 -1.0000 -1.0000 -2.0000

-0.5000 0 0 -1.0000
0.5000 1.0000 0 0
1.2500 2.0000 1.0000 1.0000
1.7500 2.0000 1.0000 1.0000
2.5000 3.0000 2.0000 2.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

plot(a,y); legend('a','ceil(a)"','fix(a)"', 'floor(a)"', 'location', 'NW");

4-104

ceil

3 T T T T T T T T T

a
—ceil{a)

7t fix(a)
floor{a)

-1 L

D -

At

2 F

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.

ceil does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.

Data Types: fi
Complex Number Support: Yes

Algorithms

* yand a have the same fimath object and DataType property.

* When the DataType property of a is single, double, or boolean, the numerictype of y is the
same as that of a.

* When the fraction length of a is zero or negative, a is already an integer, and the numerictype of
y is the same as that of a.

4-105

4 Functions

* When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
convergent | fix | floor | nearest | round

Introduced in R2008a

4-106

clearlnstrumentationResults

clearinstrumentationResults

Clear results logged by instrumented, compiled C code function

Syntax
clearInstrumentationResults('mex fcn')

clearInstrumentationResults mex_ fcn
clearInstrumentationResults all

Description

clearInstrumentationResults('mex fcn') clears the results logged from calling the
instrumented MEX function mex fcn.

clearInstrumentationResults mex fcn is alternative syntax for clearing the log.

clearInstrumentationResults all clears the results from all instrumented MEX functions.

Input Arguments
mex_fcn

Instrumented MEX function created using buildInstrumentedMex.

Examples

Run a test bench to log instrumentation, then use clearInstrumentationResults to clear the log.
1 Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')

copyfile(fullfile(matlabroot, 'toolbox"', 'fixedpoint',...
‘fidemos','fi m radix2fft withscaling.m'), ...
"testfft.m','f")

2 Define prototype input arguments.

n = 128;
x = complex(fi(zeros(n,1l), 'DataType', 'ScaledDouble'));
W = coder.Constant(fi(fidemo.fi radix2twiddles(n)));

3 Generate an instrumented MEX function. Use the -0 option to specify the MEX function name.

buildInstrumentedMex testfft -o testfft instrumented -args {x,W}

4 Run a test bench to record instrumentation results. Call showInstrumentationResults to
open a report. View the simulation minimum and maximum values and whole number status by
pausing over a variable in the report.

for i=1:20

y = testfft instrumented(cast(2*rand(size(x))-1, ' 'like’',x));
end

4-107

‘l Functions

showInstrumentationResults testfft instrumented

. v fGeTav ‘

Back Forward (| Find Edit In

MATLAB
NAVIGATE | | z
MATLAB SOURCE testit.m
FrGionIEE | Call Tree 1 function x = fi_m_radix2fft_withscaling(x, w) []
£ testfft 2 XFI_M_RADIX2ZFFT_WITHSCALING Radix-2 FFT example with scaling at each stage. =
3 Festfitm . 3% FI_M_RADIX2FFT WITHSCALING(X, W) computes the radix-2 FFT of
S fi_m_radix2fit_withscaling 4 % input vector X with twiddle-factors W with scaling by 1/2 at each stage.
1 Bfib em 5 % Input X is assumed to be complex.
fi fi_bitreverse 6 %
7 % The length of vector X must be an exact power of two.
8 % Twiddle factors W are computed via
9% W = fidemo.fi_radix2twiddles(N)
18 % where N = length(X).
1 %
12 % This version of the algorithm has no scaling before the stages.
13 %
14 % See also FI_RADIX2FFT_DEMO.
15
16 % Reference:
17 % Charles van Loan, Computationg x
18 % Transform, STAM, Philadelphia, g . e
=) Class embedded.f -
28 % Copyright 2804-2615 The Mathuork ~ - el =
o Comp Yes
22 %#codegen
23 _) DataTypeMode *Sealed double: binary point scaling’
o n - length(x); t - log2(n); DataType ‘SealedDouble’
25 X - Fidemo.fi bitreverse(l,n); / "
e Signedness Signed
27 % Generate index variables as i 'ordbendit .
- % the loop. FractionLength 5 L
20 LL = int32(2.7(1:t)); R - =
0 rr = int32(n./LL); Percent of Current Range 100 il
31 LL2 = int32(LL./2); . .
» for a1t Whole Number No
: Sim Min -D.9998521328458022
33 L= LL(g); r = rr(a); L2 = U - M
— Sim Max 0.9988979427807565
ALL MESSAGES (0 RIABLES
Name Type Size Class DT Mode Signednes: WL FL Percent of Always Sim Min Sim Max
Current Whole
Range Number
x o 128 =1 complex embedded fi ScaledDouble Signed 16 15 100 No -0.9998521328458922 0.9988979427807565
w Input 127 =1 complex embedded fi - Signed 16 14 51 Ne -1 1
n Local 1=1 double - - - - - Yes 128 128
t Local 1x1 double = = = = = Yes 7 7
LL Local 1=7 int32 - - - - - Yes 2 128
m Local 1=7 int32 - - - - - Yes 1 64
L2 Local 1=7 int32 - - - - - Yes 1 64
temp Local 1=1 complex embedded.fi ScaledDouble Signed 33 29 13 No -0.9998521328458922 0.9988979427807565
L Local 1=1 int32 - - - - - Yes 2 128 h
14 x

1 Clear the results log.

clearInstrumentationResults testfft instrumented
2 Run a different test bench, then view the new instrumentation results.

for i=1:20
y = testfft instrumented(cast(rand(size(x))-0.5,'like"',x));
end

showInstrumentationResults testfft instrumented

4-108

clearlnstrumentationResults

i3

Reference:
Charles Van Loan, Computationa
Transftorm, 5IAM, Philadelphia,
Copyright 2884-2815 The MathlWork
codegen
n = length(x); t = log2(n);
x = fidemo.fi_bitreverse(M,n); -

% Generate index variables as in
% the loop.
LL = int32(2.7(1:1));
rro= int32(n./LL);
LL2 = int32(LL./2);
for g=1:t

L =LL{g); r=rr{g); L2 =L

LL MESSAGES (0)

SiFe:
Class:
Complex :

DataTypeMode:
DataType:
Signedness
WordLength
FractionLength :

Percent of Current Range:

Always Whole Number :
Sim Min :
Sim Max

128 =1
embedded @i
Yas

"Scaled double: binary point scaling
"ScaledDouhble”

"Signed'

16

15

50

Mo
-0.49995165544240043
0.4993392559913364

Clear the MEX function and delete temporary files.

clear testfft instrumented;
tempdirObj.cleanUp;

See Also
buildInstrumentedMex | codegen | fiaccel | mex | showInstrumentationResults

Introduced in R2011b

4-109

4 Functions

4-110

coder.approximation

Create function replacement configuration object

Syntax

g = coder.approximation(function name)
g = coder.approximation('Function', function name,Name,Value)

Description

g = coder.approximation(function name) creates a function replacement configuration
object for use during code generation or fixed-point conversion. The configuration object specifies
how to create a lookup table approximation for the MATLAB function specified by function name.
To associate this approximation with a coder.FixptConfig object for use with thefiaccel
function, use the coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace automatically. These
functions are listed in the function name argument description.

g = coder.approximation('Function', function name,Name,Value) creates a function
replacement configuration object using additional options specified by one or more name-value pair
arguments.

Examples

Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The resulting lookup
table in the generated code uses 1000 points.

logAppx = coder.approximation('log');

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to add to the
replacement function name. The resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('Function','log', 'InputRange',[0.1,1000], ...
"FunctionNamePrefix', 'log_replace_ ');

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizelLUTSize' option to specify
to replace the log function with an optimized lookup table. The resulting lookup table in the
generated code uses less than the default number of points.

coder.approximation

logAppx = coder.approximation('Function', 'log', 'OptimizelLUTSize"', true,...
"InputRange',[0.1,1000], 'InterpolationDegree',1, 'ErrorThreshold',le-3,...
"FunctionNamePrefix', 'log _optim ', 'Optimizelterations',25);

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom function,
saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.
saturateExp = @(x) 1/(1l+exp(-x));

Create a function replacement configuration object that specifies to replace the saturateExp
function with an optimized lookup table. Because the saturateExp function is not listed as a
function for which coder.approximation can generate an approximation automatically, you must
specify the CandidateFunction property.

saturateExp = @(x) 1/(1l+exp(-x));

custAppx = coder.approximation('Function', 'saturateExp',...
'CandidateFunction', saturateExp,...

"NumberOfPoints',50, 'InputRange', [0,10]);

Input Arguments

function_name — Name of the function to replace

‘acos' | 'acosd' | 'acosh' | 'acoth' | 'asin' | 'asind' | 'asinh' | 'atan' | 'atand' |
‘atanh' | 'cos' | 'cosd' | 'cosh' | 'erf '|'erfc'|'exp'| 'log'| "'normcdf' | 'reallog'’
| ‘realsqrt' | 'reciprocal' | 'rsqrt' | 'sin' | 'sinc'| 'sind' | 'sinh' | 'sqrt' | 'tan' |
"tand’

Name of function to replace, specified as a string. The function must be one of the listed functions.
Example: 'sqrt'

Data Types: char
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Function', 'log’

Architecture — Architecture of lookup table approximation
"LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated pair consisting of
"Architecture' and a string. Use this argument when you want to specify the architecture for the
lookup table. The Flat architecture does not use interpolation.

Data Types: char

4-111

4 Functions

4-112

CandidateFunction — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair consisting of
'CandidateFunction' and a function handle or string referring to a function handle. Use this
argument when the function that you want to replace is not listed under function name. Specify
the function handle or string referring to a function handle of the function that you want to replace.
You can define the function in a file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using the Function
property is set as the CandidateFunction.

Example: 'CandidateFunction', @(x) (1./(1+x))

Data Types: function handle | char

ErrorThreshold — Error threshold value used to calculate optimal lookup table size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the comma-separated
pair consisting of 'ErrorThreshold' and a nonnegative scalar. If 'OptimizelLUTSize' is true,
this argument is required.

Function — Name of function to replace with a lookup table approximation
function name

Name of function to replace with a lookup table approximation, specified as the comma-separated
pair consisting of 'Function' and a string. The function must be continuous and stateless. If you
specify one of the functions that is listed under function name, the conversion process
automatically provides a replacement function. Otherwise, you must also specify the
"CandidateFunction' argument for the function that you want to replace.

Example: 'Function','log'
Example: 'Function', 'my log','CandidateFunction',@my log

Data Types: char

FunctionNamePrefix — Prefix for generated fixed-point function names
'replacement ' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair consisting of
"FunctionNamePrefix' and a string. The name of a generated function consists of this prefix,
followed by the original MATLAB function name.

Example: ‘log replace ’

InputRange — Range over which to replace the function
[1 (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair consisting of
'"InputRange’' and a 2-by-1 row vector or a 2-by-N matrix.

Example: [-1 1]

InterpolationDegree — Interpolation degree
1 (default) |0 |23

coder.approximation

Interpolation degree, specified as the comma-separated pair consisting of ' InterpolationDegree’
andl (linear), © (none), 2 (quadratic), or 3 (cubic).

Number0fPoints — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
"NumberOfPoints' and a positive integer.

OptimizeIterations — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the comma-
separated pair consisting of 'OptimizeIterations' and a positive integer.

OptimizeLUTSize — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizelUTSize' and a logical value. Setting this property to true generates an area-optimal
lookup table, that is, the lookup table with the minimum possible number of points. This lookup table
is optimized for size, but might not be speed efficient.

PipelinedArchitecture — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

Output Arguments

g — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat configuration
object

coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object that specifies how to create an approximation for a
MATLAB function. Use the coder.FixptConfig configuration object addApproximation method
to associate this configuration object with a coder.FixptConfig object. Then use the fiaccel
function - float2fixed option with coder.FixptConfig to convert floating-point MATLAB code to
fixed-point MATLAB code.

Property Default Value
Auto-replace function '

InputRange []
FunctionNamePrefix 'replacement '
Architecture LookupTable (read only)
NumberOfPoints 1000
InterpolationDegree 1

4-113

4 Functions

4-114

Property Default Value
ErrorThreshold 0.001
OptimizelLUTSize false
OptimizeIterations 25

See Also

Classes

coder.FixptConfig

Functions
fiaccel

Topics

“Replace the exp Function with a Lookup Table”

“Replace a Custom Function with a Lookup Table”
“Replacing Functions Using Lookup Table Approximations”

Introduced in R2014b

coder.allowpcode

coder.allowpcode

Package: coder

Control code generation from protected MATLAB files

Syntax

coder.allowpcode('plain')

Description

coder.allowpcode('plain') allows you to generate protected MATLAB code (P-code) that you
can then compile into optimized MEX functions or embeddable C/C++ code. This function does not
obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as protected P-files that provide code generation
optimizations.

Call this function in the top-level function before control-flow statements, such as if, while,
switch, and function calls.

MATLAB functions can call P-code. When the .m and . p versions of a file exist in the same folder, the
P-file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples

Generate optimized embeddable code from protected MATLAB code:

1

Write an function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen

% The directive %#codegen indicates that the function
% is intended for code generation
coder.allowpcode('plain');

out = abs(in);

Generate protected P-code. At the MATLAB prompt, enter:
pcode p_abs

The P-file, p_abs.p, appears in the current folder.

Generate a MEX function for p_abs.p, using the -args option to specify the size, class, and
complexity of the input parameter (requires a MATLAB Coder license). At the MATLAB prompt,
enter:

codegen p _abs -args { int32(0) }

codegen generates a MEX function in the current folder.

Generate embeddable C code for p_abs. p (requires a MATLAB Coder license). At the MATLAB
prompt, enter:

4-115

4 Functions

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\1ib\p abs folder.

See Also
codegen | pcode

Introduced in R2011a

4-116

coder.ArrayType class

coder.ArrayType class

Package: coder
Superclasses: coder.Type

Represent set of MATLAB arrays

Description

Specifies the set of arrays that the generated code accepts. Use only with the fiaccel -args option.
Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

coder.ArrayType is an abstract class. You cannot create instances of it directly. You can create
coder.EnumType, coder.FiType, coder.PrimitiveType, and coder.StructType objects that
derive from this class.

Properties

ClassName

Class of values in this set

SizeVector

The upper-bound size of arrays in this set.
VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

See Also

coder.CellType | coder.ClassType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

4-117

4 Functions

Introduced in R2011a

4-118

coder.config

coder.config

Create configuration object for fixed-point or single-precision conversion

Syntax

config obj = coder.config('fixpt"')
config obj = coder.config('single"')
Description

config obj = coder.config('fixpt') creates a coder.FixptConfig configuration object.
Use this object with the fiaccel function when converting floating-point MATLAB code to fixed-
point MATLAB code.

config obj = coder.config('single') creates a coder.SingleConfig configuration object
for use with the convertToSingle function when generating single-precision MATLAB code from
double-precision MATLAB code.

Examples

Convert Floating-Point MATLAB Code to Fixed-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti test.
fixptcfg.TestBenchName = 'dti test';

Convert your floating-point MATLAB design to fixed point. In this example, the MATLAB function
name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Double-Precision MATLAB Code to Single-Precision MATLAB Code
Create a coder.SingleConfig object, scfg.
scfg = coder.config('single');

Set the test bench name. In this example, the test bench function name is myfun_ test. Enable
numerics testing and data logging for comparison plotting of input and output variables.

scfg.TestBenchName = 'myfun test';

scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

4-119

4 Functions

Convert the double-precision MATLAB code to single-precision MATLAB code. In this example, the
MATLAB function name is myfun.

convertToSingle -config scfg myfun

See Also
coder.FixptConfig | coder.SingleConfig | convertToSingle | fiaccel

Introduced in R2014b

4-120

coder.const

coder.const

Fold expressions into constants in generated code

Syntax

out = coder.const(expression)

[outl,...,outN] = coder.const(handle,argl,...,argN)
Description

out = coder.const(expression) evaluates expression and replaces out with the result of the
evaluation in generated code.

[outl,...,outN] = coder.const(handle,argl,...,argN) evaluates the multi-output
function having handle handle. It then replaces outl, ..., outN with the results of the evaluation
in the generated code.

Examples

Specify Constants in Generated Code
This example shows how to specify constants in generated code using coder. const.

Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The
vector consists of the square of the first 10 natural numbers. AddShift generates this vector.

function y = AddShift(Shift) S#codegen
y = (1:10) .72+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation Report.
codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element of the
vector during vector creation. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{
int k;
for (k = 0; k < 10; k++) {
y[k] = (double) ((1 + k) * (1 + k)) + Shift;
}
}

Replace the expression (1:10) .72 with coder.const((1:10).72), and then generate code for
AddShift again using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args ©

4-121

‘l Functions

4-122

The code generator creates the vector containing the squares of the first 10 natural numbers. In the
generated code, it adds Shift to each element of this vector. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])
{
int 1i;
static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
49, 64, 81, 100 };

for (i
yli]
}
}

0; 1 <10; i++) {
(double)iv[i] + Shift;

Create Lookup Table in Generated Code
This example shows how to fold a user-written function into a constant in generated code.

Write a function getsine that takes an input index and returns the element referred to by index
from a lookup table of sines. The function getsine creates the lookup table using another function
gettable.

function y = getsine(index) S%#codegen
assert(isa(index, 'int32'));
persistent tbl;
if isempty(tbl)
tbl = gettable(1024);
end
y = tbl(index);
function y = gettable(n)
y = zeros(1l,n);
for i = 1:n
y(i) = sin((i-1)/(2*pi*n));
end
Generate code for getsine using an argument of type int32. Open the Code Generation Report.
codegen -config:lib -launchreport getsine -args int32(0)
The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

coder.const

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not contain
instructions for the evaluation. The generated code contains the result of the evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output function in a
coder.const statement.

Write a function MultiplyConst that takes an input factor and multiplies every element of two
vectors vecl and vec2 with factor. The function generates vecl and vec2 using another function
EvalConsts.

function [yl,y2] = MultiplyConst(factor) S#codegen
[vecl,vec2]=EvalConsts(pi.*(1./2.7(1:10)),2);
yl=vecl.*factor;
y2=vec2.*factor;
function [f1l,f2]=EvalConsts(z,n)
fl=z.”~(2*n)/factorial(2*n);
f2=z.7(2*n+1)/factorial (2*n+1);
Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.
codegen -config:lib -launchreport MultiplyConst -args ©
The code generator produces code for creating the vectors.
Replace the statement
[vecl,vec2]=EvalConsts(pi.*(1./2.7(1:10)),2);
with
[vecl,vec2]=coder.const(@EvalConsts,pi.*(1./2.7(1:10)),2);
Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args ©

The code generator does not generate code for creating the vectors. Instead, it calculates the vectors
and specifies the calculated vectors in generated code.

Read Constants by Processing XML File
This example shows how to call an extrinsic function using coder. const.
Write an XML file MyParams . xml containing the following statements:
<params>

<param name="hello" value="17"/>

<param name="world" value="42"/>
</params>

4-123

‘l Functions

4-124

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies the XML tag
param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field name of a
structure s. The function also assigns the value of attribute value to the value of the field.

function s = xml2struct(file)

s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for 1 = 0:els.getlLength-1
it els.item(1i);
ps = it.getElementsByTagName('param');
for j = 0:ps.getlLength-1
param = ps.item(j);
paramName = char(param.getAttribute('name'));
paramValue = char(param.getAttribute('value'));
paramValue = evalin('base', paramValue);
s. (paramName) = paramValue;
end

end
Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams . xml into a structure s using the
function xml2struct. Declare xml2struct as extrinsic using coder.extrinsic and call it in a
coder.const statement.

function y = MyFunc(u) %#codegen
assert(isa(u, 'double'));
coder.extrinsic('xml2struct');
s = coder.const(xml2struct('MyParams.xml"));
y s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation Report.

codegen -config:dll -launchreport MyFunc -args 0
The code generator executes the call to xml2struct during code generation. It replaces the
structure fields s.hello and s.world with the values 17 and 42 in generated code.

Input Arguments

expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant arguments
only. For instance, the following code leads to a code generation error, because x is not a compile-
time constant.

function y=func(x)
y=coder.const(loglO(x));

coder.const

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code generation, you
can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)
Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function handle

argl,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to a code
generation error, because x and y are not compile-time constants.

function y=func(x,y)
y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments

out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of out with the
value of expression.

outl,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle. MATLAB Coder evaluates the function and replaces
occurrences of outl, ..., outN with constants in the generated code.

Tips

* When possible, the code generator constant-folds expressions automatically. Typically, automatic
constant-folding occurs for expressions with scalars only. Use coder.const when the code
generator does not constant-fold expressions on its own.

* When constant-folding computationally intensive function calls, to reduce code generation time,
make the function call extrinsic. The extrinsic function call causes evaluation of the function call
by MATLAB instead of by the code generator. For example:

4-125

‘l Functions

function j = fcn(z)

zTable = coder.const(0:0.01:100);

jTable = coder.const(feval('besselj',3,zTable));
j = interpl(zTable, jTable,z);

end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

If coder. const is unable to constant-fold a function call, try to force constant-folding by making
the function call extrinsic. The extrinsic function call causes evaluation of the function call by
MATLAB instead of by the code generator. For example:

function yi = fcn(xi)

y = coder.const(feval('rand',1,100));
yi = interpl(y,xi);

end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

See Also

Topics
“Fold Function Calls into Constants” (MATLAB Coder)
“Use coder.const with Extrinsic Function Calls” (MATLAB Coder)

Introduced in R2013b

4-126

coder.Constant class

coder.Constant class

Package: coder
Superclasses: coder.Type

Represent set containing one MATLAB value

Description

Use a coder.Constant object to define values that are constant during code generation. Use only
with the fiaccel -args options. Do not pass as an input to a generated MEX function.

Construction

const type=coder.Constant(v) creates a coder.Constant type from the value v.

const type=coder.newtype('constant', v) createsa coder.Constant type from the value
V.

Input Arguments
v

Constant value used to construct the type.

Properties
Value

The actual value of the constant.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create a constant with value 42.
k = coder.Constant(42);
Create a new constant type for use in code generation.

k = coder.newtype('constant', 42);

Limitations

* You cannot use coder.Constant on sparse matrices, or on structures, cell arrays, or classes that
contain sparse matrices.

4-127

4 Functions

See Also
coder.Type | coder.newtype | fiaccel

Introduced in R2011a

4-128

coder.EnumType class

coder.EnumType class

Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB enumerations

Description

Specifies the set of MATLAB enumerations that the generated code should accept. Use only with the
fiaccel -args options. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

enum_type = coder.typeof(enum value) creates a coder.EnumType object representing a set
of enumeration values of class (enum_value).

enum_type = coder.typeof(enum value, sz, variable dims) returns a modified copy of
coder.typeof (enum value) with (upper bound) size specified by sz and variable dimensions
variable dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded
and the dimension is variable size. When sz is [], the (upper bound) sizes of v do not change. If you
do not specify variable dims, the bounded dimensions of the type are fixed; the unbounded
dimensions are variable size. When variable dims is a scalar, it applies to bounded dimensions
that are not 1 or 0 (which are fixed).

enum_type = coder.newtype(enum name,sz,variable dims) creates a coder.EnumType
object that has variable size with (upper bound) sizes sz and variable dimensions variable dims. If
sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is
variable size. If you do not specify variable dims, the bounded dimensions of the type are fixed.
When variable dims is a scalar, it applies to bounded dimensions that are not 1 or 0 (which are
fixed).

Input Arguments

enum_value

Enumeration value defined in a file on the MATLAB path.
sz

Size vector specifying each dimension of type object.
Default: [1 1] for coder.newtype

variable dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

4-129

‘l Functions

Default: false(size(sz)) | sz==Inf for coder. newtype
enum_name

Name of enumeration defined in a file on the MATLAB path.

Properties

ClassName

Class of values in the set.

SizeVector

The upper-bound size of arrays in the set.
VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create a coder.EnumType object using a value from an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named '"MyColors'
containing:

classdef MyColors < int32
enumeration
green(1l),
red(2),
end
end

2 Create a coder.EnumType object from this enumeration.

t = coder.typeof(MyColors.red);
Create a coder.EnumType object using the name of an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named 'MyColors'
containing:

classdef MyColors < int32
enumeration
green(1l),
red(2),
end
end

2 Create a coder.EnumType object from this enumeration.

4-130

coder.EnumType class

t = coder.newtype('MyColors');

See Also
coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Enumerations”
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-131

4 Functions

4-132

coder.extrinsic

Declare extrinsic functions

Syntax

coder.extrinsic(function)

coder.extrinsic(functionl, ... ,functionN)
coder.extrinsic('-sync:on', functionl, ... ,functionN)
coder.extrinsic('-sync:off', functionl, ... ,functionN)
Description

coder.extrinsic(function) declares function as an extrinsic function. The code generator
does not produce code for the body of the extrinsic function and instead uses the MATLAB engine to
execute the call. This functionality is available only when the MATLAB engine is available during
execution. Examples of situations during which the MATLAB engine is available include execution of
MEX functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

During standalone code generation, the code generator attempts to determine whether an extrinsic
function affects the output of the function in which it is called — for example by returning mxArrays
to an output variable. Provided that there is no change to the output, the code generator proceeds
with code generation, but excludes the extrinsic function from the generated code. Otherwise, the
code generator produces a compilation error.

You cannot use coder.ceval on functions that you declare as extrinsic by using coder.extrinsic.
coder.extrinsic is ignored outside of code generation.

coder.extrinsic(functionl, ... ,functionN) declares functionl through functionN as
extrinsic functions.

coder.extrinsic('-sync:on', functionl, ... ,functionN) enables synchronization of
global data between MATLAB and MEX functions before and after calls to the extrinsic functions
functionl through functionN. If only a few extrinsic calls use or modify global data, turn off
synchronization before and after all extrinsic function calls by setting the global synchronization
mode to At MEX-function entry and exit. Usethe '-sync:on' option to turn on
synchronization for only the extrinsic calls that do modify global data.

See “Generate Code for Global Data” (MATLAB Coder).

coder.extrinsic('-sync:off', functionl, ... ,functionN) disables synchronization of
global data between MATLAB and MEX functions before and after calls to the extrinsic functions
functionl through functionN. If most extrinsic calls use or modify global data, but a few do not,
use the '-sync:off' option to turn off synchronization for the extrinsic calls that do not modify
global data.

See “Generate Code for Global Data” (MATLAB Coder).

coder.extrinsic

Examples

Declare a MATLAB Function as Extrinsic

The MATLAB function patch is not supported for code generation. This example shows how you can
still use the functionality of patch in your generated MEX function by declaring patch as extrinsic
your MATLAB function.

This MATLAB code declares patch as extrinsic in the local function create plot. By declaring
patch as extrinsic, you instruct the code generator not to produce code for patch. Instead, the code
generator dispatches patch to MATLAB for execution.

The code generator automatically treats many common MATLAB visualization functions, such as the
function axis as extrinsic.

function ¢ = pythagoras(a,b,color) S%#codegen
Calculate the hypotenuse of a right triangle
and display the triangle as a patch object.
c = sqrt(a™2 + b"2);

create plot(a, b, color);

end

)
©
[)

©

function create plot(a, b, color)
%Declare patch as extrinsic
coder.extrinsic('patch');

x = [0;a;al;

y = [0;0;b];

patch(x,y,color);

axis('equal');

end

Generate a MEX function for pythagoras. Also, generate the code generation report.

codegen -report pythagoras -args {1, 1, [.3 .3 .31}

In the report, view the MATLAB code for create plot.

function create plot(a, b, color)
coder.extrinsic('patch’);

x = [@;3;a];

18 y = [e;e;b]s

11 patch(x,y,color);

12 axis('equal');

13 end

Ul s R |

The report highlights the patch and axis functions to indicate that they are treated as extrinsic
functions.

Run the MEX function.
pythagoras mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays the plot of the right triangle as a red patch object.

4-133

4 Functions

4-134

Input Arguments

function — MATLAB function name
character vector

Name of the MATLAB function that is declared as extrinsic.

Example: coder.extrinsic('patch')

Data Types: char

Limitations

» Extrinsic function calls have some overhead that can affect performance. Input data that is passed
in an extrinsic function call must be provided to MATLAB, which requires making a copy of the
data. If the function has any output data, this data must be transferred back into the MEX function
environment, which also requires a copy.

* The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

* The code generator does not support the use of coder.extrinsic to call local functions.

Tips

* The code generator automatically treats many common MATLAB visualization functions, such as
plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

coder.extrinsic

* Use the coder.screener function to detect which functions you must declare as extrinsic. This
function runs the Code Generation Readiness Tool that screens the MATLAB code for features and
functions that are not supported for code generation.

See Also
coder.screener

Topics
“Extrinsic Functions”

“Generate Code for Global Data” (MATLAB Coder)
“Resolution of Function Calls for Code Generation”

Introduced in R2011a

4-135

4 Functions

4-136

coder.FiType class

Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB fixed-point arrays

Description

Specifies the set of fixed-point array values that the generated code should accept. Use only with the
fiaccel -args options. Do not pass as an input to the generated MEX function.

Construction

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(v) creates a coder.FiType object representing a set of fixed-point values whose
properties are based on the fixed-point input v.

t=coder.typeof(v, sz, variable dims) returns a modified copy of coder.typeof(v) with
(upper bound) size specified by sz and variable dimensions variable dims. If sz specifies inf for a
dimension, then the size of the dimension is unbounded and the dimension is variable size. When sz
is [1, the (upper bound) sizes of v do not change. If you do not specify the variable dims input
parameter, the bounded dimensions of the type are fixed. When variable dims is a scalar, it applies
to the bounded dimensions that are not 1 or © (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable dims) creates a
coder.Type object representing a set of fixed-point values with numerictype and (upper bound)
sizes sz and variable dimensions variable dims. If sz specifies inf for a dimension, then the size
of the dimension is unbounded and the dimension is variable size. When you do not specify
variable dims, the bounded dimensions of the type are fixed. When variable dims is a scalar, it
applies to the bounded dimensions that are not 1 or 0 (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable dims, Name, Value)
creates a coder.Type object representing a set of fixed-point values with numerictype and
additional options specified by one or more Name, Value pair arguments. Name can also be a property
name and Value is the corresponding value. Specify Name as a character vector or string scalar. You
can specify several name-value pair arguments in any order as Namel,Valuel,..,NameN, ValueN.
Input Arguments

v

Fixed-point value used to create new coder.FiType object.

Sz

Size vector specifying each dimension of type object.

coder.FiType class

Default: [1 1] for coder.newtype
variable_dims
Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

Default: false(size(sz)) | sz ==Inf for coder.newtype
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

complex

Set complex to true to create a coder. Type object that can represent complex values. The type
must support complex data.

Default: false
fimath

Specify local fimath. If not, uses default fimath.

Properties

ClassName

Class of values in the set.

Complex

Indicates whether fixed-point arrays in the set are real (false) or complex (true).
Fimath

Local fimath that the fixed-point arrays in the set use.
NumericType

numerictype that the fixed-point arrays in the set use.
SizeVector

The upper-bound size of arrays in the set.
VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

4-137

‘l Functions

Examples

Create a new fixed-point type t.

= coder.typeof(fi(1));
Returns
coder.FiType
1x1 embedded.fi
DataTypeMode:Fixed-point: binary point scaling
Signedness:Signed
WordLength:16
FractionLength:14

0° o° o° ° o° o° o°

Create a new fixed-point type for use in code generation. The fixed-point type uses the default
fimath.

t = coder.newtype('embedded.fi',numerictype(1l, 16, 15), [1 21)

Returns
coder.FiType
1x2 embedded.fi
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

0® o° o° o° o° o° Q°

This new type uses the default fimath.

See Also

coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-138

coder.FixptConfig class

coder.FixptConfig class

Package: coder

Floating-point to fixed-point conversion configuration object

Description
A coder.FixptConfig object contains the configuration parameters that the fiaccel function

requires to convert floating-point MATLAB code to fixed-point MATLAB code. Use the - float2fixed
option to pass this object to the fiaccel function.

Construction

fixptcfg = coder.config('fixpt') creates a coder.FixptConfig object for floating-point to
fixed-point conversion.

Properties

ComputeDerivedRanges

Enable derived range analysis.

Values: true|false (default)

ComputeSimulationRanges

Enable collection and reporting of simulation range data. If you need to run a long simulation to cover
the complete dynamic range of your design, consider disabling simulation range collection and
running derived range analysis instead.

Values: true (default)|false

DefaultFractionLength

Default fixed-point fraction length.

Values: 4 (default) | positive integer

DefaultSignedness

Default signedness of variables in the generated code.

Values: 'Automatic' (default) | 'Signed' | 'Unsigned’

DefaultWordLength

Default fixed-point word length.

Values: 14 (default) | positive integer

4-139

4 Functions

4-140

DetectFixptOverflows

Enable detection of overflows using scaled doubles.
Values: true| false (default)

fimath

fimath properties to use for conversion.

Values: fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',
'ProductMode', 'FullPrecision', 'SumMode', 'FullPrecision') (default) | string

FixPtFileNameSuffix

Suffix for fixed-point file names.

Values: ' fixpt' | string

LaunchNumericTypesReport

View the numeric types report after the software has proposed fixed-point types.

Values: true (default) | false

LogIOForComparisonPlotting

Enable simulation data logging to plot the data differences introduced by fixed-point conversion.
Values: true (default) | false

OptimizeWholeNumber

Optimize the word lengths of variables whose simulation min/max logs indicate that they are always
whole numbers.

Values: true (default) | false
PlotFunction
Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This option
takes precedence over PlotWithSimulationDatalInspector.

The plot function should accept three inputs:

* A structure that holds the name of the variable and the function that uses it.
* A cell array to hold the logged floating-point values for the variable.
* A cell array to hold the logged values for the variable after fixed-point conversion.

Values: ' ' (default) | string
PlotWithSimulationDataInspector

Use Simulation Data Inspector for comparison plots.

coder.FixptConfig class

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

Values: true| false (default)
ProposeFractionLengthsForDefaultWordLength
Propose fixed-point types based on DefaultWordLength.
Values: true (default) | false
ProposeTargetContainerTypes

By default (false), propose data types with the minimum word length needed to represent the value.
When set to true, propose data type with the smallest word length that can represent the range and is
suitable for C code generation (8,16,32, 64 ...). For example, for a variable with range [0..7],
propose a word length of 8 rather than 3.

Values: true| false (default)
ProposeWordLengthsForDefaultFractionLength

Propose fixed-point types based on DefaultFractionLength.

Values: false (default) | true

ProposeTypesUsing

Propose data types based on simulation range data, derived ranges, or both.

Values: 'BothSimulationAndDerivedRanges' (default) |
‘SimulationRanges'|'DerivedRanges’

SafetyMargin

Safety margin percentage by which to increase the simulation range when proposing fixed-point
types. The specified safety margin must be a real number greater than -100.

Values: 0 (default) | double
StaticAnalysisQuickMode
Perform faster static analysis.
Values: true | false (default)
StaticAnalysisTimeoutMinutes
Abort analysis if timeout is reached.

Values: '' (default) | positive integer
TestBenchName

Test bench function name or names, specified as a string or cell array of strings. You must specify at
least one test bench.

4-141

4 Functions

4-142

If you do not explicitly specify input parameter data types, the conversion uses the first test bench
function to infer these data types.

Values: '' (default) | string | cell array of strings

TestNumerics
Enable numerics testing.

Values: true| false (default)

Methods

addApproximation Replace floating-point function with lookup table during fixed-
point conversion

addDesignRangeSpecification Add design range specification to parameter

addFunctionReplacement Replace floating-point function with fixed-point function during
fixed-point conversion

clearDesignRangeSpecifications Clear all design range specifications
getDesignRangeSpecification Get design range specifications for parameter
hasDesignRangeSpecification Determine whether parameter has design range
removeDesignRangeSpecification Remove design range specification from parameter

Examples

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation Ranges
Create a coder.FixptConfig object, fixptcfg, with default settings.
fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti test. The conversion
process uses the test bench to infer input data types and collect simulation range data.

fixptcfg.TestBenchName = 'dti test';

Select to propose data types based on simulation ranges only. By default, proposed types are based
on both simulation and derived ranges.

fixptcfg.ProposeTypesUsing = 'SimulationRanges’;

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation and Derived
Ranges

Create a coder.FixptConfig object, fixptcfg, with default settings.

coder.FixptConfig class

fixptcfg = coder.config('fixpt');

Set the name of the test bench to use to infer input data types. In this example, the test bench
function name is dti test. The conversion process uses the test bench to infer input data types.

fixptcfg.TestBenchName = 'dti test';
Select to propose data types based on derived ranges.

fixptcfg.ProposeTypesUsing = 'DerivedRanges’;
fixptcfg.ComputeDerivedRanges = true;

Add design ranges. In this example, the dti function has one scalar double input, u_in. Set the
design minimum value for u_in to -1 and the design maximum to 1.

fixptcfg.addDesignRangeSpecification('dti', 'u in', -1.0, 1.0);
Convert the floating-point MATLAB function, dti, to fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg dti

Enable Overflow Detection

When you select to detect potential overflows, fiaccel generates a scaled double version of the
generated fixed-point MEX function. Scaled doubles store their data in double-precision floating-
point, so they carry out arithmetic in full range. They also retain their fixed-point settings, so they are
able to report when a computation goes out of the range of the fixed-point type.

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.
fixptcfg.TestBenchName = 'dti test';

Enable numerics testing with overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Alternatives

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Converter app.
Open the app using one of these methods:

* On the Apps tab, in the Code Generation section, click Fixed-Point Converter.
* Use the fixedPointConverter command.

4-143

4 Functions

See Also
coder.MexConfig | coder.mexconfig | fiaccel

Topics

“Propose Data Types Based on Simulation Ranges”

“Propose Data Types Based on Derived Ranges”

“Detect Overflows”

“Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL Coder)

4-144

coder.ignoreConst

coder.ignoreConst

Prevent use of constant value of expression for function specializations

Syntax

coder.ignoreConst(expression)

Description

coder.ignoreConst(expression) prevents the code generator from using the constant value of
expression to create function specializations on page 4-147. coder.ignoreConst(expression)
returns the value of expression.

Examples

Prevent Function Specializations Based on Constant Input Values

Use coder.ignoreConst to prevent function specializations for a function that is called with
constant values.

Write the function call _myfn, which calls myfcn.

function [x, y] = call myfcn(n)
s#codegen

x = myfcn(n, 'model');

y = myfcn(n, 'mode2');

end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode, 'model')
y =n;
else
y = -n;
end
end

Generate standalone C code. For example, generate a static library. Enable the code generation
report.

codegen -config:lib call myfcn -args {1} -report
In the code generation report, you see two function specializations for call myfcn.

= Functions

‘& call_myfen
(& call_myfen = myfen > 1
(& call_myfen = myfen = 2

4-145

‘l Functions

4-146

The code generator creates call myfcn>myfcn>1 for mode with a value of 'model’. It creates
call myfcn>myfcn>2 for mode with a value of 'mode2"'.

In the generated C code, you see the specializations my fcnand b _my fcn.

static double b myfcn(double n)
{

return -n;

}

static double myfcn(double n)
{

return n;

}

To prevent the function specializations, instruct the code generator to ignore that values of the mode
argument are constant.

function [x, y] = call myfcn(n)

s#codegen

x = myfcn(n, coder.ignoreConst('model'));
y = myfcn(n, coder.ignoreConst('mode2'));
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode, 'model"')
y =n;
else
y = -n;
end
end

Generate the C code.
codegen -config:lib call myfcn -args {1} -report
In the code generation report, you do not see multiple function specializations.

El Functions

@ call myfcn
& call_myfcn = myfen

In the generated C code, you see one function for my fcn.

Input Arguments

expression — Expression whose value is to be treated as a nonconstant
MATLAB expression

Expression whose value is to be treated as a nonconstant, specified as a MATLAB expression.

coder.ignoreConst

More About

Function Specialization

Version of a function in which an input type, size, complexity, or value is customized for a particular
invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The code
generation report shows all MATLAB function specializations that the code generator creates.
However, the specializations might not appear in the generated C/C++ code due to later
transformations or optimizations.

Tips
» For some recursive function calls, you can use coder.ignoreConst to force run-time recursion.
See “Force Code Generator to Use Run-Time Recursion”.

* coder.ignoreConst(expression) prevents the code generator from using the constant value
of expression to create function specializations. It does not prevent other uses of the constant
value during code generation.

See Also

coder.inline

Topics

“Force Code Generator to Use Run-Time Recursion”
“Compile-Time Recursion Limit Reached”

Introduced in R2017a

4-147

4 Functions

4-148

coder.inline

Package: coder

Control inlining in generated code

Syntax

coder.inline('always')
coder.inline('never')
coder.inline('default"')

Description

coder.inline('always') forces inlining on page 4-149 of the current function in the generated
code. Place the coder. inline directive inside the function to which it applies. The code generator
does not inline entry-point functions and recursive functions. Also, the code generator does not inline
functions into parfor loops, or inline functions called from parfor loops.

coder.inline('never"') prevents inlining of the current function in the generated code. Prevent
inlining when you want to simplify the mapping between the MATLAB source code and the generated
code. You can disable inlining for all functions at the command line by using the -0
disable:inline option of the fiaccel command.

coder.inline('default') uses internal heuristics to determine whether to inline the current
function. Usually, the heuristics produce highly optimized code. Use coder.inline only when you
need to fine-tune these optimizations.

Examples

* “Prevent Function Inlining” on page 4-148
» “Use coder.inline in Control Flow Statements” on page 4-148

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = X;

end

Use coder.inline in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and issues a
warning.

Suppose that you want to generate code for a division function used by a system with limited memory.
To optimize memory use in the generated code, the inline division function manually controls
inlining based on whether it performs scalar division or vector division:

coder.inline

function y = inline division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.

if isscalar(dividend) && isscalar(divisor)
coder.inline('always');

else

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.
coder.inline('never');

end

if any(divisor == 0)
error('Cannot divide by 0');

end

y = dividend / divisor;

More About
Inlining
Technique that replaces a function call with the contents (body) of that function. Inlining eliminates

the overhead of a function call, but can produce larger C/C++ code. Inlining can create opportunities
for further optimization of the generated C/C++ code.

See Also
fiaccel

Introduced in R2011a

4-149

4 Functions

4-150

coder.load

Load compile-time constants from MAT-file or ASCII file into caller workspace

Syntax

S = coder.load(filename)

S = coder.load(filename,varl,...,varN)

S = coder.load(filename, '-regexp',exprl,...,exprN)

S = coder.load(filename, '-ascii')

S = coder.load(filename, '-mat')

S = coder.load(filename, '-mat',varl,...,varN)

S = coder.load(filename, '-mat','-regexp', exprl,...,exprN)

Description

S = coder.load(filename) loads compile-time constants from filename.

» If filename is a MAT-ile, then coder. load loads variables from the MAT-file into a structure
array.

+ If filename is an ASCII file, then coder.load loads data into a double-precision array.

coder.load loads data at code generation time, also referred to as compile time. If you change the

content of filename after you generate code, the change is not reflected in the behavior of the
generated code.

S = coder.load(filename,varl,...,varN) loads only the specified variables from the MAT-file
filename.
S = coder.load(filename, '-regexp',exprl,...,exprN) loads only the variables that match

the specified regular expressions.

S = coder.load(filename, '-ascii') treats filename as an ASCII file, regardless of the file
extension.

S = coder.load(filename, '-mat') treats filename as a MAT-file, regardless of the file
extension.

S = coder.load(filename, '-mat',varl,...,varN) treats filename as a MAT-file and loads
only the specified variables from the file.

S = coder.load(filename, '-mat',"'-regexp', exprl,...,exprN) treats filename as a
MAT-file and loads only the variables that match the specified regular expressions.

Examples

coder.load

Load compile-time constants from MAT-file

Generate code for a function edgeDetectl which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetectl uses coder.load to load
the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.
k=1[121;, 000; -1 -2 -1];
save sobel.mat k

Write the function edgeDetectl.

function edgeImage = edgeDetectl(originallImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));

assert(isa(threshold, 'double'));

coder.load('sobel.mat', 'k");
conv2(double(originallImage),S.k, 'same');
conv2(double(originallImage),S.k', 'same');
sqrt(H.*H + V.*V);

edgeImage = uint8((E > threshold) * 255);

m<ITWn

Create a code generation configuration object for a static library.
cfg = coder.config('lib"');

Generate a static library for edgeDetectl.

codegen -report -config cfg edgeDetectl

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect2 uses coder.load to load
the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k=1[121; 000; -1 -2 -1];
save sobel.dat k -ascii

Write the function edgeDetect2.

function edgelmage = edgeDetect2(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));

assert(isa(threshold, ‘'double'));

coder.load('sobel.dat"');
conv2(double(originallImage),k, 'same');

k
H
V = conv2(double(originallImage),k', 'same"');

4-151

4 Functions

4-152

E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.
cfg = coder.config('lib"');

Generate a static library for edgeDetect?.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\1lib\edgeDetect?2 folder.

Input Arguments

filename — Name of file
character vector | string scalar

Name of file. filename must be a compile-time constant.

filename can include a file extension and a full or partial path. If filename has no extension, Load
looks for a file named filename.mat. If filename has an extension other than .mat, load treats
the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of elements in each
row. The file delimiter (the character between elements in each row) can be a blank, comma,
semicolon, or tab character. The file can contain MATLAB comments (lines that begin with a percent
sign, %).

Example: 'myFile.mat"’

varl,...,varN — Names of variables to load
character vector | string scalar

Names of variables, specified as one or more character vectors or string scalars. Each variable name
must be a compile-time constant. Use the * wildcard to match patterns.

Example: coder.load('myFile.mat', 'A*"') loads all variables in the file whose names start with
A.

exprl, ...,exprN — Regular expressions indicating which variables to load
character vector | string scalar

Regular expressions indicating which variables to load specified as one or more character vectors or
string scalars. Each regular expression must be a compile-time constant.

Example: coder.load('myFile.mat', '-regexp', '~A"') loads only variables whose names
begin with A.

Output Arguments

S — Loaded variables or data
structure array | m-by-n array

If filename is a MATile, S is a structure array.

coder.load

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of lines in the file
and n is the number of values on a line.

Limitations

Arguments to coder. load must be compile-time constants.

The output S must be the name of a structure or array without any subscripting. For example,
S(i) = coder.load('myFile.mat') is not allowed.

You cannot use save to save workspace data to a file inside a function intended for code
generation. The code generator does not support the save function. Furthermore, you cannot use
coder.extrinsic with save. Prior to generating code, you can use save to save workspace
data to a file.

Tips

coder. load loads data at compile time, not at run time. If you are generating MEX code or code
for Simulink simulation, you can use the MATLAB function load to load run-time values.

If the MAT-file contains unsupported constructs, use coder.load(filename,varl,...,varN)
to load only the supported constructs.

If you generate code in a MATLAB Coder project, the code generator practices incremental code
generation for the coder. load function. When the MAT-file or ASCII file used by coder. load
changes, the software rebuilds the code.

See Also
matfile | regexp | save

Topics
“Regular Expressions”

Introduced in R2013a

4-153

‘l Functions

4-154

coder.mexconfig

Package: coder

Code acceleration configuration object

Syntax

config obj = coder.mexconfig

Description

config obj = coder.mexconfig creates a coder.MexConfig code generation configuration
object for use with fiaccel, which generates a MEX function.

Output Arguments
config obj

Code generation configuration object for use when generating MEX functions using fiaccel.

Examples

Create a configuration object to disable run-time checks

cfg = coder.mexconfig

% Turn off Integrity Checks, Extrinsic Calls,

% and Responsiveness Checks

cfg.IntegrityChecks = false;

cfg.ExtrinsicCalls = false;

cfg.ResponsivenessChecks = false;

% Use fiaccel to generate a MEX function for file foo.m
fiaccel -config cfg foo

See Also

coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType | coder.MexConfig |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Introduced in R2011a

coder.newtype

coder.newtype

Package: coder

Create a coder.Type object to represent the type of an entry-point function input

Syntax

t = coder.newtype(numeric class,sz,variable dims)

t = coder.newtype(numeric class,sz,variable dims, Name,Value)

t = coder.newtype('constant',value)

t = coder.newtype('struct',struct fields,sz,variable _dims)

t = coder.newtype('cell',cells,sz,variable dims)

t = coder.newtype('embedded.fi',numerictype,sz,variable dims, Name,Value)
t = coder.newtype(enum value,sz,variable dims)

t = coder.newtype(class name)

t = coder.newtype('string')

Description

The coder.newtype function is an advanced function that you can use to control the coder.Type
object. Consider using coder. typeof instead of coder.newtype. The function coder.typeof
creates a type from a MATLAB example.

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.newtype(numeric class,sz,variable dims) creates a coder.Type object
representing values of class numeric class, sizes sz (upper bound), and variable dimensions
variable dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded
and the dimension is variable-size. When variable dims is not specified, the dimensions of the type
are fixed except for those that are unbounded. When variable dims is a scalar, it is applied to type
dimensions that are not 1 or 0, which are fixed.

t = coder.newtype(numeric class,sz,variable dims, Name,Value) creates a
coder.Type object by using additional options specified as one or more Name, Value pair
arguments.

t = coder.newtype('constant',value) creates a coder.Constant object representing a
single value. Use this type to specify a value that must be treated as a constant in the generated
code.

t = coder.newtype('struct',struct fields,sz,variable dims) creates a
coder.StructType object for an array of structures that has the same fields as the scalar structure
struct fields. The structure array type has the size specified by sz and variable-size dimensions
specified by variable dims.

t = coder.newtype('cell',cells,sz,variable dims) creates a coder.CellType object for
a cell array that has the cells and cell types specified by cells. The cell array type has the size

4-155

‘l Functions

4-156

specified by sz and variable-size dimensions specified by variable dims. You cannot change the
number of cells or specify variable-size dimensions for a heterogeneous cell array.

t = coder.newtype('embedded.fi',numerictype,sz,variable dims, Name,Value)
creates a coder.FiType object representing a set of fixed-point values that have numerictype and
additional options specified by one or more Name, Value pair arguments.

t = coder.newtype(enum value,sz,variable dims) creates a coder.Type object
representing a set of enumeration values of class enum_value.

t = coder.newtype(class name) creates a coder.ClassType object for an object of the class
class name.

t = coder.newtype('string') creates a type for a string scalar. A string scalar contains one
piece of text represented as a character vector. To specify the size of the character vector and
whether the second dimension is variable-size, create a type for the character vector and assign it to
the Value property of the string scalar type. For example, t.Properties.Value =
coder.newtype('char',[1 10],[0 1]) specifies that the character vector inside the string
scalar is variable-size with an upper bound of 10.

Examples

Create Type for a Matrix

Create a type for a variable-size matrix of doubles.
t = coder.newtype('double',[2 3 4],[1 1 0])
t =

coder.PrimitiveType
12x:3%x4 double
':' indicates variable-size dimensions

%

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with fixed
size.

t = coder.newtype('double', [inf,3])
t =

coder.PrimitiveType
:infx3 double

t = coder.newtype('double',[inf,3],[1 0])

% also returns

+

coder.PrimitiveType
:infx3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with
variable-size that has an upper bound of 3.

coder.newtype

~+
Il

coder.newtype('double',[inf,3],[0 1])

coder.PrimitiveType
:infx:3 double

% ;' indicates variable-size dimensions

Create Type for a Structure

Create a type for a structure with a variable-size field.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('struct',struct('a',ta,'b',tb),[1 11,[1 1])
t:
coder.StructType
:1x:1 struct
a: 1x1 int8

b: :1x:2 double
indicates variable-size dimensions

% '

Create Type for a Cell Array

Create a type for a heterogeneous cell array.

ta coder.newtype('int8',[1 1]);
tb coder.newtype('double',[1 2],[1 11);
t = coder.newtype('cell',{ta, tb})

t =

coder.CellType
1x2 heterogeneous cell
fl: 1x1 int8
f2: :1x:2 double
indicates variable-size dimensions

% [

Create a type for a homogeneous cell array.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('int8',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb},[1,1],[1,1])

t =

coder.CellType
:1x:1 homogeneous cell
base: :1x:2 int8
% ':' indicates variable-size dimensions

4-157

‘l Functions

Create Type for a Constant

Create a new constant type to use in code generation.
t = coder.newtype('constant',42)
t —

coder.Constant
42

Create a coder.EnumType Object
Create a coder.EnumType object by using the name of an existing MATLAB enumeration.

1. Define an enumeration MyColors. On the MATLAB path, create a file named MyColors containing:

classdef MyColors < int32
enumeration
green(l),
red(2),
end
end

2. Create a coder.EnumType object from this enumeration.
t = coder.newtype('MyColors"')
t —1

coder.EnumType
1x1 MyColors

Create a Fixed-Point Type
Create a fixed-point type for use in code generation.

The fixed-point type uses default fimath values.

t

coder.newtype('embedded.fi',numerictype(1l, 16, 15),[1 2])
t —3

coder.FiType
1x2 embedded.fi
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Create a Type for an Object

Create a type for an object to use in code generation.

4-158

coder.newtype

1. Create this value class:

classdef mySquare
properties
side;
end

methods

function obj = mySquare(val)

if nargin > 0
obj.side = val;
end
end

function a = calcarea(obj)
a = obj.side * obj.side;

end

end
end

2. Create a type for an object that has the same properties as mySquare.

t = coder.newtype('mySquare');

3. Change the type of the property side.

t.Properties.side = coder.typeof(int8(3))

t:
coder.ClassType

1x1 mySquare
side: 1x1 int8

Create Type for a String Scalar

Create a type for a string scalar to use in code generation.

1. Create the string scalar type.

t = coder.newtype('string');

N

. Specify the size.

—~+

3. Make the string variable-size with an upper bound of 10.

—~+

4. Make the string variable-size with no upper bound.

.Properties.Value = coder.newtype('char',[1,10]);

.Properties.Value = coder.newtype('char',[1,10],[0,1]);

4-159

4 Functions

4-160

t.Properties.Value = coder.newtype('char',[1,inf]);

Input Arguments

numeric_class — Class of values of type object
numeric (default)

Class of the set of values represented by the type object.
Example: coder.newtype('double', [6,3]);

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | logical | char | string | struct | table| cell | function handle | categorical |
datetime | duration | calendarDuration | fi

Complex Number Support: Yes

struct_fields — Indicates fields in a new structure type

struct (default)

Scalar structure used to specify the fields in a new structure type.

Example: coder.newtype('struct',struct('a',ta,'b',th));

Data Types: struct

cells — Specify types of cells in a new cell array type

cell array (default)

Cell array of coder.Type objects that specify the types of the cells in a new cell array type.
Example: coder.newtype('cell', {ta,tb});

Data Types: cell

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object. The sz dimension cannot change the number of
cells for a heterogeneous cell array.

Example: coder.newtype('int8',[1 2]);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Complex Number Support: Yes

class_name — Name of the class
character vector | string scalar

Name of the class from which the coder.ClassType is created. Specify as a character vector or
string scalar. class_name must be the name of a value class.

Example: coder.newtype('mySquare')

Data Types: char | string

variable_dims — Variable or fixed dimension
row vector of logical values

coder.newtype

The value of variable dims is true for dimensions for which sz specifies an upper bound of inf;
false for all other dimensions.

Logical vector that specifies whether each dimension is variable-size (true) or fixed size (false). You
cannot specify variable-size dimensions for a heterogeneous cell array.

Example: coder.newtype('char',[1,10],[0,1]);

Data Types: logical

value — Value of the constant

constant value (default)

Specifies the actual value of the constant.

Example: coder.newtype('constant',b41);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | char|string|struct | table | cell

enum_value — Enumeration values of class
enum (default)

Enumeration values of a class.

Example: coder.newtype('MyColors');

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | char|string | struct | table | cell| function handle | categorical | datetime
| duration | calendarDuration | fi

Complex Number Support: Yes

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and

Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ...,NameN, ValueN.

Example: coder.newtype('embedded.fi',numerictype(1l,16,15),[1 2])

complex — Type representing complex values
true

Set complex to true to create a coder. Type object that can represent complex values. The type
must support complex data.

fimath — Type representing fimath values
numeric (default)

Specify local fimath. If fimath is not specified, the code generator uses default fimath values.

Use only with

t = coder.newtype('embedded.fi',numerictype,sz,variable dims,Name,Value)

sparse — Type representing sparse data
false (default)

4-161

4 Functions

4-162

Set sparse to true to create a coder. Type object representing sparse data. The type must support
sparse data.

Not for use with
t = coder.newtype('embedded.fi',numerictype,sz,variable _dims,Name,Value)

gpu — Type representing GPU inputs
false (default)

Set gpu to true to create a coder.Type object that can represent the GPU input type. This option
requires a valid GPU Coder™ license.

Output Arguments

t — New type object
coder.Type object

New coder.Type object.

Limitations

* For sparse matrices, coder.newtype drops upper bounds for variable-size dimensions.

* For GPU input types, only bounded numeric and logical base types are supported. Scalar GPU
arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-point
data types are not supported.

* When using coder.newtype to represent GPU inputs, the memory allocation (malloc) mode
property of the GPU code configuration object must be set to 'discrete’.

Tips

* The coder.newtype function fixes the size of a singleton dimension unless the variable dims
argument explicitly specifies that the singleton dimension has a variable-size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton
dimension) has a fixed size. The second dimension has a variable-size.

t = coder.newtype('double',[1 107,1)
By contrast, the following code specifies a :1-by-:10 double. Both dimensions have a variable-size.

t = coder.newtype('double’,[1 10],[1 1])

* For a MATLAB Function block, singleton dimensions of input or output signals cannot have a
variable-size.

Alternatives

coder.typeof

See Also

coder.ArrayType | coder.CellType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.resize | fiaccel

coder.newtype

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-163

‘l Functions

4-164

coder.nullcopy

Package: coder

Declare uninitialized variables in code generation

Syntax

X = coder.nullcopy(A)

Description

X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy element
values. The function preallocates memory for X without incurring the overhead of initializing memory.
In code generation, the coder.nullcopy function declares uninitialized variables. In MATLAB,
coder.nullcopy returns the input such that X is equal to A.

If X is a structure or a class containing variable-sized arrays, then you must assign the size of each
array. coder.nullcopy does not copy sizes of arrays or nested arrays from its argument to its
result.

Note Before you use X in a function or a program, ensure that the data in X is completely initialized.
Declaring a variable through coder.nullcopy without assigning all the elements of the variable
results in nondeterministic program behavior. For more information, see “How to Eliminate
Redundant Copies by Defining Uninitialized Variables”.

Examples

Declare Variables for Optimized Initialization

Declare variable X as a 1-by-5 vector of real doubles without performing an unnecessary initialization:

function X = foo %#codegen

N=25;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
if mod(i,2) == 0
X(i) = i;
else
X(i) = 0;
end
end

coder.nullcopy

Using coder.nullcopy with zeros lets you specify the size of vector X without initializing each
element to zero.

Input Arguments

A — Variable to copy
scalar | vector | matrix | class | multidimensional array

Variable to copy, specified as a scalar, vector, matrix, or multidimensional array.
Example: coder.nullcopy(A);

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char|string | class
Complex Number Support: Yes

Limitations

* You cannot use coder.nullcopy on sparse matrices.

* You cannot use coder.nullcopy with classes that support overloaded parentheses or require
indexing methods to access their data, such as table.

See Also

Topics
“Eliminate Redundant Copies of Variables in Generated Code”

Introduced in R2011a

4-165

4 Functions

4-166

coder.PrimitiveType class

Package: coder
Superclasses: coder.ArrayType

Represent set of logical, numeric, or char arrays

Description

Specifies the set of logical, numeric, or char values that the generated code should accept. Supported
classes are half, double, single, int8, uint8, int16, uintl6, int32, uint32, int64, uint64,
char, and logical. Use only with the fiaccel -args option. Do not pass as an input to a
generated MEX function.

Construction

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(v) creates a coder.PrimitiveType object denoting the smallest non-constant
type that contains v. v must be a MATLAB numeric, logical or char.

t=coder.typeof(v, sz, variable dims) returns a modified copy of coder.typeof(v) with
(upper bound) size specified by sz and variable dimensions variable dims. If sz specifies inf for a
dimension, then the size of the dimension is assumed to be unbounded and the dimension is assumed
to be variable sized. When sz is [], the (upper bound) sizes of v remain unchanged. When
variable dims is not specified, the dimensions of the type are assumed to be fixed except for those
that are unbounded. When variable dims is a scalar, it is applied to bounded dimensions that are
not 1 or 0 (which are assumed to be fixed).

t=coder.newtype(numeric class, sz, variable dims) creates a coder.PrimitiveType
object representing values of class numeric class with (upper bound) sizes sz and variable
dimensions variable dims. If sz specifies inf for a dimension, then the size of the dimension is
assumed to be unbounded and the dimension is assumed to be variable sized. When variable dims
is not specified, the dimensions of the type are assumed to be fixed except for those that are
unbounded. When variable dims is a scalar, it is applied to the dimensions of the type that are not
1 or O (which are assumed to be fixed).

t=coder.newtype(numeric class, sz, variable dims, Name, Value) creates a
coder.PrimitiveType object with additional options specified by one or more Name, Value pair
arguments. Name can also be a property name and Value is the corresponding value. Specify Name as
character vector or string scalar. You can specify several name-value pair arguments in any order as
Namel,Valuel,..,NameN, ValueN.

Input Arguments
v

Input that is not a coder.Type object

coder.PrimitiveType class

sz
Size for corresponding dimension of type object. Size must be a valid size vector.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).
Default: false(size(sz)) | sz==Inf for coder.newtype

numeric_class

Class of type object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ... ,NameN, ValueN.

complex

Set complex to true to create a coder.PrimitiveType object that can represent complex values.
The type must support complex data.

Character arrays do not support complex data.
Default: false
sparse

Set sparse to true to create a coder.PrimitiveType object representing sparse data. The type
must support sparse data.

Character and half-precision data types do not support sparse data.
Default: false

gpu

Set gpu to true to create a coder.PrimitiveType object that can represent GPU input type. This
option requires a valid GPU Coder license.

Character and half-precision data types do not support GPU Arrays.

Default: false

Properties
ClassName

Class of values in this set

4-167

‘l Functions

Complex

Indicates whether the values in this set are real (false) or complex (true)
SizeVector

The upper-bound size of arrays in this set.

Sparse

Indicates whether the values in this set are sparse arrays (true)
VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create a coder.PrimitiveType object.

z = coder.typeof(0,[2 3 4]1,[1 1 0]) % returns double :2x:3x4
':' indicates variable-size dimensions

)
“©

See Also

coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-168

coder.resize

coder.resize

Package: coder

Resize coder.Type object

Syntax

t out = coder.resize(t,sz)

t out = coder.resize(t,sz,variable dims)

t out = coder.resize(t,[],variable dims)

t out = coder.resize(t,sz,variable dims,Name,Value)
t out = coder.resize(t, 'sizelimits',limits)
Description

t out = coder.resize(t,sz) resizes t to have size sz.

t out = coder.resize(t,sz,variable dims) returns a modified copy of coder.Type t with
(upper-bound) size sz and variable dimensions variable dims. If variable dims or sz are
scalars, the function applies the scalars to all dimensions of t. By default, variable dims does not
apply to dimensions where sz is 0 or 1, which are fixed. Use the 'uniform' option to override this
special case. The coder. resize function ignores variable dims for dimensions with size inf.
These dimensions are variable size. t can be a cell array of types, in which case, coder. resize
resizes all elements of the cell array.

t out = coder.resize(t,[],variable dims) changes t to have variable dimensions
variable dims while leaving the size unchanged.

t out = coder.resize(t,sz,variable dims,Name,Value) resizes t by using additional
options specified by one or more Name, Value pair arguments.

t out = coder.resize(t, 'sizelimits',limits) resizes t with dimensions becoming variable
based on the 1imits vector. When the size S of a dimension is greater than or equal to the first
threshold defined in 1imits, the dimension becomes variable size with upper bound S. When the size
S of a dimension is greater than or equal to the second threshold defined in 1imits, the dimension
becomes an unbounded variable size.

Examples

Change Fixed-Size Array to an Unbounded, Variable-Size Array
Change a fixed-size array to an unbounded, variable-size array.

t coder.typeof(ones(3,3))

t =

coder.PrimitiveType
3x3 double

4-169

‘l Functions

4-170

coder.resize(t,inf)

ans =
coder.PrimitiveType

:infx:inf double
% ':' indicates variable-size dimensions

Change Fixed-Size Array to a Bounded, Variable-Size Array

Change a fixed-size array to a bounded, variable-size array.

t coder.typeof(ones(3,3))
t:

coder.PrimitiveType
3x3 double

coder.resize(t,[4 51,1)
ans =
coder.PrimitiveType

14%x:5 double
% ':' indicates variable-size dimensions

Resize Structure Field

Resize a structure field.

ts

coder.typeof(struct('a',ones(3, 3)))

ts =

coder.StructType
1x1 struct
a: 3x3 double

coder.resize(ts,[5, 51, 'recursive',1)

ans =

coder.StructType
5x5 struct
a: 5x5 double

Resize Cell Array
Resize a cell array.

tc = coder.typeof ({1 2 3})

tc =

coder.resize

coder.CellType
1x3 homogeneous cell
base: 1x1 double
coder.resize(tc,[5, 51, 'recursive',1)
ans =
coder.CellType

5x5 homogeneous cell
base: 1x1 double

Change Fixed-Sized Array to Variable-Size Based on Bounded and Unbounded Thresholds

Change a fixed-sized array to a variable size based on bounded and unbounded thresholds.

t

coder.typeof(ones(100,200))
t:

coder.PrimitiveType
100x200 double

coder.resize(t, 'sizelimits',[99 199])

ans =

coder.PrimitiveType
:100x:inf double
% ':' indicates variable-size dimensions

Input Arguments

limits — Vector that defines the threshold
row vector of integer values

A row vector of variable-size thresholds. If the value of 1imits is scalar, the threshold gets scalar-
expanded. If the size sz of a dimension of t is greater than or equal to the first threshold, the
dimension becomes variable size with upper bound sz. If the size sz of a dimension of t is greater
than or equal to the second threshold, the dimension becomes an unbounded variable size.

Example: coder.resize(t, 'sizelimits"',[99 199]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

sz — New size for object type
row vector of integer values

New size for coder.Type object, t out
Example: coder.resize(t,[3,4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

t — coder.Type object that you want to resize
coder.Type object

4-171

4 Functions

4-172

If tis a coder.CellType object, the coder.CellType object must be homogeneous.
Example: coder.resize(t,inf);

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char|string|struct | table| cell| function handle | categorical | datetime
| duration | calendarDuration | fi

Complex Number Support: Yes

variable_dims — Variable or fixed dimension

row vector of logical values

Specify whether each dimension of t out is fixed size or variable size.
Example: coder.resize(t,[4 5],1);

Data Types: logical
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: coder.resize(t,[5, 5], 'recursive', 1);

recursive — Resize t and all types contained within it
false (default) | true

Setting recursive to true resizes t and all types contained within it.

Data Types: logical

uniform — Resize t without applying the heuristic for dimensions of size one
false (default) | true

Setting uniform to true resizes t but does not apply the heuristic for dimensions of size one.

Data Types: logical

Output Arguments

t_out — Resized type object
coder.Type object
Resized coder.Type object

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | char|string | struct | table | cell | function handle | categorical | datetime
| duration | calendarDuration | fi

Complex Number Support: Yes

Limitations

» For sparse matrices, coder. resize drops the upper bounds for variable-size dimensions.

coder.resize

See Also
coder.newtype | coder.typeof | fiaccel

Introduced in R2011a

4-173

4 Functions

4-174

coder.screener

Package: coder

Determine if function is suitable for code generation

Syntax

coder.screener(fcn)
coder.screener(fcn_1,...,fcn_n)

Description

coder.screener(fcn) analyzes the entry-point MATLAB function fcn to identify unsupported
functions and language features as code generation compliance issues. The code generation
compliance issues are displayed in the readiness report.

If fcn calls other functions directly or indirectly that are not MathWorks® functions (MATLAB built-in
functions and toolbox functions), coder.screener analyzes these functions. It does not analyze the
MathWorks functions.

It is possible that coder.screener does not detect all code generation issues. Under certain
circumstances, it is possible that coder. screener reports false errors.

To avoid undetected code generation issues and false errors, before generating code, verify that your
MATLAB code is suitable for code generation by performing these additional checks:

* Before using coder.screener, fix issues that the Code Analyzer identifies.

» After using coder.screener, and before generating C/C++ code, verify that your MATLAB code
is suitable for code generation by generating and verifying a MEX function.

The coder.screener function does not report functions that the code generator treats as extrinsic.
Examples of such functions are plot, disp, and figure. See “Extrinsic Functions”.

coder.screener(fcn 1,...,fcn_n) analyzes multiple entry-point MATLAB functions.

Examples

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for code
generation. It checks the entry-point function, fool, and the function, foo2, that fool calls.

Write the function foo2 and save it in the file foo2.m.

function tf = foo2(source,target)
G = digraph(source, target);

tf = isdag(G);

end

Write the function fool that calls foo2. Save fool in the file fool.m.

coder.screener

function tf = fool(source,target)
assert(numel(source)==numel(target))
tf = foo2(source,target);

end

Analyze fool.
coder.screener('fool")

The Code Generation Readiness report displays a summary of the unsupported MATLAB function
calls. The report Summary tab indicates that foo2.m contains one call to the digraph function and
one call to the isdag function, which are not supported for code generation.

4\ Code Generation Readiness - fool.m etc. - O *

Code Structure

Code Generation Readiness Score: | .;.-i)

Requires some minor changes

Code generation tools might fail unless the issues listed below are fixed.

Unsupported MATLAB function calls - 2 invocations

) foozm > 4 digraph 1
) foozm —> isdag 1

In the report, click the Code Structure tab and select the Show MATLAB functions check box.

This tab displays a pie chart showing the relative size of each file and how suitable each file is for
code generation. The report displays:

* Green: Function (fool.m) suitable for code generation.
* Yellow: Function (foo2.m) requires significant changes.

4-175

4 Functions

4-176

4\ Code Generation Readiness - fool.m etc. — O *

Summary Code Structure

Code Distribution

You may wish to only attempt code generation with the files that are more promising. This chart shows how much of the code is
in each file and how suitable each file is for code generation.

fool.m
fool.m
Requires some significant changes
Requires some minor changes
Call Tree
Show MATLAB functions
File Code Generation Readiness Lines
= fool.m 4 3
=l fool.m 3 3
digraph.m Mo
isdag.m Mo
assert.m Yes
numel.m Yes

The report also displays a Call Tree with Code Generation Readiness Score. The score is based on
a scale of 1-5. 1 indicates that significant changes are required. 5 indicates that the code generation
readiness tool does not detect issues. In this example, the report assigns fool.m a code generation
readiness score of 4 and f002.m a score of 3.

The function foo2 calls two unsupported MATLAB functions. To generate a MEX function, modify the
code to make the calls to digraph and isdag extrinsic by using the coder.extrinsic directive,
and then rerun the code generation readiness tool.

function tf = foo2(source,target)
coder.extrinsic('digraph', 'isdag');
G = digraph(source,target);

tf = isdag(G);

end

Rerun coder.screener on the entry-point function fool.

coder.screener('fool")

coder.screener

The report no longer flags that code generation does not support the digraph and dag functions.
When you generate a MEX function for fool, the code generator dispatches these two functions to
MATLAB for execution.

Identify Unsupported Data Types

The coder.screener function identifies MATLAB data types that code generation does not support.
Write the function myfunl that contains a MATLAB calendar duration array data type.

function out = myfunl(A)

out = calyears(A);

end

Analyze myfunl.

coder.screener('myfunl');

The code generation readiness report indicates that the calyears data type is not supported for
code generation.

4\ Code Generation Readiness - myfunl.metc. — O =

Ny

Code Generation Readiness Score: J J'@:‘ J | |

-

Requires some significant changes

Code generation tools might fail unless the issues listed below are fixed.

Unsupported MATLAB function calls - 1 invocation

] myfunlm —> 4 calyears 1

The report assigns myfunl a code generation readiness score of 3. Before generating code, fix the
reported issues.

Input Arguments

fcn — Name of entry-point function
character vector | string scalar

Name of entry-point MATLAB function for analysis. Specify as a character vector or a string scalar.

Example: coder.screener('myfun');

4-177

4 Functions

Data Types: char | string

fen_1, ..., fcn_n — List of entry-point function names
character vector | string scalar

Comma-separated list of entry-point MATLAB function names for analysis. Specify as character
vectors or string scalars.

Example: coder.screener('myfunl', "'myfun2');

Data Types: char | string

Alternatives

* “Run the Code Generation Readiness Tool From the Current Folder Browser”

See Also
coder.extrinsic | fiaccel

Topics
“Functions Supported for Code Acceleration or C Code Generation”
“Code Generation Readiness Tool”

Introduced in R2012b

4-178

coder.StructType class

coder.StructType class

Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB structure arrays

Description

Specifies the set of structure arrays that the generated code should accept. Use only with the
fiaccel -args option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(struct v) creates a coder.StructType object for a structure with the same
fields as the scalar structure struct_v.

t=coder.typeof(struct v, sz, variable dims) returns a modified copy of
coder.typeof(struct v) with (upper bound) size specified by sz and variable dimensions
variable dims. If sz specifies inf for a dimension, then the size of the dimension is assumed to be
unbounded and the dimension is assumed to be variable sized. When sz is [], the (upper bound) sizes
of struct v remain unchanged. If the variable dims input parameter is not specified, the
dimensions of the type are assumed to be fixed except for those that are unbounded. When
variable dims is a scalar, it is applied to the bounded dimensions that are not 1 or 0 (which are
assumed to be fixed).

t=coder.newtype('struct', struct v, sz, variable dims) creates a
coder.StructType object for an array of structures with the same fields as the scalar structure
struct v and (upper bound) size sz and variable dimensions variable dims. If sz specifies inf
for a dimension, then the size of the dimension is assumed to be unbounded and the dimension is
assumed to be variable sized. When variable dims is not specified, the dimensions of the type are
assumed to be fixed except for those that are unbounded. When variable dims is a scalar, it is
applied to the dimensions of the type, except if the dimension is 1 or 0, which is assumed to be fixed.
Input Arguments

struct_v

Scalar structure used to specify the fields in a new structure type.

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

4-179

4 Functions

4-180

variable_dims
Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

Default: false(size(sz)) | sz==Inf for coder.newtype

Properties
Alignment

The run-time memory alignment of structures of this type in bytes. If you have an Embedded Coder®
license and use Code Replacement Libraries (CRLs), the CRLs provide the ability to align data objects
passed into a replacement function to a specified boundary. This capability allows you to take
advantage of target-specific function implementations that require data to be aligned. By default, the
structure is not aligned on a specific boundary so it will not be matched by CRL functions that require
alignment.

Alignment must be either -1 or a power of 2 that is no more than 128.
ClassName

Class of values in this set.

Extern

Whether the structure type is externally defined.

Fields

A structure giving the coder.Type of each field in the structure
HeaderFile

If the structure type is externally defined, name of the header file that contains the external definition
of the structure, for example, "mystruct.h".

By default, the generated code contains #include statements for custom header files after the
standard header files. If a standard header file refers to the custom structure type, then the
compilation fails. By specifying the HeaderFile option, MATLAB Coder includes that header file
exactly at the point where it is required.

Must be a non-empty character vector or string scalar.
SizeVector

The upper-bound size of arrays in this set.
VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

coder.StructType class

Examples

Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);

x.b = magic(3);

coder.typeof(x)

% Returns

% coder.StructType

% 1x1 struct

% a: :3x:5 double

% b: 3x3 double

% ':' indicates variable-size dimensions
See Also

coder.ArrayType | coder.ClassType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.Type | coder.newtype | coder.resize | coder.typeof |
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-181

‘l Functions

4-182

coder.target

Determine if code generation target is specified target

Syntax

tf = coder.target(target)

Description

tf = coder.target(target) returns true (1) if the code generation target is target. Otherwise,
it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class loading time
before code generation. If you use coder.target in MATLAB class property initialization,
coder.target ('MATLAB') returns true.

Examples

Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When the function
runs in MATLAB, it calls the MATLAB function myabsval. The generated code, however, calls a C
library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)
s#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size, type, and
complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval. lib and header file myabsval.h in the
folder \codegen\lib\myabsval. (The library file extension can change depending on your
platform.) It generates the functions myabsval initialize and myabsval terminate in the
same folder.

Write a MATLAB function to call the generated C library function using coder. ceval.

function y = callmyabsval(y)
s#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
% Executing in MATLAB, call function myabsval
y = myabsval(y);
else

coder.target

% add the required include statements to generated function code
coder.updateBuildInfo('addIncludePaths', '$(START DIR)\codegen\lib\myabsval');
coder.cinclude('myabsval initialize.h');

coder.cinclude('myabsval.h");

coder.cinclude('myabsval terminate.h');

Executing in the generated code.

Call the initialize function before calling the
C function for the first time
coder.ceval('myabsval initialize');

o® o° o°

% Call the generated C library function myabsval
= coder.ceval('myabsval',y);

<

Call the terminate function after

calling the C function for the last time
coder.ceval('myabsval terminate');

end

o° o°

Generate the MEX function callmyabsval mex. Provide the generated library file at the command
line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use to specify the library within the
function. Use this option to preconfigure the build. Add this line to the else block:

coder.updateBuildInfo('addLinkObjects"', 'myabsval.lib', '$(START DIR)\codegen\lib\myabsval',100,tr
Run the MEX function callmyabsval mex which calls the library function myabsval.
callmyabsval mex(-2.75)
ans =
2.7500
Call the MATLAB function callmyabsval.
callmyabsval(-2.75)
ans =
2.7500
The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code

generation.

Input Arguments

target — code generation target
'"MATLAB' | 'MEX"' | 'Sfun' | 'Rtw' | '"HDL ' | 'Custom'

Code generation target, specified as a character vector or a string scalar. Specify one of these
targets.

"MATLAB' Running in MATLAB (not generating code)

4-183

4 Functions

"MEX' Generating a MEX function
'Sfun' Simulating a Simulink model. Also used for running in Accelerator mode.
'Rtw' Generating a LIB, DLL, or EXE target. Also used for running in Simulink
Coder and Rapid Accelerator mode.
"HDL' Generating an HDL target
"Custom’ Generating a custom target
Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")
See Also

Introduced in R2011a

4-184

coder.Type class

coder.Type class

Package: coder

Represent set of MATLAB values

Description

Specifies the set of values that the generated code should accept. Use only with the fiaccel -args
option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

coder.Type is an abstract class, and you cannot create instances of it directly. You can create
coder.Constant, coder.EnumType, coder.FiType, coder.PrimitiveType,
coder.StructType, and coder.CellType objects that are derived from this class.

Properties
ClassName

Class of values in this set

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

See Also

coder.ArrayType | coder.CellType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-185

4 Functions

coderTypeEditor

Launch the Coder Type Editor dialog

Syntax

coderTypeEditor
coderTypeEditor varl ... varN
coderTypeEditor -all
coderTypeEditor -close

Description

coderTypeEditor opens an empty Coder Type Editor dialog. If a dialog is already open, this
command brings it to the front of the screen.

You can use the Coder Type Editor to create and edit coder.Type objects interactively. See “Create
and Edit Input Types by Using the Coder Type Editor”.

coderTypeEditor varl ... varN opens a Coder Type Editor dialog pre-populated with
coder.Type objects corresponding to the workspace variables varl through varN. For a variable
var, the name of the generated coder.Type object is varType.

coderTypeEditor -all opens a Coder Type Editor dialog pre-populated with coder.Type objects
corresponding to all compatible variables in the current workspace.

coderTypeEditor -close closes an open Coder Type Editor dialog.

Examples

Open Coder Type Editor Populated with Types for Existing Variables

In your MATLAB workspace, define variables varl, var2, and var3.
myArray = magic(4);

myCharVector = 'Hello, World!";

myStruct = struct('a',5,'b", 'mystring');

Open the type editor pre-populated with types for varl, var2, and var3.
coderTypeEditor myArray myCharVector myStruct

The Coder Type Editor dialog opens. The Type Browser pane displays the name, class (data type),
and size for coder.Type objects myArrayType, myCharVectorType, and myStructType for the
three workspace variables.

Inspect the created types and check that they are consistent with the variables in the workspace.

* myArrayType represents a 4-by-4 array of type double.
* myCharVectorType represents a 1-by-13 character row vector.

4-186

coderTypeEditor

* myStructType represents a scalar of type struct. Expand the tree corresponding to
myStructType in the Type Browser. The field a represents a scalar double. The field b
represents a 1-by-8 character vector.

To save these types in the base workspace, in the Coder Type Editor toolstrip, click Save. The
variables myArrayType, myCharVectorType, and myStructType appear in the base workspace.

Input Arguments

varl ... varN — Workspace variables whose types you intend to view in the type editor
value belonging to a fundamental MATLAB class that supports code generation | value object | handle
object | coder.Type object

Workspace variables whose types you intend to view in the type editors. They can store any value that
is compatible with code generation.

The value can also be a coder.Type object. In that case, the coder. Type object itself opens in the
type editor.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char|string|struct | table | cell | categorical | datetime | duration |
timetable | fi | value object | coder.Type object

Complex Number Support: Yes

See Also
coder.newtype | coder.typeof

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2020a

4-187

‘l Functions

4-188

coder.typeof

Package: coder

Create coder.Type object to represent the type of an entry-point function input

Syntax

type obj = coder.typeof(v)

type obj = coder.typeof(v,sz,variable dims)
type obj = coder.typeof(v, 'Gpu', true)

type obj = coder.typeof(type obj)
Description

Note You can also create and edit coder. Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

type obj = coder.typeof(v) creates an object that is derived from coder.Type to represent
the type of v for code generation. Use coder. typeof to specify only input parameter types. For
example, use it with the fiaccel function -args option. Do not use it in MATLAB code from which
you intend to generate a MEX function.

type obj
coder.typeof(v

= coder.typeof(v,sz,variable dims) returns a modified copy of type obj =
f(v)
variable dims

with upper bound size specified by sz and variable dimensions specified by

type obj = coder.typeof(v, 'Gpu', true) creates an object that is derived from coder.Type
to represent v as a GPU input type for code generation. This option requires a valid GPU Coder
license.

type obj = coder.typeof(type obj) returns type obj itself

Examples

Create Type for a Matrix

Create a type for a simple fixed-size 5x6 matrix of doubles.
coder.typeof(ones(5,6))

ans =

coder.PrimitiveType
5x6 double

coder.typeof(0,[5 6])

ans =

coder.typeof

coder.PrimitiveType
5x6 double

Create a type for a variable-size matrix of doubles.
coder.typeof(ones(3,3),[1]1,1)

ans =

coder.PrimitiveType

:3x:3 double
% ':' indicates variable-size dimensions

Create a type for a matrix with fixed-size and variable-size dimensions.
coder.typeof(0,[2,3,4]1,[1 0 1])
ans =

coder.PrimitiveType
:2x3x:4 double

coder.typeof(10,[1 5],1)
ans =
coder.PrimitiveType

1x:5 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with fixed size.
coder.typeof (10, [inf,3])

ans =

coder.PrimitiveType

:infx3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with variable size
that has an upper bound of 3.

coder.typeof(10,[inf,31,[0 1])
ans =

coder.PrimitiveType
:infx:3 double

Convert a fixed-size matrix to a variable-size matrix.
coder.typeof(ones(5,5),[1,1)
ans =

coder.PrimitiveType

4-189

‘l Functions

4-190

:5x:5 double
"' indicates variable-size dimensions

%

Create Type for a Structure

Create a type for a structure with a variable-size field.

X.a coder.typeof(0,[3 5],1);
x.b = magic(3);
coder.typeof(x)

ans =

coder.StructType
1x1 struct
a: :3x:5 double
b: 3x3 double
% ':' indicates variable-size dimensions

Create a nested structure (a structure as a field of another structure).

S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S);

SuperS.y = single(0);

coder.typeof (SupersS)

ans =

coder.StructType
1Ix1 struct
x: 1x1 struct
a: 1x1 double
b: 1x1 single
y: 1x1 single

Create a structure containing a variable-size array of structures as a field.

S = struct('a',double(0),'b',single(0))
SuperS.x = coder.typeof(S,[1 inf],[0 1]
SuperS.y = single(0);
coder.typeof(SuperS)

);

ans =

coder.StructType
1x1 struct
x: 1x:inf struct
a: 1x1 double
b: 1x1 single
y: 1x1 single
% ':' indicates variable-size dimensions

Create Type for a Cell Array

Create a type for a homogeneous cell array with a variable-size field.

coder.typeof

a = coder.typeof(0,[3 5],1);
b = magic(3);
coder.typeof({a b})

ans =

coder.CellType
1x2 homogeneous cell
base: :3x:5 double
% ':' indicates variable-size dimensions

Create a type for a heterogeneous cell array.
a = coder.typeof('a');
b = coder.typeof(1l);
coder.typeof({a b})
ans =
coder.CellType
1x2 heterogeneous cell

fl: 1x1 char
f2: 1x1 double

Create a variable-size homogeneous cell array type from a cell array that has the same class but
different sizes.

1. Create a type for a cell array that contains two character vectors with different sizes. The cell
array type is heterogeneous.

coder.typeof({'aa', 'bbb'})
ans =
coder.CellType

1x2 heterogeneous cell

fl: 1x2 char
f2: 1x3 char

2. Create a type by using the same cell array input. This time, specify that the cell array type has
variable-size dimensions. The cell array type is homogeneous.

coder.typeof({'aa', 'bbb'},[1,10],[0,1])
ans =
coder.CellType

1x:10 locked homogeneous cell

base: 1x:3 char
% ':' indicates variable-size dimensions

Create Type for a Value Class Object
Change a fixed-size array to a bounded, variable-size array.

Create a type for a value class object.

4-191

‘l Functions

1. Create this value class:

classdef mySquare
properties
side;
end
methods
function obj = mySquare(val)
if nargin > 0
obj.side = val;
end
end
function a = calcarea(obj)
a = obj.side * obj.side;
end
end
end

2. Create an object of mySquare.

sq_obj coder.typeof(mySquare(4))

sq_obj
coder.ClassType
1x1 mySquare
side: 1x1 double

3. Create a type for an object that has the same properties as sq_obj.

~+
1]

coder.typeof(sq obj)

t:
coder.ClassType
1x1 mySquare
side: 1x1 double

Alternatively, you can create the type from the class definition:

t

coder.typeof(mySquare(4))
t:
coder.ClassType

1x1 mySquare
side: 1x1 double

Create Type for a String Scalar
Define a string scalar. For example:
s = "mystring";

Create a type from s.

t = coder.typeof(s);

4-192

coder.typeof

To make t variable-size, assign the Value property of t to a type for a variable-size character vector
that has the upper bound that you want. For example, specify that type t is variable-size with an
upper bound of 10.

t.Properties.Value = coder.typeof('a',[1 10],[0 1]);

To specify that t is variable-size and does not have an upper bound:

t.Properties.Value = coder.typeof('a',[1l inf]);

Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Input Arguments

v — Set of values representing input parameter types
numeric array | character vector | string | struct | cell array

v can be a MATLAB numeric, logical, char, enumeration, or fixed-point array. v can also be a cell
array, structure, or value class that contains the previous types.

When v is a cell array whose elements have the same classes but different sizes, if you specify
variable-size dimensions, coder.typeof creates a homogeneous cell array type. If the elements
have different classes, coder. typeof reports an error.

Example: coder.typeof(ones(5,6));

Data Types: half | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | logical | char | string | struct | table | cell | function handle | categorical |
datetime | duration | calendarDuration | fi

Complex Number Support: Yes

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object.

If sz specifies inT for a dimension, then the size of the dimension is unbounded and the dimension is
variable size. When sz is [], the upper bounds of v do not change.

If size is not specified, sz takes the default dimension of v.
Example: coder.typeof(0,[5,6]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

variable_dims — Variable or fixed dimension
row vector of logical values

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). For a
cell array, if the elements have different classes, you cannot specify variable-size dimensions.

If you do not specify the variable dims input parameter, the bounded dimensions of the type are
fixed.

4-193

4 Functions

4-194

A scalar variable dims applies to all dimensions. However, if variable dims is 1, the size of a
singleton dimension remains fixed.

Example: coder.typeof(0,[2,3,4]1,[1 0 1]);

Data Types: logical

type_obj — Type object

coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type obj = coder.typeof(ones(5,6));

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | char|string | struct | table | cell| function handle | categorical | datetime
| duration | calendarDuration | fi

Complex Number Support: Yes

Output Arguments

type_obj — Type object

coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type obj = coder.typeof(ones(5,6));

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char | string | struct | table| cell| function handle | categorical | datetime
| duration | calendarDuration | fi

Complex Number Support: Yes

Limitations

» For sparse matrices, coder.typeof drops upper bounds for variable-size dimensions.

» For representing GPU arrays, only bounded numeric and logical base types are supported. Scalar
GPU arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-
point data types are not supported.

* When using coder.typeof to represent GPU arrays, the memory allocation (malloc) mode
property of the GPU code configuration object must be set to be 'discrete’.
Tips

* coder.typeof fixes the size of a singleton dimension unless the variable dims argument
explicitly specifies that the singleton dimension has a variable size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton
dimension) has a fixed size. The second dimension has a variable size.

t = coder.typeof(5,[1 10],1)
By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

t = coder.typeof(5,[1 10],[1 1])

coder.typeof

Note For a MATLAB Function block, singleton dimensions of input or output signals cannot have
a variable size.

» Ifyou are already specifying the type of an input variable by using a type function, do not use
coder.typeof unless you also want to specify the size. For instance, instead of
coder.typeof(single(0)), use the syntax single(0).

» For cell array types, coder.typeof determines whether the cell array type is homogeneous or
heterogeneous.

If the cell array elements have the same class and size, coder. typeof returns a homogeneous
cell array type.

If the elements have different classes, coder.typeof returns a heterogeneous cell array type.

For some cell arrays, classification as homogeneous or heterogeneous is ambiguous. For example,
the type for {1 [2 3]} can be a 1x2 heterogeneous type where the first element is double and the
second element is 1x2 double. The type can also be a 1x3 homogeneous type in which the
elements have class double and size 1x:2. For these ambiguous cases, coder.typeof uses
heuristics to classify the type as homogeneous or heterogeneous. If you want a different
classification, use the coder.CellType makeHomogeneous or makeHeterogeneous methods to
make a type with the classification that you want. The makeHomogeneous method makes a
homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a

type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as heterogeneous and homogeneous. You cannot later use one of these methods to create a copy
that has a different classification.

* During code generation with GPU array types, if one input to the entry-point function is of the
GPU array type, then the output variables are all GPU array types, provided they are supported
for GPU code generation. For example. if the entry-point function returns a struct and because
struct is not supported, the generated code returns a CPU output. However, if a supported
matrix type is returned, then the generated code returns a GPU output.

See Also

coder.ArrayType | coder.CellType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
fiaccel

Topics

“Define Input Properties by Example at the Command Line”
“Specify Cell Array Inputs at the Command Line”

“Specify Objects as Inputs”

“Define String Scalar Inputs”

“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4-195

‘l Functions

4-196

coder.unroll

Unroll for-loop by making a copy of the loop body for each loop iteration

Syntax

coder.unroll()
coder.unroll(flag)

Description

coder.unroll() unrolls a for-loop. The coder.unroll call must be on a line by itself immediately
preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of the for-
loop body for each loop iteration. In each iteration, the loop index becomes constant. To unroll a loop,
the code generator must be able to determine the bounds of the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops, unrolling can
increase code generation time significantly and generate inefficient code.

coder.unroll is ignored outside of code generation.

coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code generation
time. The coder.unroll call must be on a line by itself immediately preceding the for-loop that it
unrolls.

Examples
Unroll a for-loop
To produce copies of a for-loop body in the generated code, use coder.unroll.

In one file, write the entry-point function call getrand and a local function getrand. getrand
unrolls a for-loop that assigns random numbers to an n-by-1 array. call getrand calls getrand
with the value 3.

function z = call getrand
%#codegen

z = getrand(3);

end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n

y(i) = rand();
end
end

Generate a static library.

coder.unroll

codegen -config:lib call getrand -report

In the generated code, the code generator produces a copy of the for-loop body for each of the three
loop iterations.

static void getrand(double y[3])

{
y[0] = b _rand();
y[1l] = b _rand();
y[2] = b _rand();
}

Control for-loop Unrolling with Flag
Control loop unrolling by using coder.unroll with the flag argument.

In one file, write the entry-point function call getrand unrollflag and a local function
getrand unrollflag. When the number of loop iterations is less than 10, getrand unrollflag
unrolls the for-loop. call getrand calls getrand with the value 50.

function z = call getrand unrollflag
s#codegen

z = getrand unrollflag(50);

end

function y = getrand unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
y(i) = rand();
end
end

Generate a static library.
codegen -config:lib call getrand unrollflag -report

The number of iterations is not less than 10. Therefore, the code generator does not unroll the for-
loop. It produces a for-loop in the generated code.

static void getrand unrollflag(double y[50])

{
int 1i;
for (1 =0; i < 50; i++) {
y[i] = b_rand();
}
}

Use Legacy Syntax to Unroll for-Loop
function z = call getrand

s#codegen

z = getrand(3);

end

function y = getrand(n)

4-197

‘l Functions

4-198

coder.inline('never');

y = zeros(n, 1);

for i = coder.unroll(1l:n)
y(i) = rand();

end

end

Use Legacy Syntax to Control for-Loop Unrolling

function z = call getrand unrollflag
s#codegen

z = getrand unrollflag(50);

end

function y = getrand unrollflag(n)

coder.inline('never');

unrollflag = n < 10;

y = zeros(n, 1);

for i = coder.unroll(1l:n, unrollflag)
y(i) = rand();

end

end

Input Arguments

flag — Indicates whether to unroll the for-loop
true (default) | false

When flag is true, the code generator unrolls the for-loop. When flag is false, the code
generator produces a for-loop in the generated code. flag is evaluated at code generation time.

Tips

* Sometimes, the code generator unrolls a for-loop even though you do not use coder.unroll.
For example, if a for-loop indexes into a heterogeneous cell array or into varargin or
varargout, the code generator unrolls the loop. By unrolling the loop, the code generator can
determine the value of the index for each loop iteration. The code generator uses heuristics to
determine when to unroll a for-loop. If the heuristics fail to identify that unrolling is warranted,
or if the number of loop iterations exceeds a limit, code generation fails. In these cases, you can
force loop unrolling by using coder.unroll. See “Nonconstant Index into varargin or varargout

in a for-Loop”.

See Also
coder.inline

Topics

“Nonconstant Index into varargin or varargout in a for-Loop”

Introduced in R2011a

coder.varsize

coder.varsize

Package: coder

Declare variable-size data

Syntax

coder.varsize(varNamel, ...,varNameN)

coder.varsize(varNamel, ...,varNameN, ubounds)

coder.varsize(varNamel, ...,varNameN, ubounds,dims)

Description

coder.varsize(varNamel, ...,varNameN) declares that the variables named

varNamel, ...,varNameN have a variable size. The declaration instructs the code generator to

allow the variables to change size during execution of the generated code. With this syntax, you do
not specify the upper bounds of the dimensions of the variables or which dimensions can change size.
The code generator computes the upper bounds. All dimensions, except singleton dimensions on page
4-204, are allowed to change size.

Use coder.varsize according to these restrictions and guidelines:

* Use coder.varsize inside a MATLAB function intended for code generation.
* The coder.varsize declaration must precede the first use of a variable. For example:

x = 1;
coder.varsize('x"');
disp(size(x));

* Use coder.varsize to declare that an output argument has a variable size or to address size
mismatch errors. Otherwise, to define variable-size data, use the methods described in “Define
Variable-Size Data for Code Generation”.

Note For MATLAB Function blocks, to declare variable-size input or output signals, use the Ports and
Data Manager. See “Declare Variable-Size Inputs and Outputs”. If you provide upper bounds in a
coder.varsize declaration, the upper bounds must match the upper bounds in the Ports and Data
Manager.

For more restrictions and guidelines, see “Limitations” on page 4-202 and “Tips” on page 4-204.

coder.varsize(varNamel,...,varNameN,ubounds) also specifies an upper bound for each
dimension of the variables. All variables must have the same number of dimensions. All dimensions,
except singleton dimensions on page 4-204, are allowed to change size.

coder.varsize(varNamel, ...,varNameN, ubounds,dims) also specifies an upper bound for
each dimension of the variables and whether each dimension has a fixed size or a variable size. If a
dimension has a fixed size, then the corresponding ubound element specifies the fixed size of the
dimension. All variables have the same fixed-size dimensions and the same variable-size dimensions.

4-199

‘l Functions

4-200

Examples

Address Size Mismatch Error by Using coder.varsize

After a variable is used (read), changing the size of the variable can cause a size mismatch error. Use
coder.varsize to specify that the size of the variable can change.

Code generation for the following function produces a size mismatch error because x = 1:10
changes the size of the second dimension of x after the liney = size(x) that uses x.

function [x,y] = usevarsize(n)
s#codegen
X =1;
y = size(x);
if n > 10
X = 1:10;
end
To declare that x can change size, use coder.varsize.
function [x,y] = usevarsize(n)
%#codegen
x =1;
coder.varsize('x");
y = size(x);
if n > 10
x = 1:10;
end

If you remove the line y = size(x), you no longer need the coder.varsize declaration because x
is not used before its size changes.

Declare Variable-Size Array with Upper Bounds

Specify that A is a row vector whose second dimension has a variable size with an upper bound of 20.
function fcn()

c.:(.)c.jer.varsize(A, [1 20]);

end

When you do not provide dims, all dimensions, except singleton dimensions, have a variable size.

Declare Variable-Size Array with a Mix of Fixed and Variable Dimensions

Specify that A is an array whose first dimension has a fixed size of three and whose second dimension
has a variable size with an upper bound of 20.

function fcn()

coder.varsize('A',[3 201, [0 1]);

coder.varsize

end

Declare Variable-Size Structure Fields

In this function, the statement coder.varsize('data.values') declares that the field values
inside each element of data has a variable size.

function y = varsize field()
s#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 31);
coder.varsize('data.values');

for i = 1l:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

for i = 1l:numel(data)
if data(i).color > 0
y =y + sum(data(i).values);
end
end

Declare Variable-Size Cell Array
Specify that cell array C has a fixed-size first dimension and variable-size second dimension with an
upper bound of three. The coder.varsize declaration must precede the first use of C.

C={11121}

coder.varsize('C', [1 3], [0 11);

y = C{1};

end

Without the coder.varsize declaration, C is a heterogeneous cell array whose elements have the
same class and different sizes. With the coder.varsize declaration, C is a homogeneous cell array

whose elements have the same class and maximum size. The first dimension of each element is fixed
at 1. The second dimension of each element has a variable size with an upper bound of 3.

Declare That a Cell Array Has Variable-Size Elements

Specify that the elements of cell array C are vectors with a fixed-size first dimension and variable-size
second dimension with an upper bound of 5.

C= {123}
coder.varsize('C{:}', [1 51, [0 1]);

4-201

4 Functions

4-202

C = {1, 1:5, 2:3};

Input Arguments

varNamel, ...,varNameN — Names of variables to declare as having a variable size
character vectors | string scalars

Names of variables to declare as having a variable size, specified as one or more character vectors or
string scalars.

Example: coder.varsize('x"','y")

ubounds — Upper bounds for array dimensions
[1 (default) | vector of integer constants

Upper bounds for array dimensions, specified as a vector of integer constants.

When you do not specify ubounds, the code generator computes the upper bound for each variable.
If the ubounds element corresponds to a fixed-size dimension, the value is the fixed size of the
dimension.

Example: coder.varsize('x"','y"',[1 2])

dims — Indication of whether each dimension has a fixed size or a variable size
logical vector

Indication of whether each dimension has a fixed size or a variable size, specified as a logical vector.
Dimensions that correspond to 0 or false in dims have a fixed size. Dimensions that correspond to 1
or true have a variable size.

When you do not specify dims, the dimensions have a variable size, except for the singleton
dimensions.

Example: coder.varsize('x"','y"',[1 2], [0 1])

Limitations

* The coder.varsize declaration instructs the code generator to allow the size of a variable to
change. It does not change the size of the variable. Consider this code:

X =17;
coder.varsize('x', [1,5]);
disp(size(x));

After the coder.varsize declaration, X is still a 1-by-1 array. You cannot assign a value to an
element beyond the current size of x. For example, this code produces a run-time error because
the index 3 exceeds the dimensions of x.

X =17;

coder.varsize('x"', [1,5]1);

x(3) = 1;

coder.varsize

coder.varsize is not supported for a function input argument. Instead:

If the function is an entry-point function, specify that an input argument has a variable size by
using coder.typeof at the command line. Alternatively, specify that an entry-point function
input argument has a variable size by using the Define Input Types step of the app.

If the function is not an entry-point function, use coder.varsize in the calling function with
the variable that is the input to the called function.

For sparse matrices, coder.varsize drops upper bounds for variable-size dimensions.

Limitations for using coder.varsize with cell arrays:

A cell array can have a variable size only if it is homogeneous. When you use coder.varsize
with a heterogeneous cell array, the code generator tries to make the cell array homogeneous.
The code generator tries to find a class and maximum size that apply to all elements of the cell
array. For example, consider the cell array ¢ = {1, [2 3]}. Both elements can be
represented by a double type whose first dimension has a fixed size of 1 and whose second
dimension has a variable size with an upper bound of 2. If the code generator cannot find a
common class and a maximum size, code generation fails. For example, consider the cell array
¢ = {'a',[2 31}. The code generator cannot find a class that can represent both elements
because the first element is char and the second element is double.

If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize
to specify that the cell array has a variable size. For example, this code causes a code
generation error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

x = cell(1,3);
coder.varsize('x',[1 51)

You can use coder.varsize with a cell array that you define by using curly braces. For
example:

x = {12 3};
coder.varsize('x"',[1 51)

To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)

s#codegen

x = cell(1l,n);

for i = 1:n
x{i} = i;

end

end

See “Definition of Variable-Size Cell Array by Using cell”.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
s#codegen
x = cell(1l,n);
for i = 1:n

x{i} = 1i;
coder.varsize('x',[1,20]);

4-203

4 Functions

end
end

* coder.varsize is not supported for:

* (lobal variables
* MATLAB classes or class properties
* String scalars

More About

Singleton Dimension

Dimension for which size(A,dim) = 1.

Tips

* In a code generation report or a MATLAB Function report, a colon (:) indicates that a dimension
has a variable size. For example, a size of 1x:2 indicates that the first dimension has a fixed size
of one and the second dimension has a variable size with an upper bound of two.

* Ifyouuse coder.varsize to specify that the upper bound of a dimension is 1, by default, the
dimension has a fixed size of 1. To specify that the dimension can be 0 (empty array) or 1, set the
corresponding element of the dims argument to true. For example, this code specifies that the
first dimension of x has a fixed size of 1 and the other dimensions have a variable size of 5.

coder.varsize('x',[1,5,5])

In contrast, this code specifies that the first dimension of x has an upper bound of 1 and has a
variable size (can be 0 or 1).

coder.varsize('x',[1,5,5],[1,1,1])

Note For a MATLAB Function block, you cannot specify that an input or output signal with size 1
has a variable size.

» Ifyou use input variables or the result of a computation using input variables to specify the size of
an array, it is declared as variable-size in the generated code. Do not re-use coder.varsize on
the array, unless you also want to specify an upper bound for its size.

* Ifyou do not specify upper bounds with a coder.varsize declaration and the code generator is
unable to determine the upper bounds, the generated code uses dynamic memory allocation.
Dynamic memory allocation can reduce the speed of generated code. To avoid dynamic memory
allocation, specify the upper bounds by providing the ubounds argument.

See Also
coder.typeof
Topics

“Code Generation for Variable-Size Arrays”
“Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

Introduced in R2011a

4-204

colon, :

colon, :

Create vectors, array subscripting

Syntax

y

'k
y 1i:

]
jiitk

Description

y = j:kreturns a regularly-spaced vector, [j, j+1 ,..., k]. j : k is empty when j > k.

At least one of the colon operands must be a fi object. All colon operands must have integer values.
All the fixed-point operands must be binary-point scaled. Slope-bias scaling is not supported. If any of
the operands is complex, the colon function generates a warning and uses only the real part of the
operands.

y = colon(j,k) isthesameasy = j:k.

y = j:i:kreturns aregularly-spaced vector, [j,j+i,j+21, ...,j+m*i], wherem = fix((k-
j)/i).y = j:i:kreturns an empty matrix wheni == 0,1 > @and j > k,ori < 0andj < k.
Examples

Use fi as a Colon Operator

When you use fi as a colon operator, all colon operands must have integer values.

a = fi(1,0,3,0);
b =fi(2,0,8,0);
c = fi(12,0,8,0);
X = a:b:c

x=1x6 object
1 3 5 7 9 11

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0

Because all the input operands are unsigned, x is unsigned and the word length is 8. The fraction

length of the resulting vector is always 0.

Use the colon Operator With Signed and Unsigned Operands

a= fi(int8(-1));
b = uint8(255);

4-205

‘l Functions

4-206

c = a:b;
len = c.WordLength
len = 9

signedness = c.Signedness

signedness
'Signed’

The word length of ¢ requires an additional bit to handle the intersection of the ranges of int8 and
uint8. The data type of c is signed because the operand a is signed.

Create a Vector of Decreasing Values
If the beginning and ending operands are unsigned, the increment operand can be negative.
x = fi(4,false):-1:1

x=1x4 object
4 3 2 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 0

Use the colon Operator With Floating-Point and fi Operands

If any of the operands is floating-point, the output has the same word length and signedness as the fi
operand

x = fi(1):10

x=1x10 object
1 2 3 4 5 6 7 8 9 10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0

x = fi(1):10is equivalentto fi(1:10, true, 16, 0) so x is signed and its word length is 16
bits.

Rewrite Code That Uses Non-Integer Operands

If your code uses non-integer operands, rewrite the colon expression so that the operands are
integers.

colon,

The following code does not work because the colon operands are not integer values.
Fs = fi(100);
n = 1000;
t = (0:1/Fs:(n/Fs - 1/Fs));
Rewrite the colon expression to use integer operands.
= fi(100);

Fs
n = 1000;
t = (0:(n-1))/Fs;

All Colon Operands Must Be in the Range of the Data Type

If the value of any of the colon operands is outside the range of the data type used in the colon
expression, MATLAB generates an error.

y = fi(1,true,8,0):256
MATLAB generates an error because 256 is outside the range of fi(1,true, 8,0). This behavior

matches the behavior for built-in integers. For example, y = int8(1) :256 generates the same
error.

Input Arguments

j — Beginning operand
real scalar

Beginning operand, specified as a real scalar integer-valued fi object or built-in numeric type.
If you specify non-scalar arrays, MATLAB interprets j:i:kas j(1):i(1):k(1).

Data Types: fi |single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

i — Increment
1 (default) | real scalar

Increment, specified as a real scalar integer-valued fi object or built-in numeric type. Even if the
beginning and end operands, j and k, are both unsigned, the increment operand i can be negative.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

k — Ending operand
real scalar

Ending operand, specified as a real scalar integer-valued fi object or built-in numeric type.
Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

4-207

4 Functions

Output Arguments

y — Regularly-spaced vector
real vector

Fixed-Point Designer determines the data type of the y using the following rules:

* The data type covers the union of the ranges of the fixed-point types of the input operands.

» [If either the beginning or ending operand is signed, the resulting data type is signed. Otherwise,
the resulting data type is unsigned.

* The word length of y is the smallest value such that the fraction length is 0 and the real-world
value of the least-significant bit is 1.

» If any of the operands is floating-point, the word length and signedness of y is derived from the fi
operand.

* If any of the operands is a scaled double, y is a scaled double.
* The fimath of y is the same as the fimath of the input operands.

+ [Ifall the i objects are of data type double, the data type of y is double. If all the fi objects are
of data type single, the data type of y is single. If there are both double and single inputs,
and no fixed-point inputs, the output data type is single.

See Also
colon| fi

Introduced in R2013b

4-208

complex

complex

Construct complex fi object from real and imaginary parts

Syntax

c = complex(a,b)

c = complex(x)

Description

c = complex(a,b) creates a complex output, ¢, from two real inputs, such that c = a + bi.

When b is all zero, c is complex with an all-zero imaginary part. This is in contrast to the addition of a
+ 01i, which returns a strictly real result.

c = complex(x) returns the complex equivalent of x, such that isreal(c) returns logical 0
(false).

+ Ifxisreal, then cisx + 0i.
* If x is complex, then c is identical to x.

Examples

Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, 3 + 41i.

fi(3,1,16,12);
fi(4,0,8);
complex(a,b)

a
b
C

0
]

3.0000 + 4.00001

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12

The output, ¢, has the same numerictype and fimath properties as the input fi object, a.

Complex Vector from One Real Vector

Create a complex fi vector with a zero imaginary part.

fi([1;2;3;4]);

X
C complex(x)

4-209

4 Functions

4-210

1.0000 + 0.00001
2.0000 + 0.00001
3.0000 + 0.00001
4.0000 + 0.00001

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12
Verify that c is complex.
isreal(c)
ans =

logical

0

Input Arguments

a — Real component
scalar | vector | matrix | multidimensional array

Real component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of a must match the size of b, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.

Data Types: i

b — Imaginary component
scalar | vector | matrix | multidimensional array

Imaginary component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of b must match the size of a, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.

Data Types: fi

X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a fi scalar, vector, matrix, or multidimensional array.

Data Types: fi

Output Arguments

¢ — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a fi scalar, vector, matrix, or multidimensional array.

complex

The size of c is the same as the input arguments.

The output fi object, ¢, has the same numerictype and fimath properties as the input fi object,
a.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi| fimath | numerictype

Introduced before R2006a

4-211

4 Functions

conj

Complex conjugate of fi object

Syntax

conj(a)

Description
conj(a) is the complex conjugate of fi object a.
When a is complex,

conj(a) = real(a) — i X imag(a)

The numerictype and fimath properties associated with the input a are applied to the output.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
complex

Introduced before R2006a

4-212

conv

conv

Convolution and polynomial multiplication of fi objects

Syntax
c = conv(a,b)
c = conv(a,b,shape)

Description

c = conv(a,b) returns the convolution of input vectors a and b, at least one of which must be a fi
object.

c = conv(a,b,shape) returns a subsection of the convolution, as specified by shape.

Examples

Convolution of 22-Sample Sequence with 16-Tap FIR Filter
Find the convolution of a 22-sample sequence with a 16-tap FIR filter.

X is a 22-sample sequence of signed values with a word length of 16 bits and a fraction length of 15
bits. h is the 16-tap FIR filter.

(pi/4)*f111-1-1-11-1-11-11;
fi(kron(u,[1 11));
firls(15, [0 .1 .2 .51*2, [1 10 0]1);

u

X
h
Because x is a fi object, you do not need to cast h into a i object before performing the convolution
operation. The conv function does this automatically using best-precision scaling.

Use the conv function to convolve the two vectors.

y = conv(x,h);

The operation results in a signed fi object y with a word length of 36 bits and a fraction length of 31
bits. The default fimath properties associated with the inputs determine the numerictype of the
output. The output does not have a local fimath.

Central Part of Convolution of Two fi Vectors

Create two f1i vectors. Find the central part of the convolution of a and b that is the same size as a.

fi([-1 23 -2 01 2]1);
fi([2 4 -1 11);
conv(a,b, 'same')

a
b
C

C

4-213

4 Functions

4-214

15 5 -9 7 6 7 -1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 34
FractionLength: 25

¢ has a length of 7. The full convolution would be of length Length(a)+length(b) -1, which in this
example would be 10.

Input Arguments

a,b — Input vectors
vectors

Input vectors, specified as either row or column vectors.
If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Complex Number Support: Yes

shape — Subset of convolution
"full' (default) | ‘same' | 'valid'

Subset of convolution, specified as one of these values:

o 'full' — Returns the full convolution. This option is the default shape.
* 'same' — Returns the central part of the convolution that is the same size as input vector a.

* 'valid' — Returns only those parts of the convolution that the function computes without zero-
padded edges. Using this option, the length of output vector c is max(length(a) -
max (0, length(b)-1),0).

Data Types: char

More About

Convolution

The convolution of two vectors, u and v, represents the area of overlap under the points as v slides
across u. Algebraically, convolution is the same operation as multiplying polynomials whose
coefficients are the elements of u and v.

Letm = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element
is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j
=max(1l,k+1-n):1:min(k,m). When m = n, this gives

w(l)
w(2)

u(l)*v(l)
u(l)*v(2)+u(2)*v(1)

conv

w(3) u(l)*v(3)+u(2)*v(2)+u(3)*v(1l)
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)

v.vié*n-l) = u(n)*v(n)

Algorithms

The fimath properties associated with the inputs determine the numerictype properties of output
f1i object c:

» Ifeither a or b has a local fimath object, conv uses that fimath object to compute intermediate
quantities and determine the numerictype properties of c.

» If neither a nor b have an attached fimath, conv uses the default fimath to compute
intermediate quantities and determine the numerictype properties of c.

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.

The output fi object c always uses the default fimath.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.
» For variable-sized signals, you might see different results between generated code and MATLAB.
* In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

+ In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

See Also
conv

Introduced in R2009b

4-215

‘l Functions

convergent

Round toward nearest integer with ties rounding to nearest even integer

Syntax

y = convergent(a)
y = convergent(x)

Description

y = convergent(a) rounds fi object a to the nearest integer. In the case of a tie, convergent(a)
rounds to the nearest even integer.

y = convergent(x) rounds the elements of x to the nearest integer. In the case of a tie,
convergent(x) rounds to the nearest even integer.

Examples

Use Convergent Rounding on Signed fi Object

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.

a = fl(p1,1:813)
a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y = convergent(a)
y =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a

fi(0.025,1,8,12)

a =
0.0249

4-216

convergent

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

convergent(a)

<
Il

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

* The convergent function rounds ties to the nearest even integer.

* The nearest function rounds ties to the nearest integer toward positive infinity.

* The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

fi([-3.5:3.51");
[a convergent(a) nearest(a) round(a)]l

a
y

y=8x4 object
-3.5000 -4.0000 -3.0000 -4.0000
-2.5000 -2.0000 -2.0000 -3.0000
-1.5000 -2.0000 -1.0000 -2.0000

-0.5000 0 0 -1.0000
0.5000 0 1.0000 1.0000
1.5000 2.0000 2.0000 2.0000
2.5000 2.0000 3.0000 3.0000
3.5000 3.9999 3.9999 3.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

4-217

4 Functions

4-218

convergent does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.

Data Types: fi
Complex Number Support: Yes

X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

For complex inputs, the real and imaginary parts are rounded independently.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Complex Number Support: Yes

Algorithms

* yand a have the same fimath object and DataType property.

* When the DataType property of a is single, or double, the numerictype of y is the same as
that of a.

* When the fraction length of a is zero or negative, a is already an integer, and the numerictype of
y is the same as that of a.

* When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | fix | floor | nearest | round

Topics
“Precision and Range”

Introduced before R2006a

convertToSingle

convertToSingle

Convert double-precision MATLAB code to single-precision MATLAB code

Syntax

convertTosingle options fcn 1, ..., fcn n

convertTosingle options fcn 1, -args args 1 ,..., fcn n -args args n
Description

convertTosingle options fcn_ 1, ..., fcn_n generates single-precision MATLAB code from

the specified function or functions. When you use this syntax, you must provide a test file that
convertToSingle can use to determine the properties of the input parameters. To specify the test
file, use coder.config('single') to create a coder.SingleConfig object. Specify the
TestBenchName property.

convertTosingle options fcn 1, -args args 1 ,..., fcn n -args args n specifies
the properties of the input arguments.

Examples

Convert to Single Precision and Validate Using a Test File

Generate single-precision code from a double-precision function myfun.m. Specify a test file for
determining the argument properties and for verification of the converted types. Plot the error
between the double-precision and single-precision values.

scfg = coder.config('single');
scfg.TestBenchName = 'myfun test';
scfg.TestNumerics = true;

scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfun

Convert Multiple Functions to Single Precision with the Default Configuration

Convert myfunl.mand myfun2.m to single precision. Specify that myfunl has a double scalar
argument and myfun2 has a 2x3 double argument.

convertToSingle -config cfg myfunl -args {0} myfun2 -args {zeros(2, 3)}

Specify Input Argument Properties

Generate single-precision code from a double-precision function, myfun.m, whose first argument is
double scalar and whose second argument is 2x3 double.

4-219

4 Functions

4-220

convertToSingle myfun -args {0, zeros(2, 3)}

Input Arguments

fcn — Function name
character vector

MATLAB function from which to generate single-precision code.

args — Argument properties
cell array of types or example values.

Definition of the size, class, and complexity of the input arguments specified as a cell array of types or
example values. To create a type, use coder. typeof.

options — options for single-precision conversion
-config | -globals

Specify one of the following single-conversion options.

-config config object Specify the configuration object to use for
conversion of double-precision MATLAB code to
single-precision MATLAB code. To create the
configuration object, use

coder.config('single');

If you do not use this option, the conversion uses
a default configuration. When you omit -config,
to specify the properties of the input arguments,

use -args.

convertToSingle

-globals global values

See Also
coder.SingleConfig | coder.config

Topics
“Generate Single-Precision MATLAB Code”

Introduced in R2015b

Specify names and initial values for global
variables in MATLAB files.

global values is a cell array of global variable
names and initial values. The format of
global values is:

{gl, initl, g2, init2, ..., gn, initn}

gn is the name of a global variable. initn is the
initial value. For example:

-globals {'g', 5}
Alternatively, use this format:
-globals {global var, {type, initial value}}

type is a type object. To create the type object,
use coder.typeof.

If you do not provide initial values for global
variables using the -globals option,
convertToSingle checks for the variable in the
MATLAB global workspace. If you do not supply
an initial value, convertToSingle generates an
error.

4-221

4 Functions

4-222

copyobj

Make independent copy of quantizer object

Syntax

ql = copyobj(q)

[91,92,...] = copyobj(obja,objb,...)

Description

gl = copyobj (qg) makes a copy of quantizer object q and returns it in ql.

[91,92,...]1 = copyobj(obja,objb,...)copies objainto g1, objb into g2, and so on.

Using copyobj to copy a quantizer object is not the same as using the command syntax q1 = qto
copy a quantizer object. quantizer objects have memory (their read-only properties). When you
use copyobj, the resulting copy is independent of the original item; it does not share the original
object's memory, such as the values of the properties min, max, noverflows, or noperations.
Using q1 = q creates a new object that is an alias for the original and shares the original object's
memory, and thus its property values.

Examples

g = quantizer([8 71);
ql = copyobj(q)

See Also
get | quantizer | set

Introduced before R2006a

cordicabs

cordicabs

CORDIC-based absolute value

Syntax

r = cordicabs(c)

r = cordicabs(c,niters)

r = cordicabs(c,niters, 'ScaleQutput',b)

r = cordicabs(c, 'ScaleQutput',b)

Description

r = cordicabs(c) returns the magnitude of the complex elements of C.
r = cordicabs(c,niters) performs niters iterations of the algorithm.

r = cordicabs(c,niters, 'ScaleQutput',b) specifies both the number of iterations and,
depending on the Boolean value of b, whether to scale the output by the inverse CORDIC gain value.

r = cordicabs(c, 'ScaleQutput',b) scales the output depending on the Boolean value of b.

Input Arguments

c

C is a vector of complex values.
niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name, Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').

ScaleOutput

ScaleOQutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

4-223

‘l Functions

4-224

Output Arguments
r

r contains the magnitude values of the complex input values. If the inputs are fixed-point values, r is
also fixed point (and is always signed, with binary point scaling). All input values must have the same
data type. If the inputs are signed, then the word length of r is the input word length + 2. If the
inputs are unsigned, then the word length of r is the input word length + 3. The fraction length of r
is always the same as the fraction length of the inputs.

Examples

Compare cordicabs and abs of double values.

dblValues = complex(rand(5,4),rand(5,4));
r dbl ref = abs(dblValues)
r dbl cdc = cordicabs(dblValues)

Compute absolute values of fixed-point inputs.

fxpValues = fi(dblValues);

r fxp cdc = cordicabs(fxpValues)
More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

cordicabs

Algorithms

Signal Flow Diagrams

If x and y are unsigned, one hit
is added to thelr wordlengths
and they are changed to

signed. Two additional bits are Maps inputs, x
then added to their and y, to the
waordlength. first quadrant
Input - o - o [Output Magnitude
¥ > » » = (%)
Data Type Proposal Quadrant Correction CORDIC Iterations
Input o - - o | Paost-Ouadrant Output Angle
: I > » L Correction ()
F s F s

K.Signedness /

¥.Signedness

4-225

4 Functions

CORDIC Vectoring Kernel

X and ¥ always share the same data
type, and are always signed

Add/Subtract

)

bitsra »» 1

—

) i

bitsra »» i H

— A 4 i

Z will always have
the same data

type as the wvalues Zi
af 8 in the lookup
table

Add/Subtract

Lookup
Table
Of atan2
values

Decizion Contral

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

X is initialized to the x input value

Vo is initialized to the y input value

Z¢ is initialized to 0

4-226

cordicabs

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
abs | cordicangle | cordiccart2pol

Introduced in R2011b

4-227

‘l Functions

cordicacos

CORDIC-based approximation of inverse cosine

Syntax

theta
theta

cordicacos(x)
cordicacos(x, niters)

Description
theta = cordicacos(x) returns the inverse cosine of x based on a CORDIC approximation.

theta = cordicacos(x, niters) returns the inverse cosine of x performing niters iterations
of the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Cosine

Compute the inverse cosine of a fixed-point fi object using a CORDIC implementation.

a fi(-1:.1:1,1,16);

b cordicacos(a);

plot(a,b);

title('Inverse CORDIC Cosine');

4-228

cordicacos

Inverse CORDIC Cosine

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Compare the output of the cordicacos function and the acos function.

c = acos(double(a));
error = double(b)-c;
plot(a,error);
title('Error');

4-229

‘l Functions

4-230

1072 Error

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Calculate CORDIC Inverse Cosine with Specified Number of Iterations

Find the inverse cosine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse cosine
with varying numbers of iterations.

5:5:20
= cordicacos(a,i);
plot(a,b);
hold on;

a= fi(-1:.1:1, 1, 16);
for i =
b_

end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

cordicacos

35 T T T T T T T T T
5 iterations
10 tterations
r 15 iterations |
20 tterations
28T
2 -
157+
1t
05T
0

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Input Arguments

X — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fi

4-231

4 Functions

4-232

Output Arguments

theta — Inverse cosine angle values
scalar | vector | matrix | n-dimensional array

Inverse cosine angle values in rad.

See Also

Functions
cordiccos | cordicsin

Introduced in R2018b

cordicangle

cordicangle
CORDIC-based phase angle

Syntax

theta
theta

cordicangle(c)
cordicangle(c,niters)

Description

theta = cordicangle(c) returns the phase angles, in radians, of matrix ¢, which contains
complex elements.

theta = cordicangle(c,niters) performs niters iterations of the algorithm.

Input Arguments

c

Matrix of complex numbers
niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Output Arguments

theta

theta contains the polar coordinates angle values, which are in the range [-pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point

data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

Examples

Phase angle for double-valued input and for fixed-point-valued input.

dblRandomVals = complex(rand(5,4), rand(5,4));
theta dbl ref = angle(dblRandomVals);
theta dbl cdc = cordicangle(dblRandomVals)
fxpRandomVals = fi(dblRandomVals);

theta fxp cdc = cordicangle(fxpRandomVals)

4-233

‘l Functions

4-234

theta dbl cdc =

1.0422 1.0987
0.5893 0.8874
0.5840 0.2113
0.7212 0.2074
1.3640 0.3288
theta fxp cdc =
1.0422 1.0989
0.5894 0.8872
0.5840 0.2112
0.7212 0.2075
1.3640 0.3289
DataTypeMode:
Signedness:
WordLength:
FractionLength:
More About
CORDIC

.2536
.3580
.8933
.9820
.4434

HoOOOoR
[l cNoNoNo]

.2534
.3579
.8931
.9819
.4434

HoOOOoRK
[l cNoNoNo]

Fixed-point:

Signed
16
13

.6122
.2020
.6355
.8110
.1291

.6123
.2019
.6357
.8110
.1289

binary point scaling

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

cordicangle

Algorithms

Signal Flow Diagrams

If x and y are unsigned, one hit
is added to thelr wordlengths
and they are changed to

signed. Two additional bits are Maps inputs, x
then added to their and y, to the
waordlength. first quadrant
Input - o - o [Output Magnitude
¥ > » » = (%)
Data Type Proposal Quadrant Correction CORDIC Iterations
Input o - - o | Paost-Ouadrant Output Angle
: I > » L Correction ()
F s F s

K.Signedness /

¥.Signedness

4-235

4 Functions

CORDIC Vectoring Kernel

X and ¥ always share the same data
type, and are always signed

Add/Subtract

)

bitsra »» 1

—

) i

bitsra »» i H

— A 4 i

Z will always have
the same data

type as the wvalues Zi
af 8 in the lookup
table

Add/Subtract

Lookup
Table
Of atan2
values

Decizion Contral

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

X is initialized to the x input value

Vo is initialized to the y input value

Z¢ is initialized to 0

4-236

cordicangle

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
angle | cordicabs | cordicatan2 | cordiccart2pol

Introduced in R2011b

4-237

‘l Functions

cordicasin

CORDIC-based approximation of inverse sine

Syntax

theta
theta

cordicasin(x)
cordicasin(x, niters)

Description
theta = cordicasin(x) returns the inverse sine of X based on a CORDIC approximation.

theta = cordicasin(x, niters) returns the inverse sine of x performing niters iterations of
the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Sine

Compute the inverse Sine of a fixed-point fi object using a CORDIC implementation.

a fi(-1:.1:1,1,16);

b cordicasin(a);

plot(a, b);

title('Inverse CORDIC Sine');

4-238

cordicasin

Inverse CORDIC Sine

2 T T T

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Calculate CORDIC Inverse Sine with Specified Number of Iterations

Find the inverse sine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse sine
with varying numbers of iterations.

5:5:20
= cordicasin(a,i);
plot(a,b);
hold on;
end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

a= fi(-1:.1:1, 1, 16);
for i =
b_

4-239

4 Functions

4-240

2 T T T T T T T T T
5 iterations
15t 10 Irterat!cuns
15 tterations
20 tterations

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Input Arguments

X — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fi

cordicasin

Output Arguments

theta — Inverse sine angle values
scalar | vector | matrix | n-dimensional array

Inverse sine angle values in rad.

See Also

Functions
cordiccos | cordicsin

Introduced in R2018b

4-241

4 Functions

4-242

cordicatan?2

CORDIC-based four quadrant inverse tangent

Syntax

theta
theta

cordicatan2(y,x)
cordicatan2(y,x,niters)

Description

theta = cordicatan2(y,x) computes the four quadrant arctangent of y and x using a “CORDIC”
on page 4-243 algorithm approximation.

theta = cordicatan2(y,x,niters) performs niters iterations of the algorithm.

Input Arguments

y:X

y, X are Cartesian coordinates. y and x must be the same size. If they are not the same size, at least
one value must be a scalar value. Both y and x must have the same data type.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of y or x. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results but also increases the expense of the computation and adds
latency.

Output Arguments
theta
theta is the arctangent value, which is in the range [-pi, pi] radians. If y and x are floating-point

numbers, then theta has the same data type as y and x. Otherwise, theta is a fixed-point data type
with the same word length as y and x and with a best-precision fraction length for the [-pi, pi] range.

Examples

Floating-point CORDIC arctangent calculation.

theta cdat2 float

cordicatan2(0.5,-0.5)

theta cdat2 float
2.3562

cordicatan2

Fixed- point CORDIC arctangent calculation.

theta cdat2 fixpt = cordicatan2(fi(0.5,1,16,15),fi(-0.5,1,16,15));

theta cdat2 fixpt
2.3562

DataTypeMode:
Signedness:
WordLength:

FractionLength:

More About

CORDIC

Fixed-point: binary point scaling

Signed
16
13

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams

If » and y are unsigned, one hit
is added to their wordlengths
and they are changed to

signed. Two additional bits are Maps inputs, x
then added to their and y, to the
wordlength. first quadrant

v

Input
x
Input
¥

Data Type Proposal

L J

A

Quadrant Correction

L J

L

L J

CORDIC Ikerations

-

e

L J

Past-Quadrant
Correction

r N

e

F.

MSgnedness e

~

#

¥ Signedness

»

Output Angle
(2

Output Magnitude
[x]

4-243

4 Functions

CORDIC Vectoring Kernel

X and ¥ always share the same data
type, and are always signed

Add/Subtract

)

bitsra »» 1

—

) i

bitsra »» i H

— A 4 i

Z will always have
the same data

type as the wvalues Zi
af 8 in the lookup
table

Add/Subtract

Lookup
Table
Of atan2
values

Decizion Contral

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

X is initialized to the x input value

Vo is initialized to the y input value

Z¢ is initialized to 0

4-244

cordicatan2

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
atan2 | atan2 | cordiccos | cordicsin

Topics
“Calculate Fixed-Point Arctangent”

Introduced in R2011b

4-245

4 Functions

4-246

cordiccart2pol

CORDIC-based approximation of Cartesian-to-polar conversion
Syntax

[theta,r] = cordiccart2pol(x,y)

[theta,r] = cordiccart2pol(x,y, niters)

[theta,r] = cordiccart2pol(x,y, niters, 'ScaleQutput',b)
[theta,r] = cordiccart2pol(x,y, 'ScaleQutput',b)
Description

[theta,r] = cordiccart2pol(x,y) using a CORDIC algorithm approximation, returns the polar
coordinates, angle theta and radius r, of the Cartesian coordinates, x and y.

[theta, r] cordiccart2pol(x,y, niters) performs niters iterations of the algorithm.

[theta,r] = cordiccart2pol(x,y, niters, 'ScaleQutput',b) specifies both the number of
iterations and, depending on the Boolean value of b, whether to scale the r output by the inverse
CORDIC gain value.

[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b) scalesthe r output by the inverse
CORDIC gain value, depending on the Boolean value of b.

Input Arguments

X,y

X,y are Cartesian coordinates. x and y must be the same size. If they are not the same size, at least
one value must be a scalar value. Both x and y must have the same data type.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name, Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').

ScaleOutput

ScaleQutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are

cordiccart2pol

multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
theta

theta contains the polar coordinates angle values, which are in the range [-pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point
data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

r

r contains the polar coordinates radius magnitude values. r is real-valued and can be a scalar value
or have the same dimensions as theta If the inputs x, y are fixed-point values, r is also fixed point
(and is always signed, with binary point scaling). Both x, y input values must have the same data
type. If the inputs are signed, then the word length of r is the input word length + 2. If the inputs are
unsigned, then the word length of r is the input word length + 3. The fraction length of r is always
the same as the fraction length of the x, y inputs.

Examples
Convert fixed-point Cartesian coordinates to polar coordinates.
[thPos,r]=cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(0.5,16,15))
thPos =
0.5881 0.7854 1.1072 1.5708 2.0344 2.3562 2.5535 2.6780
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 13

0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 ©0.9014 1.1180
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

[thNeg, r]=...
cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(-0.5,16,15))

thNeg =
-0.5881 -0.7854 -1.1072 -1.5708 -2.0344 -2.3562 -2.5535 -2.6780

DataTypeMode: Fixed-point: binary point scaling

4-247

‘l Functions

Signedness: Signed
WordLength: 16
FractionLength: 13

r =
0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams

If » and y are unsigned, one hit
is added to their wordlengths
and they are changed to

signed. Two additional bits are Maps inputs, x
then added to their andy, to the
wordlength. first quadrant
Input - - - o ff Output hMagnitude
% Lai L g (%)
Data Type Proposal Cuadrant Correction CORDIC Iterations
Input o o - o Past-Quadrant Output Angle
¥ = = = l Correction ()
r r s
-
ye
¥.Signedness .
Ve
¥ Signedness

4-248

cordiccart2pol

CORDIC Vectoring Kernel

xi Add/Subtract
) i
e s bitsra »» i :
X and ¥ always share the same data | S—— .
type, and are always signed i
) i
e bitsra »» 1 :
k-—-J v i

Z will always have
the same data :
type as the values Zi o
af 8 in the lookup

table !

Add/Subtract

! Lookup
: Table
i Of atan2
values

Decizion Contral

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

X is initialized to the x input value
Vo is initialized to the y input value
Z¢ is initialized to 0

4-249

4 Functions

4-250

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Variable-size signals are not supported.

* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cart2pol | cordicatan2 | cordicpol2cart

Introduced in R2011b

cordiccexp

cordiccexp

CORDIC-based approximation of complex exponential

Syntax

y = cordiccexp(theta,niters)

Description

y = cordiccexp(theta,niters) computes cos(theta) + j*sin(theta) using a “CORDIC” on
page 4-252 algorithm approximation. y contains the approximated complex result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [-21 2m).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments

y

y is the approximated complex result of the cordiccexp function. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength - 2.

Examples

The following example illustrates the effect of the number of iterations on the result of the
cordiccexp approximation.

4-251

4 Functions

wrdLn = 8;

theta = fi(pi/2, 1, wrdlLn);

fprintf ('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (CO0S)\t ERROR\t LSBs\n');
fprintf('------ \t\t------- \t ------ \t ----\t\t------- \t ------ \t ----\n');
for niters = 1:(wrdLn - 1)

cis = cordiccexp(theta, niters);

fl = cis.FractionLength;

X = real(cis);

y = imag(cis);

x_dbl = double(x);

x_err = abs(x dbl - cos(double(theta)));
y dbl = double(y);

y err = abs(y dbl - sin(double(theta)));

fprintf('%sd\t\t%1l.4f\t%1.4f\t%1. 1f\t\t%1.4f\t%1.4f\t%1.1f\n',...
niters,y dbl,y err,(y err*pow2(fl)),x dbl,x err,(x err*pow2(fl)));
end
fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs

1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5
More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4-252

cordiccexp

Algorithms

Signal Flow Diagrams

Maps input to within range
+n/2
If @ is unsigned, one bit is added to
the word length of @ and it is
changed to a signed numerictype.
1f @5 word length is not large
enough ta represent 2, then mare
bits are added to the word length so
itis able ta represent 2n

Output Negation
(boolean)

Negate

Input
Quadrant

Correction

In range [-2n 2n)

@' in range [-n/2 7/2) }

»

CORDIC Iterations

Index

Unary
minus

Y

Switch

\d

{numerictype(l, 8.WordLength, 6.WordLength-2)

I S
Inverse
CORDIC Gain
based on
number of
iterations

4-253

4 Functions

CORDIC Rotation Kernel

xi 1 Add/Subtract
il
i
A i
Y i
|
— T bitsra »» i H
i
i
¥ and ¥ always share the same data — E
type, and are always signed H
i
Y i
H
. i
= bitsra »> 1 i
i
./ i
h 4 ;
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi - 1 Add/Subtract
of 8 in the lookup ;
table i
; A
: Lookup
Table
Of atan2
values

Decision Control

X represents the real part, Y represents the imaginary part, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm
uses the following initial values:

2¢ is initialized to the 0 input argument value
e 1
X is initialized to pve

Yo is initialized to 0

4-254

cordiccexp

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccos | cordicsin | cordicsincos
Topics

“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

4-255

4 Functions

4-256

cordiccos

CORDIC-based approximation of cosine

Syntax

y = cordiccos(theta, niters)

Description

y = cordiccos(theta, niters) computes the cosine of theta using a “CORDIC” on page 4-258
algorithm approximation.

Input Arguments

theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [-2m 21).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments

y

y is the CORDIC-based approximation of the cosine of theta. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength - 2.

Examples

Compare Results of cordiccos and cos Functions

Compare the results produced by various iterations of the cordiccos algorithm to the results of the
double-precision cos function.

% Create 1024 points between [0,2*pi)

stepSize = pi/512;
thRadDbl = O:stepSize: (2*pi - stepSize);
thRadFxp = sfi(thRadDbl,12); % signed, 12-bit fixed-point

cordiccos

cosThRef = cos(double(thRadFxp)); % reference results

Use 12-bit quantized inputs and vary the number
of iterations from 2 to 10.

Compare the fixed-point CORDIC results to the
double-precision trig function results.

for niters = 2:2:10

d° o° o° o°

cdcCosTh = cordiccos(thRadFxp,niters);
errCdcRef = cosThRef - double(cdcCosTh);
end
figure
hold on

axis([0 2*pi -1.25 1.25]);
plot(thRadFxp, cosThRef, 'b")
plot(thRadFxp,cdcCosTh, 'g")
plot(thRadFxp,errCdcRef, 'r'
ylabel('cos(\Theta)');
gca.XTick = 0:pi/2:2*pi;
gca.XTickLabel = {'0','pi/2"','pi"', '3*pi/2"', " '2%pi'};
gca.YTick = -1:0.5:1;
gca.YTickLabel = {'-1.0','-0.5",'0",'0.5","'1.0"};

’
’
);

ref str = 'Reference: cos(double(\Theta))"';
cdc_str = sprintf('12-bit CORDIC cosine; N = %d',niters)
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)

legend(ref str,cdc _str,err_str);

Reference: cos(double(=))
1 12-bit CORDIC cosine; N= 10
Error (max = 0.005187)
0.5
T
w0
=]
(a1
0.5
Ar
0 1 2 3 4

4-257

4 Functions

4-258

Input

In range [-2n 2m)

After 10 iterations, the CORDIC algorithm has approximated the cosine of theta to within 0.005187
of the double-precision cosine result.

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams

Maps input ta within range
#n/2
If @ is unsigned, one bit is added to
the ward length of @ and it is
changed to a signed numerictype,
1f0’s word length is not large
enough to represent 2rt, then mare
bits are added to the word length so
itis able ta represent 2n.

J Output Negation l
] (boolean) | —_—

Negate

Quadrant Unary
Correction minus

[1 A
©"inrange [-n/2 n/2)
e Z
P L
>
suien
CORDIC Iterations »
[
o I i Inver:
1N \ndex 1 numerictype(1, €.WordLength, €.WordLength-2) verse
Iteratar J CORDIC Gain
based on
number of

iterations

cordiccos

CORDIC Rotation Kernel

xi 1 Add/Subtract
il
i
A i
Y i
|
— T bitsra »» i H
i
i
¥ and ¥ always share the same data — E
type, and are always signed H
i
Y i
H
. i
= bitsra »> 1 i
i
./ i
h 4 ;
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi - 1 Add/Subtract
of 8 in the lookup ;
table i
; A
i Lookup
i Of atan2
i values

H
L]
H
1
1
]
Table i
]
]
]
H
]

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

2¢ is initialized to the 0 input argument value
e 1
X is initialized to pve

Yo is initialized to 0

4-259

4 Functions

4-260

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordicsin | cordicsincos | cos | sin
Topics

“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

cordicpol2cart

cordicpol2cart

CORDIC-based approximation of polar-to-Cartesian conversion

Syntax

[x,y] = cordicpol2cart(theta,r)

[x,y] = cordicpol2cart(theta, r,niters)

[x,y] = cordicpol2cart(theta, r,Name,Value)

[x,y] = cordicpol2cart(theta,r,niters,Name,Value)
Description

[x,y] = cordicpol2cart(theta, r) returns the Cartesian xy coordinates of r* e~ (j*theta)
using a CORDIC algorithm approximation.

[x,y] = cordicpol2cart(theta,r,niters) performs niters iterations of the algorithm.
[x,y] = cordicpol2cart(theta, r,Name,Value) scales the output depending on the Boolean
value of b.

[x,y] = cordicpol2cart(theta,r,niters,Name,Value) specifies both the number of
iterations and Name, Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [-21 2m).

r

r contains the input magnitude values and can be a scalar or have the same dimensions as theta. r
must be real valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name, Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').

4-261

4 Functions

4-262

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments

[x,yl]

[x,y] contains the approximated Cartesian coordinates. When the input r is floating point, the
output [x,y] has the same data type as the input.

When the input r is a signed integer or fixed point data type, the outputs [x,y] are signed fi
objects. These f1i objects have word lengths that are two bits larger than that of r. Their fraction
lengths are the same as the fraction length of r.

When the input r is an unsigned integer or fixed point, the outputs [x,y] are signed fi objects.
These fi objects have word lengths are three bits larger than that of r. Their fraction lengths are the
same as the fraction length of r.

Examples

Run the following code, and evaluate the accuracy of the CORDIC-based Polar-to-Cartesian
conversion.

cordicpol2cart

wrdLn = 16;
theta = fi(pi/3, 1, wrdlLn);
u = fi(2.0, 1, wrdLn);

fprintf ('\n\nNITERS\tX\t\t ERROR\t LSBs\t\tY\t\t ERROR\t LSBs\n');
fprintf('------ \t------- \t ------ \t ----\t\t------- \t ------ \t ----\n');
for niters = 1:(wrdLn - 1)

[x ref, y ref] = pol2cart(double(theta),double(u));

[x fi, y fi] = cordicpol2cart(theta, u, niters);

x_dbl = double(x fi);
y dbl = double(y fi);
x_err = abs(x _dbl - x_ref);
y err = abs(y dbl - y ref);

fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1l.4f\t %1.4f\t %1.1f\n',...
niters,x _dbl,x err,(x _err * pow2(x_ fi.FractionLength)),...
y dbl,y err,(y _err * pow2(y fi.FractionLength)));

end

fprintf('\n');

NITERS X ERROR LSBs Y ERROR LSBs
1 1.4142 0.4142 3392.8 1.4142 0.3178 2603.8
2 0.6324 0.3676 3011.2 1.8973 0.1653 1354.2
3 1.0737 0.0737 603.8 1.6873 0.0448 366.8
4 0.8561 0.1440 1179.2 1.8074 0.0753 617.2
5 0.9672 0.0329 269.2 1.7505 0.0185 151.2
6 1.0214 0.0213 174.8 1.7195 0.0126 102.8
7 0.9944 0.0056 46.2 1.7351 0.0031 25.2
8 1.0079 0.0079 64.8 1.7274 0.0046 37.8
9 1.0011 0.0011 8.8 1.7313 0.0007 5.8
10 0.9978 0.0022 18.2 1.7333 0.0012 10.2
11 0.9994 0.0006 5.2 1.7323 0.0003 2.2
12 1.0002 0.0002 1.8 1.7318 0.0002 1.8
13 0.9999 0.0002 1.2 1.7321 0.0000 0.2
14 0.9996 0.0004 3.2 1.7321 0.0000 0.2
15 0.9998 0.0003 2.2 1.7321 0.0000 0.2

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,

hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also

increases the expense of the computation and adds latency.

4-263

4 Functions

Algorithms
Signal Flow Diagrams

Maps input, 8, to within range
4mf2.

If @ is unsigned, one bit is added to the
word length of @ and it is changed to a
signed numerictype.

If s word length is not large enough to
represent 2m, then mare bits are added to
the word length so it is able to represent
n.

Output Negation

{Boalean)
Megate SR
Input
pu Quadrant
5] .
Correction
In range [-2n 2m) Unary
{6‘ in range [-n/2 n/2) } minus
Angle » Ly 'y
CORDIC Iterations P Switch
For
P —
1N » Index >
Iterator .
numerictype(1, R'.WordLength, Inverse
: -
sest s R*.WordLength-2)] CORDIC Gain
o P P X ¥ based on
Data Type Frop L 0r 1O
— number of
iterations
—

If R is unsigned, ane bit is added to the
wardlength of B and it is changad to a
signed numerictype. An additional two
bits are then added to R's wardlength to
account for the CORDIC iterations

4-264

cordicpol2cart

CORDIC Rotation Kernel

Xi 2 Add/Subtract
]
L i
A i
— T bitsra »»> i H
i
|
¥ and Y always share the same data k‘—) E
type, and are always signed :
R i
|
e bitsra »» i E
A 4 i
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi : e Add/Subtract
of 8 in the lookup i
table : l
| A
: Lookup
Table
Of atan2
values

Decision Control

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, r and theta.

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

4-265

4 Functions

4-266

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Variable-size signals are not supported.

* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicrotate | cordicsincos | pol2cart

Introduced in R2011a

cordicrotate

cordicrotate

Rotate input using CORDIC-based approximation

Syntax

v = cordicrotate(theta,u)

v = cordicrotate(theta,u,niters)

v = cordicrotate(theta,u,Name,Value)

v = cordicrotate(theta,u,niters,Name,Value)
Description

v = cordicrotate(theta,u) rotates the input u by theta using a CORDIC algorithm
approximation. The function returns the result of u .* e™~(j*theta).

v = cordicrotate(theta,u,niters) performs niters iterations of the algorithm.

Y cordicrotate(theta,u,Name,Value) scales the output depending on the Boolean value, b.

v = cordicrotate(theta,u,niters,Name,Value) specifies both the number of iterations and
the Name, Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [-21 2m).

u

u can be a signed or unsigned scalar value or have the same dimensions as theta. u can be real or
complex valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of u or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results, but it also increases
the expense of the computation and adds latency.

Name-Value Pair Arguments
Optional comma-separated pairs of Name, Value arguments, where Name is the argument name and

Value is the corresponding value. Name must appear inside single quotes (' ').

4-267

‘l Functions

4-268

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
\'}

v contains the approximated result of the CORDIC rotation algorithm. When the input u is floating
point, the output v has the same data type as the input.

When the input u is a signed integer or fixed point data type, the output v is a signed fi object. This
f1i object has a word length that is two bits larger than that of u. Its fraction length is the same as the
fraction length of u.

When the input u is an unsigned integer or fixed point, the output v is a signed f1i object. This fi
object has a word length that is three bits larger than that of u. Its fraction length is the same as the
fraction length of u.

Examples

Run the following code, and evaluate the accuracy of the CORDIC-based complex rotation.

wrdLn = 16;

theta = fi(-pi/3, 1, wrdLn);

u = fi(0.25 - 7.1i, 1, wrdLn);

uTeTh = double(u) .* exp(li * double(theta));

fprintf ('\n\nNITERS\tReal\t ERROR\t LSBs\t\tImag\tERROR\tLSBs\n');
fprintf('------ \t------- A\t ------ A\t ----\tT\t------- \t------ \t----\n");
for niters = 1:(wrdLn - 1)

v_fi = cordicrotate(theta, u, niters);
v_dbl = double(v fi);
x_err = abs(real(v_dbl) - real(uTeTh));

y err = abs(imag(v_dbl) - imag(uTeTh));

fprintf('%sd\t%1.4f\t %1.4f\t %1.1f\t\1%1.4f\t %1.4f\t %1.1f\n',...
niters, real(v _dbl),x err,(x err * pow2(v_fi.FractionLength)),
imag(v_dbl),y err, (y err * pow2(v_fi.FractionLength)));

end

fprintf('\n');

The output table appears as follows:

NITERS Real ERROR LSBs Imag ERROR LSBs
1 -4.8438 1.1800 4833.5 -5.1973 1.4306 5859.8
2 -6.6567 0.6329 2592.5 -2.4824 1.2842 5260.2
3 -5.8560 0.1678 687.5 -4.0227 0.2560 1048.8
4 -6.3098 0.2860 1171.5 -3.2649 0.5018 2055.2
5 -6.0935 0.0697 285.5 -3.6528 0.1138 466.2

cordicrotate

In range [-2m 2m)

6 -5.9766 0.0472 193.5 -3.8413 0.0746 305.8
7 -6.0359 0.0121 49.5 -3.7476 0.0191 78.2

8 -6.0061 0.0177 72.5 -3.7947 0.0280 114.8
9 -6.0210 0.0028 11.5 -3.7710 0.0043 17.8
10 -6.0286 0.0048 19.5 -3.7590 0.0076 31.2
11 -6.0247 0.0009 3.5 -3.7651 0.0015 6.2
12 -6.0227 0.0011 4.5 -3.7683 0.0017 6.8
13 -6.0237 0.0001 0.5 -3.7666 0.0001 0.2
14 -6.0242 0.0004 1.5 -3.7656 0.0010 4.2
15 -6.0239 0.0001 0.5 -3.7661 0.0005 2.2
More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

Maps input, B, to within range
/2.

If @ is unsigned, one bit is added to the
word length of @ and it is changed toa
signed numerictype.

If @'s word length is not large enough to
represent 2m, then more hits are added to
the word length so it is able to represent
2n.

- 3
Qutput Megation
(Bookean)

Megate

Quadrant

Correction N
A Unary
Jl @' in range [-n/2 m/2) JL (lminus I

L rY
CORDIC Iterations T P] Switch b

Y

[—
1N » index >
J numerictype(l, U'.WordLength, L Inverse
l U* .WordLength-2) J CORDIC Gain
» X Yo } based on
—_— number of

iterations

If uis unsigned, one bit is added to the
wordlength of u and itis changed to a
signed numerictype, An additicnal two
hits are then added to u’s wordlength to
account for the CORDIC iterations

4-269

4 Functions

CORDIC Rotation Kernel

Xi 2 Add/Subtract
]
L i
A i
— T bitsra »»> i H
i
|
¥ and Y always share the same data k‘—) E
type, and are always signed :
R i
|
e bitsra »» i E
A 4 i
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi : e Add/Subtract
of 8 in the lookup i
table : l
| A
: Lookup
Table
Of atan2
values

Decision Control

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, u and theta.

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

4-270

cordicrotate

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordicpol2cart

Introduced in R2011a

4-271

4 Functions

4-272

cordicsin

CORDIC-based approximation of sine

Syntax

y = cordicsin(theta,niters)

Description

y = cordicsin(theta,niters) computes the sine of theta using a “CORDIC” on page 4-274
algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [-2m 21).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments

y

y is the CORDIC-based approximation of the sine of theta. When the input to the function is floating
point, the output data type is the same as the input data type. When the input is fixed point, the
output has the same word length as the input, and a fraction length equal to the WordLength - 2.

Examples

Compare Results of cordicsin and sin Functions

Compare the results produced by various iterations of the cordicsin algorithm to the results of the
double-precision sin function.

% Create 1024 points between [0, 2*pi)

stepSize = pi/512;
thRadDbl = O:stepSize: (2*pi - stepSize);
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed point

cordicsin

sinThRef = sin(double(thRadFxp)); % reference results

Use 12-bit quantized inputs and vary the number of iterations
from 2 to 10.

Compare the fixed-point cordicsin function results to the
results of the double-precision sin function.

d° o° o° o°

for niters = 2:2:10

cdcSinTh = cordicsin(thRadFxp, niters);
errCdcRef = sinThRef - double(cdcSinTh);
end
figure
hold on

axis ([0 2*pi -1.25 1.25])

plot(thRadFxp, sinThRef, 'b');

plot(thRadFxp, cdcSinTh, 'g');

plot(thRadFxp, errCdcRef, 'r');

ylabel('sin(\Theta)"');

gca.XTick = 0:pi/2:2*pi;

gca.XTickLabel = {'0"','pi/2",'pi', '3*pi/2"', " '2%pi'};
gca.YTick = -1:0.5:1;

gca.YTickLabel = {'-1.0','-0.5','0"','0.5",'1.0"};

ref str = 'Reference: sin(double(\Theta))"';

cdc_str sprintf('12-bit CORDIC sine; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref str, cdc str, err_str);

Feference: sin(double(&)
ir 12-bit CORDIC sing; M =10
Error (max = 0.005492)
0.5
T
= 0
‘W
0.5
Ar
0 1 2 3 4 5

4-273

4 Functions

4-274

Input

In range [-2n 2m)

After 10 iterations, the CORDIC algorithm has approximated the sine of theta to within 0.005492 of
the double-precision sine result.

More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms

Signal Flow Diagrams

Maps input ta within range
#n/2
If @ is unsigned, one bit is added to
the ward length of @ and it is
changed to a signed numerictype,
1f0’s word length is not large
enough to represent 2rt, then mare
bits are added to the word length so
itis able ta represent 2n.

J Output Negation l
] (boolean) | —_—

Negate

Quadrant Unary
Correction minus

[1 A
©"inrange [-n/2 n/2)
e Z
P L
>
suien
CORDIC Iterations »
[
o I i Inver:
1N \ndex 1 numerictype(1, €.WordLength, €.WordLength-2) verse
Iteratar J CORDIC Gain
based on
number of

iterations

cordicsin

CORDIC Rotation Kernel

xi 1 Add/Subtract
il
i
A i
Y i
|
— T bitsra »» i H
i
i
¥ and ¥ always share the same data — E
type, and are always signed H
i
Y i
H
. i
= bitsra »> 1 i
i
./ i
h 4 ;
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi - 1 Add/Subtract
of 8 in the lookup ;
table i
; A
i Lookup
i Of atan2
i values

H
L]
H
1
1
]
Table i
]
]
]
H
]

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

2¢ is initialized to the 0 input argument value
e 1
X is initialized to pve

Yo is initialized to 0

4-275

4 Functions

4-276

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordiccos | cordicsincos | cos | sin
Topics

“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

cordicsincos

cordicsincos

CORDIC-based approximation of sine and cosine

Syntax

[y, x] = cordicsincos(theta,niters)

Description

[y, x] = cordicsincos(theta,niters) computes the sine and cosine of theta using a
“CORDIC” on page 4-278 algorithm approximation. y contains the approximated sine result, and x
contains the approximated cosine result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [-2m 21). When theta has a
fixed-point data type, it must be signed.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments

y

CORDIC-based approximated sine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength - 2.

X

CORDIC-based approximated cosine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength - 2.

Examples

The following example illustrates the effect of the number of iterations on the result of the
cordicsincos approximation.

4-277

‘l Functions

wrdLn 8;

theta fi(pi/2, 1, wrdLn);

fprintf ('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (CO0S)\t ERROR\t LSBs\n');
fprintf('------ \t\t------- \t ------ \t ----\t\t------- \t ------ \t ----\n');
for niters = 1:(wrdLn - 1)

[y, x] = cordicsincos(theta, niters);

y FL = y.FractionLength;

y dbl = double(y);

x_dbl = double(x);

y err = abs(y _dbl - sin(double(theta)));
x_err = abs(x _dbl - cos(double(theta)));

fprintf (' %d\t\t%sl.4f\t %1.4f\t %1.1f\t\t%1l.4f\t %1.4f\t %1.1f\n"',
niters, y dbl,y err, (y err * pow2(y FL)), x dbl,x err, ...
(x_err * pow2(y FL)));

end

fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs

1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5
More About

CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4-278

cordicsincos

Algorithms

Signal Flow Diagrams

Maps input to within range
+n/2
If @ is unsigned, one bit is added to
the word length of @ and it is
changed to a signed numerictype.
1f @5 word length is not large
enough ta represent 2, then mare
bits are added to the word length so
itis able ta represent 2n

Output Negation
(boolean)

Negate

Input
Quadrant

Correction

In range [-2n 2n)

@' in range [-n/2 7/2) }

»

CORDIC Iterations

Index

Unary
minus

Y

Switch

\d

{numerictype(l, 8.WordLength, 6.WordLength-2)

I S
Inverse
CORDIC Gain
based on
number of
iterations

4-279

4 Functions

CORDIC Rotation Kernel

xi 1 Add/Subtract
il
i
A i
Y i
|
— T bitsra »» i H
i
i
¥ and ¥ always share the same data — E
type, and are always signed H
i
Y i
H
. i
= bitsra »> 1 i
i
./ i
h 4 ;
i
| i
Add/Subtract

(Yi ; >

2 will always have
the same data

type as the values Zi - 1 Add/Subtract
of 8 in the lookup ;
table i
; A
i Lookup
i Of atan2
i values

H
L]
H
1
1
]
Table i
]
]
]
H
]

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

2¢ is initialized to the 0 input argument value
e 1
X is initialized to pve

Yo is initialized to 0

4-280

cordicsincos

fimath Propagation Rules
CORDIC functions discard any local fimath attached to the input.
The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Variable-size signals are not supported.
* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordiccos | cordicsin
Topics

“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

4-281

‘l Functions

cordicsqrt

CORDIC-based approximation of square root

Syntax
y=cordicsqrt(u)

y=cordicsqrt(u, niters)
y=cordicsqrt(, 'ScaleOutput', B)

Description
y=cordicsqrt(u) computes the square root of u using a CORDIC algorithm implementation.

y=cordicsqrt(u, niters) computes the square root of u by performing niters iterations of the
CORDIC algorithm.

y=cordicsqrt(, 'ScaleOutput', B) scales the output depending on the Boolean value of
B.

Examples

Calculate the CORDIC Square Root

Find the square root of fi object x using a CORDIC implementation.

x = fi(1.6,1,12);
y = cordicsqrt(x)
y =

1.2646

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 12
FractionLength: 10

Because you did not specify niters, the function performs the maximum number of iterations,
x.WordLength - 1.

Compute the difference between the results of the cordicsqrt function and the double-precision
sqrt function.

err

abs(sqrt(double(x))-double(y))
1.0821e-04

err

Calculate the CORDIC Square Root With a Specified Number of Iterations

Compute the square root of x with three iterations of the CORDIC kernel.

4-282

cordicsqrt

fi(1.6,1,12);
cordicsqrt(x,3)

1.2646

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 12
FractionLength: 10

Compute the difference between the results of the cordicsqgrt function and the double-precision
sqrt function.

err = abs(sqrt(double(x))-double(y))

err 1.0821e-04

Calculate the CORDIC Square Root Without Scaling the Output

x = fi(1.6,1,12);
y = cordicsqrt(x, 'ScaleOutput', 0)
y =

1.0479

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 12
FractionLength: 10

The output, y, was not scaled by the inverse CORDIC gain factor.

Compare Results of cordicsqrt and sqrt Functions

Compare the results produced by 10 iterations of the cordicsqrt algorithm to the results of the
double-precision sqrt function.

% Create 500 points between [0, 2)

stepSize = 2/500;

XDbl = 0:stepSize:2;

XFxp = fi(XDbl, 1, 12); % signed, 12-bit fixed-point
sqrtXRef = sqrt(double(XFxp)); % reference results

Use 12-bit quantized inputs and set the number
of iterations to 10.

Compare the fixed-point CORDIC results to the
double-precision sqrt function results.

0° o° o° o°

niters = 10;

cdcSqrtX = cordicsqrt(XFxp, niters);
errCdcRef = sqrtXRef - double(cdcSqrtX);
figure

4-283

4 Functions

4-284

hold on

axis([0 2 -.5 1.5])
plot(XFxp, sqrtXRef, 'b
plot(XFxp, cdcSqrtX, 'g
plot(XFxp, errCdcRef, 'r
ylabel('Sqrt(x)")
gca.XTick = 0:0.25:2;
gca.XTickLabel = {'0','0.25','0.5",'0.75","'1","'1.25","'1.5","'1.75",'2"'};
gca.YTick = -.5:.25:1.5;

gca.YTickLabel = {'-0.5','-0.25",'0','0.25",'0.5",'0.75",'1",'1.25",'1.5"'};

")
")
")

ref str = 'Reference: sqrt(double(X))"';
cdc_str = sprintf('12-bit CORDIC square root; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));

legend(ref str, cdc _str, err_str, 'Location', 'southeast')

157
1t
x
T o057
wl
0
Reference: sgri{double(X))
12-bit CORDIC square root; N = 10
Error (ma= = 0.002009)
0.5 ' ! ! ! ! ! ! ' ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Input Arguments

u — Data input array
scalar | vector | matrix | multidimensional array

Data input array, specified as a positive scalar, vector, matrix, or multidimensional array of fixed-point
or built-in data types. When the input array contains values between 0.5 and 2, the algorithm is most
accurate. A pre- and post-normalization process is performed on input values outside of this range.
For more information on this process, see “Pre- and Post-Normalization” on page 4-287.

cordicsqrt

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is u.WordLength - 1. For floating-point inputs, the default value of
niters is 52 for double precision; 23 for single precision.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and

Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: y= cordicsqrt(x, 'ScaleOutput', 0)

ScaleOutput — Whether to scale the output
true (default) | false

Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. If you set
ScaleOutput to true or 1, the output values are multiplied by a constant, which incurs extra
computations. If you set ScaleQutput to false or 0, the output is not scaled.

Data Types: logical

Output Arguments

y — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4-285

4 Functions

Algorithms

Signal Flow Diagrams

Fraction bits are added to the data type of uin
order to represent u+.25
u is then normalized to within the range [.5, 2).
If needed, bits are then added to the word
length of u to prevent overflows during the
CORDIC iterations.

Output is normalized to
square root output range.

] numerictype(u.Signedness, u.WordlLength, W

{ best precision fraction length) f
Input Normalization CORDIC Iterations reinterpretcastJ » 1/A, Output

[—

Inverse
CORDIC Gain
based on
number of
iterations

For further details on the pre- and post-normalization process, see “Pre- and Post-Normalization” on
page 4-287.

4-286

cordicsqrt

CORDIC Hyperbolic Kernel

Xi { Add/Subtract
A
— bitsra »> i :

bitsra >> i

X is initialized to u'+.25, and Y is initialized to u' - . 25, where u' is the normalized function input.

With repeated iterations of the CORDIC hyperbolic kernel, X approaches Axy/u’, where Ay represents
the CORDIC gain. Y approaches 0.

Pre- and Post-Normalization

For input values outside of the range of [0.5, 2) a pre- and post-normalization process occurs. This
process performs bitshifts on the input array before passing it to the CORDIC kernel. The result is
then shifted back into the correct output range during the post-normalization stage. For more details
on this process see “Overcoming Algorithm Input Range Limitations” in “Compute Square Root Using
CORDIC”.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

4-287

4 Functions

4-288

The CORDIC functions use their own internal fimath when performing calculations:

* OverflowAction—Wrap
* RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330-334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22-24,
1998, pp. 191-200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379-386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317-325.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Variable-size signals are not supported.

* The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
sqrt

Topics
“Compute Square Root Using CORDIC”

Introduced in R2014a

cordictanh

cordictanh

CORDIC-based hyperbolic tangent

Syntax
T = cordictanh(theta)
T = cordictanh(theta, niters)

Description
T = cordictanh(theta) returns the hyperbolic tangent of theta.

T = cordictanh(theta, niters) returns the hyperbolic tangent of theta by performing niters
iterations of the CORDIC algorithm.

Examples

Compute CORDIC Hyperbolic Tangent

Find the hyperbolic tangent of fi object theta using a CORDIC implementation with the default
number of iterations.

theta = fi(-2*pi:.1:2*pi-.1);
T cordic = cordictanh(theta);

Plot the hyperbolic tangent of theta using the tanh function and its CORDIC approximation.

T = tanh(double(theta));

plot(theta, T cordic);

hold on;

plot(theta, T);

legend('CORDIC approximation of tanh', 'tanh');
xlabel('theta');

ylabel('tanh(theta)');

4-289

‘l Functions

1 T T T T ,-"I"'-F'_'_ T T
CORDIC approximation of tanh
08r tanh 4
0.6 T
04T]

tanh(theta)
=

theta

Compute the difference between the results of the cordictanh function and the tanh function.

figure;

err = abs(T - double(T cordic));
plot(theta, err);
xlabel('theta');
ylabel('error');

4-290

cordictanh

15 T T T T T T T

16T _

Brror

0.8r]

0.6r1]

Compute CORDIC Hyperbolic Tangent with Specified Number of Iterations

Find the hyperbolic tangent of fi object theta using a CORDIC implementation and specify the
number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the
hyperbolic tangent of theta with varying numbers of iterations.

theta = fi(-2*pi:.1:2*pi-.1);

for niters = 5:10:25

T cordic = cordictanh(theta, niters);

plot(theta, T cordic);

hold on;

end

xlabel('theta');

ylabel('tanh(theta)');

legend('5 iterations', '15 iterations', '25 iterations', 'Location', 'southeast');

4-291

4 Functions

4-292

tanh(theta)
=

= [gn]
T——,

5 iterations
081 ,I'_ 15 iterations |
25 terations

-8 6 -4 -2 0 2 4 G 8

Input Arguments

theta — angle values
scalar | vector | matrix | n-dimensional array

Angle values in radians specified as a scalar, vector, matrix, or N-dimensional array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fi

cordictanh

Output Arguments

T — Output array
scalar | vector | matrix | n-dimensional array

T is the CORDIC-based approximation of the hyperbolic tangent of theta. When the input to the
function is floating point, the output data type is the same as the input data type. When the input is
fixed point, the output has the same word length as the input, and a fraction length equal to the
WordLength - 2.

See Also
cordicatan2 | cordiccos | cordicsin | tanh

Introduced in R2017b

4-293

‘l Functions

4-294

COS

Cosine of fi object

Syntax

y = cos(theta)

Description

y = cos(theta) returns the cosine on page 4-295 of fi input theta using a table-lookup
algorithm.

Input Arguments
theta

theta can be a real-valued, signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the fixed-point angle values in radians. Valid data types of theta are:

+ f1isingle

+ fidouble

» fi fixed-point with binary point scaling

+ f1i scaled double with binary point scaling

Output Arguments

y

y is the cosine of theta. y is a signed, fixed-point number in the range [-1,1]. It has a 16-bit word
length and 15-bit fraction length (numerictype(1,16,15)).

Examples

Calculate the cosine of fixed-point input values.
theta = fi([0,pi/4,pi/3,pi/2,(2*pi)/3,(3*pi)/4,pil)

theta

0 0.7854 1.0472 1.5708 2.0944 2.3562 3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

cos(theta)

<
1]

Ccos

1.0000 0.7072 0.4999 0.0001 -0.4999 -0.7070 -1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

More About

Cosine

The cosine of angle O is defined as

ei@ + e—i9

cos(0) = 7

Algorithms

The cos function computes the cosine of fixed-point input using an 8-bit lookup table as follows:

1
2
3

Perform a modulo 21, so the input is in the range [0,211) radians.
Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.

Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16
range.

Use the 8 most-significant bits to obtain the first value from the table.
Use the next-greater table value as the second value.

Use the 8 least-significant bits to interpolate between the first and second values, using nearest-
neighbor linear interpolation.

fimath Propagation Rules

The cos function ignores and discards any fimath attached to the input, theta. The output, vy, is
always associated with the default fimath.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
angle | atan2 | cordiccos | cordicsin | cos | sin

Topics
“Calculate Fixed-Point Sine and Cosine”

Introduced in R2012a

4-295

4 Functions

ctranspose

Complex conjugate transpose of fi object

Syntax

ctranspose(a)

Description
This function accepts fi objects as inputs.

ctranspose(a) returns the complex conjugate transpose of i object a. It is also called for the
syntax a'.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also

Introduced before R2006a

4-296

CustomFloat

CustomFloat

Numeric object with a custom floating-point data type

Description

Use a CustomFloat object to define a floating-point numeric data type with specified word length
and mantissa length. Floating-point data types defined by a CustomFloat object adhere to the IEEE
754-2008 standard. For more information on floating-point data types, see “Floating-Point Numbers”.

Creation

Syntax

CustomFloat(v)

CustomFloat(v, type)

CustomFloat(v, WordLength, Mantissalength)
CustomFloat(v, WordLength, Mantissalength, 'typecast')
CustomFloat(cT)

X X X X X
| LI [1 [

Description

x = CustomFloat(v) returns a CustomFloat object with value v. The output object has the same
word length, mantissa length, and exponent length as input v.

x = CustomFloat(v, type) returns a CustomFloat object with value v and floating-point type
specified by type.

x = CustomFloat(v, WordLength, Mantissalength) returns a CustomFloat object with the
specified word length and mantissa length.

x = CustomFloat(v, WordLength, MantissalLength, 'typecast') returnsa CustomFloat
object with the bit pattern of v and the specified mantissa length. The word length must match the
word length of the input v.

x = CustomFloat(cf) returns a CustomFloat object with value and data type properties of
CustomFloat object cf.

Input Arguments

v — Value of object
scalar | vector | matrix | multi-dimensional array

The value of the CustomFloat object, specified as a scalar, vector, matrix, or multi-dimensional
array.

Data Types: half | single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | fi

4-297

4 Functions

4-298

type — Floating-point type of object
‘double’ | 'single' | "half"’

Floating-point data type of CustomFloat object, specified as either 'double’, 'single’, or
"half'.

The properties of these types are summarized in the following table.

Type Word Length Mantissa Length
double 64 52
single 32 23
half 16 10

Data Types: char

cf — Custom floating-point type
CustomFloat object

Custom floating-point type, specified as a CustomFloat object.

Properties

ExponentBias — Offset value for the exponent
scalar integer

Scalar integer representing the offset value for the exponent.

This property cannot be changed directly, however you can change this property by changing the
WordLength and Mantissalength properties, which influence the ExponentLength property. The
ExponentBias for a floating-point data type is computed through the following equation:

ExponentBias = 2¢1-1 (4-6)

where e represents the ExponentLength.

Data Types: double

ExponentLength — Number of bits representing the exponent
scalar integer

Number of bits representing the exponent. You cannot edit this property directly, however you can
change the exponent length by changing the Mantissalength and WordLength properties.

The ExponentlLength, Mantissalength, and WordLength properties are related through the
following equation:

WordLength = 1+MantissaLength+ExponentLength (4-7)
Data Types: double

MantissalLength — Number of bits representing the mantissa
scalar integer

Number of bits representing the mantissa, specified as a scalar integer.

CustomFloat

The ExponentlLength, Mantissalength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-8)

Example: custfloat.Mantissalength = 14;

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

WordLength — Total number of bits in the data type
scalar integer

Total number of bits in the data type, specified as a scalar integer.

The ExponentlLength, Mantissalength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-9)

Example: custfloat.WordLength = 28;

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

Object Functions

Math and Arithmetic

abs Absolute value and complex magnitude

ceil Round toward positive infinity

complex Create complex array

conj Complex conjugate

cosh Hyperbolic cosine

exp Exponential

fix Round toward zero

floor Round toward negative infinity

fma Multiply and add using fused multiply add approach
hypot Square root of sum of squares (hypotenuse)
ldivide Left array division

log Natural logarithm

log2 Base 2 logarithm and floating-point number dissection
log10 Common logarithm (base 10)

minus Subtraction

mod Remainder after division (modulo operation)
mtimes Matrix multiplication

ndims Number of array dimensions

plus Addition or append strings

powl0 Base 10 power and scale half-precision numbers
pow?2 Base 2 power and scale floating-point numbers

power Element-wise power

rdivide Right array division

real Real part of complex number
rem Remainder after division

4-299

4 Functions

4-300

round Round to nearest decimal or integer
rsqrt Reciprocal square root

sqrt Square root

tanh Hyperbolic tangent

times Multiplication

uminus Unary minus

uplus Unary plus

Data Types

bin Unsigned binary representation of stored integer of fi object
double Double-precision arrays

fi Construct fixed-point numeric object

int8 8-bit signed integer arrays

int16 16-bit signed integer arrays

int32 32-bit signed integer arrays

int64 64-bit signed integer arrays

isnan Determine which array elements are NaN
isreal = Determine whether array uses complex storage
single Single-precision arrays

uint8 8-bit unsigned integer arrays

uintl6 16-bit unsigned integer arrays

uint32 32-bit unsigned integer arrays

uint64 64-bit unsigned integer arrays

Relational and Logical Operators
eq Determine equality

ge Determine greater than or equal to

gt Determine greater than

le Determine less than or equal to

It Determine less than

ne Determine inequality

Array and Matrix Operations

cat

Concatenate arrays

ctranspose Complex conjugate transpose

horzcat
isfinite
isinf
norm
numel
reshape
size

Horizontal concatenation for heterogeneous arrays
Determine which array elements are finite
Determine which array elements are infinite
Vector and matrix norms

Number of array elements

Reshape array

Array size

transpose = Transpose vector or matrix

vertcat

Vertical concatenation for heterogeneous arrays

Language Fundamentals
disp Display value of variable

Examples

CustomFloat

Create a CustomFloat Object

This example shows how to create a CustomFloat object.

v = pi;
x = CustomFloat(v)
X =

3.1416

Data Type: Floating-point: Double-precision
WordLength: 64
MantissalLength: 52
ExponentLength: 11
ExponentBias: 1023

Because the input to the CustomFloat constructor was a double, the data type of the CustomFloat
object, X, is also a double. If the value passed in to the CustomFloat function is a single, then the
resulting CustomFloat object will also have a single-precision floating-point data type.

v = single(pi);
X = CustomFloat(v)
X =

3.1416

Data Type: Floating-point: Single-precision
WordLength: 32
MantissalLength: 23
ExponentLength: 8
ExponentBias: 127

Create a Half-Precision CustomFloat Object

To create a CustomFloat object with a specified floating-point data type, specify the data type as the
second argument in the CustomFloat function.

v = pi;
x = CustomFloat(v, 'half")
x =

3.1406

Data Type: Floating-point: Half-precision
WordLength: 16
Mantissalength: 10
ExponentLength: 5
ExponentBias: 15

4-301

‘l Functions

Create a CustomFloat Object with Specified Word Length and Mantissa Length

Specify a word length and a mantissa length in the CustomFloat function.

vV = pi;
wl = 16;
ml = 4;
X = CustomFloat(v,wl,ml)

3.1250

Data Type: Floating-point: Custom-precision
WordLength: 16
Mantissalength: 4
ExponentLength: 11
ExponentBias: 1023

Compare the difference between the double-precision value and the value of the CustomFloat object
as you change the mantissa length.

err = zeros(1,12);
for ml = 1:12
x = CustomFloat(v,wl,ml);
err(ml) = v-double(x);
end

plot(err);

title('Error: v - double(x)');
ylabel('Error');
xlabel('Mantissa Length');

4-302

CustomFloat

Error: v - double(x)

0.15 T T

0.05F]

Error
[

0.08 1]

Mantissa Length

Typecast a Value to a New CustomFloat Data Type

Using the 'typecast' input argument, the CustomFloat function creates a CustomFloat object
with the bit pattern of the input value, and the specified word length and mantissa length.

Define a single-precision value. Single-precision floating-point data types have a 32-bit word length
and 23-bit mantissa length. View the binary representation of the single-precision value.

v = single(pi);
bit pattern = bin(CustomFloat(v))

bit pattern =
'01000000010016001060001111116011011"

Define a CustomFloat object that has the same bit pattern as the input value, but has a different
mantissa length.

x = CustomFloat(v, 32, 20, 'typecast')
X =

50.1239

Data Type: Floating-point: Custom-precision
WordLength: 32

4-303

‘l Functions

Mantissalength: 20
ExponentLength: 11
ExponentBias: 1023

View the binary representation of the CustomFloat object, and compare it to the bit pattern of the
single-precision input value.

bit pattern2 = bin(x)

bit pattern2 =
'01000000010010010000111111611011"

same = strcmp(bit pattern, bit pattern2)

same = logical
1

Limitations

The following functions, which support custom floating-point inputs, do not support complex custom
floating-point inputs.

¢ ceil
* cosh
* exp

o fix
 floor
¢ ge

« gt

* hypot
+ le

* log

* loglo
* log2
o 1t

* mod

* powlO
* pow2
* power
* rem

* round
* rsqgrt
* sqrt
* tanh

4-304

CustomFloat

See Also
double | half | single

Topics
“Floating-Point Numbers’

J

Introduced in R2020a

4-305

4 Functions

4-306

DataTypeWorkflow.findDecoupledSubsystems

Get a list of subsystems to replace with an approximation

Syntax

systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems (system)

Description

systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)returns
a table containing all of the subsystems in the system specified by system created by the Fixed-Point
Tool during the preparation stage of conversion.

When converting a model to fixed point using the Fixed-Point Tool, when you click Prepare, the tool
finds any blocks that are not supported for conversion. When the tool finds these blocks, it isolates
the block by placing it in a subsystem surrounded by Data Type Conversion blocks. After converting
the rest of the system to fixed point, use this function to get a list of all the subsystems you must
replace. You can use the Lookup Table Optimizer to generate a lookup table approximation of the
subsystems containing the unsupported blocks.

Examples

Replace Unsupported Blocks with a Lookup Table Approximation

In this example, you replace a block that is not supported for fixed-point conversion, with a lookup
table approximation.

Open the model.

open_system('ex fixed point workflow lutapprox')

DataTypeWorkflow.findDecoupledSubsystems

ufix18_En11 _ 1
'-::cn-.-erl > M-01= w1 E R
In1 1-8z1
Conversion Discrete Filter Exp -
Ciut1
I{ +
1-D Tiu)
sfix1q_Eni4 [:] "'}
canver | input catput S T
In2 t D Chart
Conwversion
Lookup Table
Chart for Chart

e+

1D T(u) —(2)
D / o
L -3 L Il +
Gain
Lockup Table Sum for
far Gain Gain

The Controller Subsystem in the model uses fixed-point data types, except in the Exp subsystem. This
subsystem was created by the Fixed-Point Tool during the preparation stage of the conversion. In this
example, you use the Lookup Table Optimizer to replace this subsystem with a lookup table
approximation.

4-307

4 Functions

double double double double
O 1 P convert —bconven4@

In1 - : Out1
DTC input_1 ReplicaOfSource DTC_output_1

dOUbedouble double o ~0:..:17:‘-‘1 double oS i double s
Co—» -8z
In1 d
Conversion1 Discrete Filter Exp
Out1
1-D T(u)
a d(.wul:)emmIe double double Sum for
In2 Chart
Conversion
Lookup Table
for Chart
double
1D T()
N 3, double = double N Out2
L
Gain
Lookup Table Sum for
for Gain Gain
Identify the subsystems that you need to replace using the
DataTypeWorkflow.findDecoupledSubsystems function.
decoupled = DataTypeWorkflow.findDecoupledSubsystems(gcs)
decoupled =
1x2 table
ID BlockPath
1 {'ex_fixed point workflow lutapprox/Controller Subsystem/Exp'}

To replace the functions, open the Lookup Table Optimizer. In the Simulink Apps tab, select Lookup
Table Optimizer.

On the Objective page of the Lookup Table Optimizer, select Simulink Block. Click Next.

Under Block Information, copy and paste the path to the decoupled subsystem created by the
Fixed-Point Tool.

4-308

DataTypeWorkflow.findDecoupledSubsystems

4\ Lookup Table Optimizer — O X

Objective

Block Information Block Information

Specify the block to replace with an

Simulink Block Path optimized Lookup Table black. Click

| ex_fixed_point_workflow_lutapprox/Coniroller Subsystem/Exp Get Current Block to automatically fill
in the path to the block currently
| Get Current Block | selected in the model. Alternatively,

type in the path to the block.

Attributes of Memory Efficient
Attributes of Memory Efficient LUT LUT

Click the Collect Current Values from
Model button to update the model
Desired Output Data Type | numerictype(0,16,15) | diagram and allow the app to
automatically gather information
needed for the optimization process
Input Desired Data Type Minimum Maximum including current output data type,

1 numerictype(1,16,18) -0.125 0.12499618530273438 T B GRE (52 E s, s
ranges of input values. All fields to

specify ranges and data types other

| Collect Current Values from Model |

than those currently specified on the
block can be edited manually.

* Specify the Desired Qutput Data
Type of the generated lockup
table in the form
numerictype(signed ness,
wordlength, fractionlength). For
example, to specify a signed
output data type of 16-bit word

lammth and 2.hit fraction lannth -

Back Next

Continue through the steps of the Lookup Table Optimizer to generate the lookup table

approximation.
1-D T(u)
double double sfix16_En18 double
(}——»{ convert p| Dt:numerictype(1,16,18 - i~ —p.
sfix16_En18 ype() double double
In1 Out1
DTC1 SigSpec1 LUT

Input Arguments

system — System containing the decoupled subsystems
character vector

System containing the decoupled subsystems, specified as a character vector.

Output Arguments

systemsToApproximate — Subsystems to approximate with a lookup table
table

4-309

4 Functions

A list of the subsystems decoupled from the model by the Fixed-Point Tool to approximate, returned
as a table.

See Also
DataTypeWorkflow.Converter | Lookup Table Optimizer

Topics
“Convert Floating-Point Model to Fixed Point”
“Use the Fixed-Point Tool to Prepare a System for Conversion”

Introduced in R2019a

4-310

dec

dec

Unsigned decimal representation of stored integer of fi object

Syntax

b = dec(a)

Description

b = dec(a) returns the stored integer of fi object a in unsigned decimal format as a character
vector.

Fixed-point numbers can be represented as

2—fractionlength

real-worldvalue = x storedinteger

or, equivalently as

real-worldvalue = (slope x storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Unsigned Decimal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a= fi([-11], 1, 8, 7)

a=1x2 object
-1.0000 0.9922

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 8
FractionLength: 7

Find the unsigned decimal representation of the stored integers of fi object a.
b = dec(a)

b —
‘128 127"

4-311

4 Functions

4-312

Input Arguments

a — Stored integer
f1i object

Stored integer, specified as a fi object.

Data Types: fi

See Also
bin | hex | oct | sdec | storedInteger

Introduced before R2006a

denormalmax

denormalmax

Largest denormalized quantized number for quantizer object

Syntax

x = denormalmax(q)

Description

x = denormalmax(q) is the largest positive denormalized quantized number where q is a
quantizer object. Anything larger than x is a normalized number. Denormalized numbers apply only
to floating-point format. When q represents fixed-point numbers, this function returns eps(q).

Examples

quantizer('float',[6 31);
denormalmax(q)

q
X

X

0.1875

Algorithms

When q is a floating-point quantizer object,
denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also
denormalmin | eps | quantizer

Introduced before R2006a

4-313

‘l Functions

denormalmin

Smallest denormalized quantized number for quantizer object

Syntax

x = denormalmin(q)

Description

x = denormalmin(q) is the smallest positive denormalized quantized number where q is a
quantizer object. Anything smaller than x underflows to zero with respect to the quantizer object
g. Denormalized numbers apply only to floating-point format. When q represents a fixed-point
number, denormalmin returns eps(q).

Examples

quantizer('float',[6 31);
denormalmin(q)

q
X

X

0.0625

Algorithms
When q is a floating-point quantizer object,
x = 2Emin=f
where E,;, is equal to exponentmin(q).
When q is a fixed-point quantizer object,
x = eps(q) =2~/

where fis equal to fractionlength(q).

See Also
denormalmax | eps | quantizer

Introduced before R2006a

4-314

divide

divide
Package: embedded

Divide two f1i objects

Syntax

c = divide(T,a,b)

Description

¢ = divide(T,a,b) performs division on the elements of a by the elements of b. The result ¢ has
the numeric type specified by numerictype object T.

Examples

Divide Two fi Objects
This example shows how to control the precision of the divide function.

Create an unsigned fi object with an 80-bit word length and 2”-83 scaling, which puts the leading 1
of the representation into the most significant bit. Initialize the object with value 0.1, and examine
the binary representation.

P = fipref('NumberDisplay', 'bin',...
"NumericTypeDisplay', 'short',...
'FimathDisplay', 'none');

a = fi(0.1, 0, 80, 83)

a =
11001100110011001100110011001100116011001100110011010000000000000000000000000000
numerictype(0,80,83)

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an
IEEE® standard double-precision floating-point number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the quotient set to the same
numeric type as before.

T = numerictype('Signed', false,...
'WordLength', 80,...
'FractionLength', 83);

= fi(1);
= fi(10);
= divide(T, a, b);
.bin

0O 0O oTo

ans =
'11001100110011001100110011001100110011001100110011001100110011001100110011601101"

4-315

4 Functions

4-316

Notice that when you use the divide function, the quotient is calculated to the full 80 bits,
regardless of the precision of a and b. Thus, the fi object ¢ represents 1/10 more precisely than a
IEEE® standard double-precision floating-point number can.

Input Arguments

T — Numeric type of the output
numerictype object

Numeric type of the output, specified as a numerictype object.

a — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array.

a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then ¢ has the
dimensions of the nonscalar object.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a real scalar, vector, matrix, or multidimensional array.

a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then ¢ has the
dimensions of the nonscalar object.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Output Arguments

¢ — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as a scalar, vector, matrix, or multidimensional array. When a and b are the same
size, ¢ is the same dimensions as a and b. If either a or b is scalar, then ¢ has the dimensions of the
nonscalar object.

Algorithms

If a and b are both fi objects, ¢ has the same fimath object as a. If c has a fi Fixed data type, and
any one of the inputs have fi floating point data types, then the fi floating point is converted into a
fixed-point value. Intermediate quantities are calculated using the fimath object of a.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in
object is cast to the word length of the fi object, preserving best-precision fraction length.
Intermediate quantities are calculated using the fimath object of the input fi object.

divide

If a and b are both MATLAB built-in doubles, then c is the floating-point quotient a. /b, and
numerictype T is ignored.

Data Type Propagation Rules

For syntaxes for which Fixed-Point Designer software uses the numerictype object T, the divide
function follows the data type propagation rules listed in the following table. In most cases, floating-
point data types are propagated. This allows you to write code that can be used with both fixed-point

and floating-point inputs.

Data Type of Input fi Objects a and b

Data Type of
numerictype Object T

Data Type of Output c

Built-in double Built-in double Any Built-in double

fiFixed fiFixed fiFixed Data type of
numerictype object T

fi Fixed fi Fixed fidouble fi double

fi Fixed fi Fixed fisingle fisingle

fiFixed fiFixed fi ScaledDouble fi ScaledDouble with
properties of
numerictype object T

fidouble i double fi Fixed i double

fidouble fidouble fidouble fidouble

fidouble fidouble fisingle fisingle

fidouble fi double fi ScaledDouble fi double

fisingle fisingle fiFixed fisingle

fisingle fisingle fi double fidouble

fisingle fisingle fisingle fisingle

fisingle fisingle fi ScaledDouble fisingle

fi ScaledDouble fi ScaledDouble fi Fixed If either input a or b is
of type fi
ScaledDouble, then
output cis of type fi
ScaledDouble with
properties of
numerictype object T.

fi ScaledDouble fi ScaledDouble fidouble fidouble

fi ScaledDouble fi ScaledDouble fisingle fisingle

fi ScaledDouble

fi ScaledDouble

fi ScaledDouble

If either input a or b is
of type fi
ScaledDouble, then
output c is of type fi
ScaledDouble with
properties of
numerictype object T.

4-317

4 Functions

4-318

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

* Complex and imaginary divisors are not supported.
* Code generation does not support the syntax T.divide(a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

» For HDL Code generation, the divisor must be a constant and a power of two.

* Non-fi inputs must be constant; that is, their values must be known at compile time so that they
can be cast to fi objects.

* Complex and imaginary divisors are not supported.
* Code generation in MATLAB does not support the syntax T.divide(a,b).

See Also
add | fi| fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Introduced before R2006a

double

double

Double-precision floating-point real-world value of fi object

Syntax
b = double(a)

Description
b = double(a) returns the real-world value of a fi object in double-precision floating point format.

Fixed-point numbers can be represented as

real-worldvalue = 2~/ractionlength

x storedinteger
or, equivalently as

real-worldvalue = (slope x storedinteger) + bias

Examples

View Stored Integer of fi Object in Double-Precision Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a=fi([-11], 1, 8, 7)

a=1x2 object
-1.0000 0.9922

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 7

Find the double-precision floating-point real-world value of the stored integers of fi object a.

b double(a)

b = 1Ix2

-1.0000 0.9922

Input Arguments

a — Stored integer
f1i object

4-319

4 Functions

Stored integer, specified as a fi object.

Data Types: fi

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm
to insulate functions that do not support fixed-point data types. The automated conversion tool
does not support these casts. Instead of using casts, supply a replacement function. For more
information, see “Function Replacements”.

See Also
single

Introduced before R2006a

4-320

embedded.fi class

embedded.fi class

Fixed-point numeric object

Description

Use the fi function to create an embedded. fi object.

See Also
embedded. fimath | embedded.numerictype | fi

Topics
Class Attributes
Property Attributes

4-321

4 Functions

embedded.fimath class

fimath object

Description

Use the fimath function to create an embedded. fimath object.

See Also
embedded. fi | embedded.numerictype | fimath

Topics

Class Attributes
Property Attributes

4-322

embedded.numerictype class

embedded.numerictype class

numerictype object

Description

Use the numerictype function to create an embedded.numerictype object.
See Also

embedded. fi | embedded. fimath | numerictype

Topics

Class Attributes
Property Attributes

4-323

‘l Functions

eps
Quantized relative accuracy for fi or quantizer objects

Syntax

eps(a)
eps(q)

d
d
Description

d = eps(a) returns the value of the least significant bit value of the fi object a. The result of this
function is equivalent to that given by the Fixed-Point Designer function lsb.

d = eps(q) returns the value of the least significant bit of the value of the quantizer object qg.

Examples

Quantized Relative Accuracy of fi Object

a = fl(pl, 1; 8)
eps(a)

ans =

0.1250

Quantization Level of quantizer Object

g = quantizer('fixed',[6 31);
eps(q)

ans =

0.1250

Input Arguments

a — Input fi object
f1i object

Input fi object.
Data Types: fi

q — Input quantizer object
quantizer object

Input quantizer object.

4-324

eps

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation supports scalar fixed-point signals only.
* Code generation supports scalar, vector, and matrix, fi single and fi double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

* Supported for scalar fixed-point signals only.
» Supported for scalar, vector, and matrix, fi single and fi double signals.

See Also
fi|intmax | intmin | Llowerbound | lsb | quantizer | range | realmax | realmin |
upperbound

Introduced before R2006a

4-325

‘l Functions

4-326

eq

Determine whether real-world values of two fi objects are equal

Syntax

c = eq(a,b)
a ==
Description

¢ = eq(a,b) is called for the syntax a == b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a == b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

a = fi(pi);
b = fi(pi, 1, 32);
a==>b

ans = logical

Input a has a 16-bit word length, while input b has a 32-bit word length. The eq function returns 0
because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a ==

ans = logical
1

€q

The eq function casts b to the same word length as a, and returns 1. This behavior allows relational
operations to work between fi objects and floating-point constants without introducing floating-point
values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ge | gt|isequal|le|lt|ne

Introduced before R2006a

4-327

‘l Functions

errmean

Mean of quantization error

Syntax

m = errmean(q)

Description

m = errmean(q) returns the mean of a uniformly distributed random quantization error that arises
from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples

Find m, the mean of the quantization error for quantizer q:

g = quantizer;
m = errmean(q)
m =

-1.525878906250000e-05

Now compare mto m_est, the sample mean from a Monte Carlo experiment:

r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e=y - u; % Error
m est = mean(e) % Estimate of the error mean
m est =
-1.526738835715480e-05
See Also

errpdf | errvar | quantize

Introduced in R2008a

4-328

errpdf

errpdf

Probability density function of quantization error

Syntax

[f,x] = errpdf(q)
f = errpdf(q,x)
Description

[f,x] = errpdf(q) returns the probability density function f evaluated at the values in x. The
vector x contains the uniformly distributed random quantization errors that arise from quantizing a
signal by quantizer object q.

f = errpdf(q, x) returns the probability density function f evaluated at the values in vector x.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples

Compute the PDF of the quantization error

g = quantizer('nearest',[4 3]);

[f,x] = errpdf(q);

subplot(211)

plot(x,f)

title('Computed PDF of the quantization error.')

4-329

‘l Functions

Computed PDF of the quantization error.

8 T T T
&l |
4t |
2l |
0 ' ' .
D25 0.2 015 0.1 0.05 0 0.05 0.1 0.15 0z 0.25

The output plot shows the probability density function of the quantization error. Compare this result
to a plot of the sample probability density function from a Monte Carlo experiment:

r = realmax(q);
u = 2*r*rand(10000,1)-r;
y = quantize(q,u);
e=y - u;
subplot(212)
hist(e,20)
gca.xlim = [min(x) max(x)];
title('Estimate of the PDF of the quantization error.')

Original signal
Quantized signal
Error

o® o o°

4-330

errpdf

Computed PDF of the quantization error.

I"-"I 1 1 1 1 1 1 1 1 1
025 0.2 -015 0.1 -0.05 1] 0.05 0.1 0.15 0.2 0.25

600 Estimate of the PDF of the quantization error.

400 1

200

-0.08 -0.06 -0.04 -0.02 1] 0.02 0.04 0.06 D.08

See Also
errmean | errvar | quantize

Introduced in R2008a

4-331

‘l Functions

errvar

Variance of quantization error

Syntax

v = errvar(q)

Description

v = errvar(q) returns the variance of a uniformly distributed random quantization error that
arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples

Find v, the variance of the quantization error for quantizer object q:

g = quantizer;
v = errvar(q)
vV =

7.761021455128987e-11
Now compare v to v_est, the sample variance from a Monte Carlo experiment:

r = realmax(q);

u = 2*r*rand(1000,1)-r; % Original signal

y = quantize(q,u); % Quantized signal

e=y - u; % Error

v_est = var(e) % Estimate of the error variance

v _est =

7.686538499583834e-11

See Also
errmean | errpdf | quantize

Introduced in R2008a

4-332

exponentbias

exponentbias

Exponent bias for quantizer object

Syntax

b = exponentbias(q)

Description

b = exponentbias(q) returns the exponent bias of the quantizer object q. For fixed-point
quantizer objects, exponentbias(q) returns 0.

Examples

q quantizer('double');

b exponentbias(q)
b —

1023
Algorithms

For floating-point quantizer objects,
b=22"1_1
where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also
eps | exponentlength | exponentmax | exponentmin

Introduced before R2006a

4-333

‘l Functions

exponentlength

Exponent length of quantizer object

Syntax

e = exponentlength(q)

Description
e = exponentlength(q) returns the exponent length of quantizer object q. When q is a fixed-

point quantizer object, exponentlength(q) returns 0. This is useful because exponent length is
valid whether the quantizer object mode is floating point or fixed point.

Examples

quantizer('double');
exponentlength(q)

q
e

e

11

Algorithms

The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point
quantizer objects, e = 0 by definition.

See Also
eps | exponentbias | exponentmax | exponentmin

Introduced before R2006a

4-334

exponentmax

exponentmax

Maximum exponent for quantizer object

Syntax

exponentmax(q)

Description

exponentmax(q) returns the maximum exponent for quantizer object q. When q is a fixed-point
quantizer object, it returns 0.

Examples

g = quantizer('double');
exponentmax(q)

ans =

1023

Algorithms
For floating-point quantizer objects,
Emax=2°"1-1

For fixed-point quantizer objects, Engx = 0 by definition.

See Also
eps | exponentbias | exponentlength | exponentmin

Introduced before R2006a

4-335

‘l Functions

exponentmin

Minimum exponent for quantizer object

Syntax

emin = exponentmin(q)

Description

emin = exponentmin(q) returns the minimum exponent for quantizer object g. If q is a fixed-
point quantizer object, exponentmin returns 0.

Examples

g = quantizer('double');
emin = exponentmin(q)

emin =

-1022

Algorithms
For floating-point quantizer objects,
Emin= -2°" 142

For fixed-point quantizer objects, Enin = 0.

See Also
eps | exponentbias | exponentlength | exponentmax

Introduced before R2006a

4-336

eye

eye

Create identity matrix with fixed-point properties

Syntax

I = eye('like',p)

I = eye(n,'like',p)

I = eye(n,m, 'like"',p)
I = eye(sz, 'like',p)
Description

I = eye('like',p) returns the scalar 1 with the same fixed-point properties and complexity (real
or complex) as the prototype argument, p. The output, I, contains the same numerictype and
fimath properties as p.

I = eye(n, 'like',p) returns an n-by-n identity matrix like p, with ones on the main diagonal and
zeros elsewhere.

I = eye(n,m, 'like', p) returns an n-by-m identity matrix like p.
I = eye(sz, 'like',p) returns an array like p, where the size vector, sz, defines size(I).
Examples

Create Identity Matrix with Fixed-Point Properties

Create a prototype fi object, p.

p=fi([],1,16,14);

Create a 3-by-4 identity matrix with the same fixed-point properties as p.
I = eye(3,4,' 'like",p)

I=3x4 object

1 0 0 0
0 1 0 0
0 0 1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

4-337

4 Functions

4-338

Create Identity Matrix with Attached fimath

Create a signed f1i object with word length of 16, fraction length of 15 and OverflowAction set to
Wrap.

format long
p=fi([],1,16,15, 'OverflowAction', 'Wrap');

Create a 2-by-2 identity matrix with the same numerictype properties as p.
X = eye(2,'like',p)
X=2x2 object

0.999969482421875 0
0 0.999969482421875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the
same numerictype and fimath properties as p.

Input Arguments

n — Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

* If nis the only integer input argument, then I is a square n-by-n identity matrix.
e Ifnis 0, then I is an empty matrix.
» If nis negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

m — Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

e Ifmis 0, then I is an empty matrix.
» If mis negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

sz — Size of I
row vector of no more than two integer values

eye

Size of I, specified as a row vector of no more than two integer values.

* Ifanelement of sz is 0, then I is an empty matrix.
» If an element of sz is negative, then the element is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified
OverflowAction property of the attached fimath. All subsequent operations performed on the
output obey the rules of the attached fimath.

Data Types: fi | single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Tips

Using the b = cast(a, 'like',p) syntax to specify data types separately from algorithm code
allows you to:
* Reuse your algorithm code with different data types.

* Keep your algorithm uncluttered with data type specifications and switch statements for different
data types.

* Improve readability of your algorithm code.
» Switch between fixed-point and floating-point data types to compare baselines.
» Switch between variations of fixed-point settings without changing the algorithm code.

See Also
ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2015a

4-339

4 Functions

4-340

fi

Construct fixed-point numeric object

Description

To assign a fixed-point data type to a number or variable, create a fi object using the fi constructor.
You can specify numeric attributes and math rules in the constructor or using the numerictype and
fimath objects.

Creation

Syntax

,slope,bias)
,slopeadjustmentfactor, fixedexponent,bias)

£ =

__,F)
____,Name, Value)

QYU YooV VYV OY YO
| LI | | | | [| A T [A

Description

a = Tireturns a fi object with no value, 16-bit word length, and 15-bit fraction length.
a = fi(v) returns a fixed-point object with value v and default property values.

a = fi(v,s) returns a fixed-point object with signedness (signed or unsigned) s.

a = fi(v,s,w) creates a fixed-point object with word length specified by w.

a = fi(v,s,w,f) creates a fixed-point object with fraction length specified by f.

a = fi(v,s, w,slope,bias) creates a fixed-point object using slope and bias scaling.

a = fi(v,s, w,slopeadjustmentfactor, fixedexponent,bias) creates a fixed-point object
using slope and bias scaling.

a = fi(v,T) creates a fixed-point object with value v, and numeric type properties, T.

a = fi(__ ,F) creates a fixed-point object with math settings specified by fimath object F.

a = fi(___ ,Name,Value) creates a fixed-point object with property values specified by one or
more Name, Value pair arguments. Name must appear inside single quotes (' '). You can specify
several name-value pair arguments in any order as Namel,Valuel, ...,NameN,ValueN.

Input Arguments

v — Value
scalar | vector | matrix | multi-dimensional array

Value of the fi object, specified as a scalar, vector, matrix, or multidimensional array.

The value of the output fi object is the value of the input quantized to the data type specified in the
f1i constructor.

You can specify the non-finite values -Inf, Inf, and NaN as the value only if you fully specify the
numeric type of the fi object. When f1i is specified as a fixed-point numeric type,
* NaN maps to 0.

* When the 'OverflowAction' property of the fi objectis setto 'Wrap', -Inf, and Inf map to
0.

* When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the
largest representable value, and - Inf maps to the smallest representable value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi

s — Signedness
1 (default) | 0

Signedness of the fi object, specified as a boolean. A value of 1, or true, indicates a signed data
type. A value of 0, or false, indicates an unsigned data type.

Data Types: logical

w — Word length

16 (default) | scalar integer

Word length, in bits, of the fi object, specified as a scalar integer.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

logical

f — Fraction length
15 (default) | scalar integer

Fraction length, in bits, of the i object, specified as a scalar integer. If you do not specify a fraction
length, the fi object automatically uses the fraction length that gives the best precision while
avoiding overflow for the specified value, word length, and signedness.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical

slope — Slope
scalar integer

Slope of the scaling, specified as a scalar integer. The following equation represents the real-world
value of a slope bias scaled number.

real — worldvalue = (slope x integer) + bias

4-341

4 Functions

4-342

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

bias — Bias
scalar

Bias of the scaling, specified as a scalar. The following equation represents the real-world value of a
slope bias scaled number.

real — worldvalue = (slope x integer) + bias

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

slopeadjustmentfactor — Slope adjustment factor
scalar integer

The slope adjustment factor of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor x 2fxedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

fixedexponent — Fixed exponent
scalar integer

The fixed exponent of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor x 2fxedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical

T — Numeric type properties
numerictype object

Numeric type properties of the i object, specified as a numerictype object. For more information,
see numerictype.

F — Fixed-point math properties
fimath object

Fixed-point math properties of the fi object, specified as a fimath object. For more information, see
fimath.

Properties

“fi Object Properties”

Examples

Create a fi object

Create a signed fi object with a value of pi, a word length of eight bits, and a fraction length of 3

bits.
a = fl(p1,1:813)

a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

Create an Array of fi Objects

Create an array of fi objects with 16-bit word length and 12-bit fraction length.

a = fi((magic(3)/10), 1, 16, 12)

a=3x3 object

0.8000 0.1001 0.6001
0.3000 0.5000 0.7000
0.3999 0.8999 0.2000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12

Create a fi object with Default Word Length and Fraction Length

When you specify only the value and the signedness of the fi object, the word length defaults to 16
bits, and the fraction length is set to achieve the best precision possible without overflow.

a = fi(pi, 1)
a =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Create a fi Object with Default Precision

If you do not specify a fraction length, input argument f, the fraction length of the fi object defaults
to the fraction length that offers the best precision.

4-343

4-344

‘l Functions
a = fi(pi,1,8)
a =
3.1563

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 5

The fraction length of fi object a is five because three bits are required to represent the integer
portion of the value when the data type is signed. If the fi object uses an unsigned data type, only
two bits are needed to represent the integer portion, leaving six fractional bits.

b = fi(pi,o,8)

b:
3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

WordLength: 8
FractionLength: 6

Create a fi Object with Slope and Bias Scaling
The real-world value of a slope bias scaled number is represented by:
real world value = (slope X integer) + bias

To create a Ti object that uses slope and bias scaling, include the slope and bias arguments after
the word length in the constructor.

a = fi(pi, 1, 16, 3, 2)
a =
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 3

Bias: 2

The DataTypeMode property of the fi object, a, is slope and bias scaling.

Create a fi Object From a Non-Double Value

When the value input argument, v, of a fi object is a non-double, and you do not specify the word
length or fraction length properties, the resulting fi object retains the numeric type of the input, v.

Create a fi object from a built-in integer

When the input is a built-in integer, the fixed-point attributes match the attributes of the integer type.

vl = uint32(5);
al = fi(vl)
al =
5
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 32
FractionLength: 0
v2 = int8(5);
a2 = fi(v2)
a2 =
5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 0

Create a fi object from a fi object

When the input value is a fi object, the output uses the same word length, fraction length, and
signedness of the input fi object.

v = fi(pi, 1, 24, 12);
a = fi(v)
a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

Create a fi object from a logical

When the input v is logical, the DataTypeMode property of the output fi object is Boolean.

v = true;
a = fi(v)
a =

DataTypeMode: Boolean
Create a fi object from a single
When the input is single, the DataTypeMode property of the output is Single.

\
a

single(pi);
fi(v)

4-345

‘l Functions

a =
3.1416

DataTypeMode:

Single

Create a fi Object With an Associated fimath Object

The arithmetic attributes of a fi object are defined by a fimath object which is attached to that fi

'ProductMode ', 'KeepMSB')

object.
Create a fimath object and specify the OverflowAction, RoundingMethod, and ProductMode
properties.
F = fimath('OverflowAction', 'Wrap', 'RoundingMethod', 'Floor’,
F =

RoundingMethod: Floor

OverflowAction: Wrap

ProductMode: KeepMSB
ProductWordLength: 32
SumMode: FullPrecision

Create a fi object and specify the fimath object, F, in the constructor.

a = fi(pi, F)

a =
3.1415

DataTypeMode:
Signedness:
WordLength:

FractionLength:

RoundingMethod:
OverflowAction:
ProductMode:
ProductWordLength:
SumMode:

Fixed-point: binary point scaling
Signed

16

13

Floor

Wrap

KeepMSB

32
FullPrecision

Use the removefimath function to remove the associated fimath object and restore the math
settings to their default values.

a = removefimath(a)
a =
3.1415
DataTypeMode:
Signedness:
WordLength:
FractionLength:

4-346

Fixed-point: binary point scaling
Signed

16

13

Create a fi Object From a numerictype Object

A numerictype object contains all of the data type information of a fi object. By transitivity,
numerictype properties are also properties of fi objects.

You can create a i object that uses all of the properties of an existing numerictype object by
specifying the numerictype object in the fi constructor.

T = numerictype(0,24,16)
T —
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 24
FractionLength: 16
a = fi(pi, T)
a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 24
FractionLength: 16

Create a fi Object With Fraction Length Greater Than Word Length

When you use binary-point representation for a fixed-point number, the fraction length can be greater
than the word length. In this case, there are implicit leading zeros (for positive numbers) or ones (for
negative numbers) between the binary point and the first significant binary digit.

Consider a signed value with a word length of 8, fraction length of 10, and a stored integer value of 5.
Calculate the real-world value using the following equation.

real world value = stored integer x 2~ ractionlength
realWorldValue = 5%27(-10)
realWorldValue = 0.0049

Create a signed f1i object with value realWorldValue, a word length of 8 bits, and a fraction length
of 10 bits.

a fi(realWorldValue, 1, 8, 10)

a =
0.0049

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 10

4-347

‘l Functions

Get the stored integer value of a using the int function.
int(a)

ans = int8
5

Use the bin function to view the stored integer value in binary.
bin(a)

ans =
'00000101"

Because the fraction length is two bits longer than the word length, the binary value of the stored
integer is X. XX00000101, where X is a placeholder for implicit zeroes. 0.0000000101 (binary) is
equivalent to 0.0049 (decimal).

Create a fi Object With Negative Fraction Length

When you use binary-point representation for a fixed-point number, the fraction length can be
negative. In this case, there are implicit trailing zeros (for positive numbers) or ones (for negative
numbers) between the binary point and the first significant binary digit.

Consider a signed data type with a word length of 8, fraction length of -2 and a stored integer value
of 5. Calculate the stored integer value using the following equation.

real world value = stored integer x 2~ ractionlength

realWorldValue 5%27(2)

realWorldValue 20

Create a signed fi object with value realWorldValue, a word length of 8 bits, and a fraction length
of -2 bits.

a = fi(realWorldValue, 1, 8, -2)

a =
20

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: -2
Get the stored integer value of a using the int function.
int(a)

ans = int8
5

Get the binary value of a using the bin function.

bin(a)

4-348

ans =
‘00000101

Because the fraction length is negative, the binary value of the stored integer is 00000101XX, where
X is a placeholder for implicit zeros. 0000010100 (binary) is equivalent to 20 (decimal).

Create a fi Object Specifying Rounding and Overflow Modes

You can set math properties, such as rounding and overflow modes during the creation of the fi
object.

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Floor

OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

The RoundingMethod and OverflowAction properties are properties of the fimath object.
Specifying these properties in the fi constructor associates a local fimath object with the fi object.

Use the removefimath function to remove the local fimath and set the math properties back to
their default values.

a removefimath(a)

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Use fi as an Indexing Argument

When using a fi object as an index, the value of the fi object must be an integer.
Set up an array to index into.

x =10:-1:1;

Create an integer valued fi object and use it to index into x.

4-349

‘l Functions

a = fi(3);
y = x(a)
y =8

Use fi as the index in a for loop

Create T1i objects to use as the index of a for loop. The values of the indices must be integers.

a=fi(1, 0, 8, 0);
b =fi(2, 0, 8, 0);
c = fi(10, 0, 8, 0);
for x = a:b:c
X
end
X =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
X =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: ©
X =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
X =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
X =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0

4-350

Set Data Type Override on a fi Object

The fipref object defines the display and logging attributes for all fi objects. Use the
DataTypeOverride setting of the fipref object to override fi objects with doubles, singles, or
scaled doubles.

Save the current fipref settings to restore later.

fp = fipref;
initialDTO = fp.DataTypeOverride;

Create a fi object with the default settings and original fipref settings.

a

fi(pi)
a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Turn on data type override to doubles and create a new fi object without specifying its
DataTypeOverride property so that it uses the data type override settings specified using fipref.

fipref('DataTypeOVerride', 'TrueDoubles')

ans =
NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'
FimathDisplay: 'full'
LoggingMode: 'Off'
DataTypeOverride: 'TrueDoubles'
DataTypeOverrideAppliesTo: 'AllNumericTypes'
a = fi(pi)
a =
3.1416

DataTypeMode: Double

Now create a fi object and set its DataTypeOverride setting to off so that it ignores the data type
override settings of the fipref object.

b = fi(pi, 'DataTypeOverride', 'Off"')

b =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Restore the fipref settings saved at the start of the example.

4-351

‘l Functions

4-352

fp.DataTypeOverride = initialDTO;

fi Behavior for -Inf, Inf, and NaN

To use the non-numeric values -Inf, Inf, and NaN as fixed-point values with i, you must fully
specify the numeric type of the fixed-point object. Automatic best-precision scaling is not supported
for these values.

Saturate on Overflow

When the numeric type of the fi object is specified to saturate on overflow, then Inf maps to the
largest representable value of the specified numeric type, and - Inf maps to the smallest
representable value. NaN maps to zero.

X = [-inf nan inf];
a = fi(x,1,8,0, '0verflowAction', 'Saturate"')
b = fi(x,0,8,0, 'OverflowAction', 'Saturate"')
a:
-128 0 127
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 0
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
b:

0 0 255

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

Wrap on Overflow

When the numeric type of the fi object is specified to wrap on overflow, then -Inf, Inf, and NaN
map to zero.

X = [-inf nan inf];
a = fi(x,1,8,0, '0OverflowAction', 'Wrap")
b = fi(x,0,8,0, '0verflowAction', 'Wrap')

0 0 0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 0
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision
b
0 0 0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8
FractionLength: 0
RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

Compatibility Considerations

Change in default behavior of fi for -Inf, Inf, and NaN
Behavior changed in R2020b

In previous releases, fi would return an error when passed the non-finite input values -Inf, Inf, or
NaN. fi now treats these inputs in the same way that MATLAB and Simulink handle -Inf, Inf, and
NaN for integer data types.

When f1i is specified as a fixed-point numeric type,

* NaN maps to 0.

* When the 'OverflowAction' property of the fi objectis setto 'Wrap', -Inf, and Inf map to
0.

* When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the
largest representable value, and - Inf maps to the smallest representable value.

For an example of this behavior, see “fi Behavior for -Inf, Inf, and NaN” on page 4-352.

Note Best-precision scaling is not supported for input values of -Inf, Inf, or NaN.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4-353

4 Functions

4-354

Usage notes and limitations:

» The default constructor syntax without any input arguments is not supported.

« Ifthe numerictype is not fully specified, the input to fi must be a constant, a fi, a single, or a
built-in integer value. If the input is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data type of the input.

» All properties related to data type must be constant for code generation.
* numerictype object information must be available for nonfixed-point Simulink inputs.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | fipref | isfimathlocal | numerictype | quantizer |sfi|ufi

Topics

“Create Fixed-Point Data”
“Perform Fixed-Point Arithmetic”
“Perform Binary-Point Scaling”
“fi Object Functions”

“Binary Point Interpretation”

Introduced in R2006a

fiaccel

fiaccel

Accelerate fixed-point code and convert floating-point MATLAB code to fixed-point MATLAB code

Syntax

fiaccel -options fcn
fiaccel -float2fixed fcn

Description

fiaccel -options fcn translates the MATLAB file fcn.m to a MEX function, which accelerates

fixed-point code. To use fiaccel, your code must meet one of these requirements:

* The top-level function has no inputs or outputs, and the code uses fi

» The top-level function has an output or a non-constant input, and at least one output or input is a
fi.

* The top-level function has at least one input or output containing a built-in integer class (int8,
uint8, int16, uintl16, int32, uint32, int64, or uint64), and the code uses fi.

Note If your top-level file is on a path that contains Unicode characters, code generation might not
be able to find the file.

fiaccel -float2fixed fcn converts the floating-point MATLAB function, fcn to fixed-point
MATLAB code.

Input Arguments
fcn

MATLAB function from which to generate a MEX function. fcn must be suitable for code generation.
For information on code generation, see “Code Acceleration and Code Generation from MATLAB”

options
Choice of compiler options. fiaccel gives precedence to individual command-line options over

options specified using a configuration object. If command-line options conflict, the rightmost option
prevails.

4-355

4 Functions

4-356

-args example inputs

-config config object

-d out folder

Define the size, class, and complexity of MATLAB
function inputs by providing a cell array of
example input values. The position of the example
input in the cell array must correspond to the
position of the input argument in the MATLAB
function definition. To generate a function that
has fewer input arguments than the function
definition has, omit the example values for the
arguments that you do not want.

Specify the example inputs immediately after the
function to which they apply.

Instead of an example value, you can provide a
coder.Type object. To create a coder.Type
object, use coder. typeof.

Specify MEX generation parameters, based on
config object, defined as a MATLAB variable
using coder.mexconfig. For example:

cfg = coder.mexconfig;

Store generated files in the absolute or relative
path specified by out folder. If the folder
specified by out folder does not exist,
fiaccel creates it for you.

If you do not specify the folder location, fiaccel
generates files in the default folder:

fiaccel/mex/fcn.

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

fiaccel

-float2fixed float2fixed cfg name

-9

-global global values

-I include path

Generates fixed-point MATLAB code using the
settings specified by the floating-point to fixed-
point conversion configuration object named
float2fixed cfg name.

For this option, fiaccel generates files in the
folder codegen/fcn _name/fixpt.

You must set the TestBenchName property of
float2fixed cfg name. For example:

fixptcfg.TestBenchName = 'myadd test';

specifies that myadd test is the test file for the
floating-point to fixed-point configuration object
fixptcfg.

You cannot use this option with the -global
option.

Compiles the MEX function in debug mode, with
optimization turned off. If not specified, fiaccel
generates the MEX function in optimized mode.

Specify initial values for global variables in
MATLARB file. Use the values in cell array
global values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with fiaccel. If you do not
provide initial values for global variables using
the -global option, fiaccel checks for the
variable in the MATLAB global workspace. If you
do not supply an initial value, fiaccel generates
an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

You cannot use this option with the -
float2fixed option.

Add include path to the beginning of the code
generation path.

fiaccel searches the code generation path first
when converting MATLAB code to MEX code.

4-357

4 Functions

4-358

-launchreport

-nargout

-0 output file name

-0 optimization option

-report

Examples

Generate and open a code generation report. If
you do not specify this option, fiaccel
generates a report only if error or warning
messages occur or you specify the - report
option.

Specify the number of output arguments in the
generated entry-point function. The code
generator produces the specified number of
output arguments in the order in which they
occur in the MATLAB function definition.

Generate the MEX function with the base name
output file name plus a platform-specific
extension.

output file name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

Optimize generated MEX code, based on the
value of optimization option:

* enable:inline — Enable function inlining

* disable:inline — Disable function inlining

If not specified, fiaccel uses inlining for
optimization.

Generate a code generation report. If you do not
specify this option, fiaccel generates a report
only if error or warning messages occur or you
specify the - launchreport option.

Display help for fiaccel command.

Create a test file and compute the moving average. Then, use fiaccel to accelerate the code and

compare.

function avg = test moving average(x)
s#codegen
if nargin < 1,
x = fi(rand(100,1),1,16,15);
end
z = fi(zeros(10,1),1,16,15);
avg = Xx;
for k = 1:length(x)

[avg(k),z] = moving average(x(k),z);

end

function [avg,z] = moving average(x,z)

fiacce

%#codegen
if nargin < 2,
z = fi(zeros(10,1),1,16,15);

end

z(2:end) = z(l:end-1); % Update buffer

z(1) = x; % Add new value
avg = mean(z); % Compute moving average

Use fiaccel to create a MEX function and
accelerate the code

x = fi(rand(100,1),1,16,15);

fiaccel test moving average -args {x} -report

[)
“©
[)

“©

% Compare the non-accelerated and accelerated code.
x = fi(rand(100,1),1,16,15);

% Non-compiled version

tic,avg = test moving average(x);toc

% Compiled version

tic,avg = test moving average mex(x);toc

Convert Floating-Point MATLAB Code to Fixed Point

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt"');

Set the test bench name. In this example, the test bench function name is dti test.
fixptcfg.TestBenchName = 'dti test';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

See Also

coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.FixptConfig | coder.MexConfig | coder.PrimitiveType | coder.StructType |
coder.Type | coder.config | coder.mexconfig | coder.newtype | coder.resize |
coder.typeof

Introduced in R2011a

4-359

4 Functions

4-360

filter

One-dimensional digital filter of fi objects

Syntax

y = filter(b,1,x)

[y,zf] = filter(b,1,x,z1)

y = filter(b,1,x,zi,dim)

Description

y = filter(b,1,x) filters the data in the fixed-point vector x using the filter described by the
fixed-point vector b. The function returns the filtered data in the output fi object y. Inputs b and x
must be fi objects. filter always operates along the first non-singleton dimension. Thus, the filter
operates along the first dimension for column vectors and nontrivial matrices, and along the second
dimension for row vectors.

[y,zf] = filter(b,1,x,z1i) gives access to initial and final conditions of the delays, z1i, and zf.
z1 is a vector of length length(b) -1, or an array with the leading dimension of size length(b) -1
and with remaining dimensions matching those of x. zi must be a fi object with the same data type
as y and zf. If you do not specify a value for zi, it defaults to a fixed-point array with a value of 0 and
the appropriate numerictype and size.

y = filter(b,1,x,zi,dim) performs the filtering operation along the specified dimension. If you
do not want to specify the vector of initial conditions, use [] for the input argument zi.

Input Arguments

b

Fixed-point vector of the filter coefficients.

X

Fixed-point vector containing the data for the function to filter.

zi

Fixed-point vector containing the initial conditions of the delays. If the initial conditions of the delays
are zero, you can specify zero, or, if you do not know the appropriate size and numerictype for z1i,

use [].

If you do not specify a value for z1, the parameter defaults to a fixed-point vector with a value of zero
and the same numerictype and size as the output zf (default).

dim

Dimension along which to perform the filtering operation.

filter

Output Arguments

y
Output vector containing the filtered fixed-point data.

zf

Fixed-point output vector containing the final conditions of the delays.
Examples

Filter a high-frequency fixed-point sinusoid from a signal

The following example filters a high-frequency fixed-point sinusoid from a signal that contains both a
low- and high-frequency fixed-point sinusoid.

wl = .1*pi;

w2 = .6%pi;

n = 0:999;

xd = sin(wl*n) + sin(w2*n);

x = sfi(xd,12);

b =ufi([.1:.1:1,1-.1:-.1:.11/4,10);
gd = (length(b)-1)/2;

y = filter(b,1,x);

% Plot results, accommodate for group-delay of filter
plot(n(l:end-gd),x(1l:end-gd))

hold on

plot(n(l:end-gd),y(gd+l:end), 'r--")

axis([0 50 -2 2])

legend('Unfiltered signal', 'Filtered signal')
xlabel('Sample index (n)"')

ylabel('Signal value')

4-361

4 Functions

2 T T T T T T T T T

Unfiltered signal
15t — — — Filtered signal

Signal value
[
= n

i
=
o

T

i
=
T

_2 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Sample index (n)

The resulting plot shows both the unfiltered and filtered signals.

More About
Filter length (L)

The filter length is Llength(b), or the number of filter coefficients specified in the fixed-point vector
b.

Filter order (N)

The filter order is the number of states (delays) of the filter, and is equal to L-1.

Tips

* The filter function only supports FIR filters. In the general filter representation, b/a, the
denominator, a, of an FIR filter is the scalar 1, which is the second input of this function.

* The numerictype of b can be different than the numerictype of x.

» If you want to specify initial conditions, but do not know what numerictype to use, first try
filtering your data without initial conditions. You can do so by specifying [] for the input zi. After
performing the filtering operation, you have the numerictype of y and zf (if requested). Because
the numerictype of zi must match that of y and zf, you now know the numerictype to use for
the initial conditions.

4-362

filter

Algorithms

The filter function uses a Direct-Form Transposed FIR implementation of the following difference
equation:

yn) =b1*xp+by*xp_1+...+br¥xp-nN
where L is the filter length on page 4-362 and N is the filter order on page 4-362.

The following diagram shows the direct-form transposed FIR filter structure used by the filter
function:

G
Section
imput

fimath Propagation Rules

The filter function uses the following rules regarding fimath behavior:

* globalfimath is obeyed.

+ If any of the inputs has an attached fimath, then it is used for intermediate calculations.

* If more than one input has an attached fimath, then the fimaths must be equal.

* The output, vy, is always associated with the default fimath.

» If the input vector, zi, has an attached fimath, then the output vector, zf, retains this fimath.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Variable-sized inputs are only supported when the SumMode property of the governing fimath is

set to Specify precision or Keep LSB.

4-363

4 Functions

See Also
conv | filter

Introduced in R2010a

4-364

fimath

fimath

Set fixed-point math settings

Syntax

F
F

fimath
fimath(Name,Value)

Description

F

fimath creates a fimath object with the default fimath property settings.

F = fimath(Name,Value) specifies the properties of a fimath object by using one or more name-
value pair arguments. All properties not specified in the constructor use default values.

Examples

Create a Default fimath Object

This example shows how to create a fimath object with the default property settings.

F fimath

F =
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

Set Properties of a fimath Object

Set the properties of a fimath object at the time of object creation by using name-value pairs. For
example, set the overflow action to saturate and the rounding method to convergent.

F

fimath('OverflowAction', 'Saturate', 'RoundingMethod', 'Convergent')

F =
RoundingMethod: Convergent
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

4-365

4 Functions

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: F = fimath('OverflowAction', 'Saturate', 'RoundingMethod', 'Floor"')

CastBeforeSum — Whether both operands are cast to the sum data type before addition
false or 0 (default) | true or 1

Whether both operands are cast to the sum data type before addition, specified as a numeric or
logical 1 (true) or 0 (false).

Note This property is hidden when the SumMode is set to FullPrecision.

Example: F = fimath('CastBeforeSum', true)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical

MaxProductWordLength — Maximum allowable word length for the product data type
65535 (default) | positive integer

Maximum allowable word length for the product data type, specified as a positive integer.
Example: F = fimath('MaxProductWordLength',b16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

MaxSumWordLength — Maximum allowable word length for sum data type
65535 (default) | positive integer

Maximum allowable word length for the sum data type, specified as a positive integer.
Example: F = fimath('MaxSumWordLength',b16)
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

OverflowAction — Action to take on overflow
'Saturate' (default) | 'Wrap'

Action to take on overflow, specified as one of these values:

* 'Saturate' - Saturate to the maximum or minimum value of the fixed-point range on overflow.
* 'Wrap' - Wrap on overflow. This mode is also known as two's complement overflow.

Example: F = fimath('OverflowAction', 'Wrap')
Data Types: char

ProductBias — Bias of product data type
0 (default) | floating-point number

Bias of the product data type, specified as a floating-point number.

4-366

fimath

Example: F = fimath('ProductBias',1)
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

ProductFixedExponent — Fixed exponent of product data type
-30 (default) | nonzero integer

Fixed exponent of the product data type, specified as a nonzero integer.

Note The ProductFractionlLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFixedExponent', -20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

ProductFractionLength — Fraction length of product data type
30 (default) | nonzero integer

Fraction length, in bits, of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFractionLength',20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

ProductMode — How product data type is determined
"FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the product data type is determined, specified as one of these values:

* 'FullPrecision' - The full precision of the result is kept.

* 'KeepLSB' - Keep the least significant bits. Specify the product word length. The fraction length
is set to maintain the least significant bits of the product.

* 'KeepMSB' - Keep the most significant bits. Specify the product word length. The fraction length
is set to maintain the most significant bits of the product.

* 'SpecifyPrecision' - Specify the word and fraction lengths or slope and bias of the product.

Example: F = fimath('ProductMode’, 'KeepLSB")
Data Types: char

ProductSlope — Slope of product data type
9.3132e-10 (default) | finite, positive floating-point number

Slope of the product data type, specified as a finite, positive floating-point number.

Note

ProductSlope = ProductSlopeAd justmentFactor x 2FreductFixedExponent

4-367

4 Functions

Changing one of these properties affects the others.

Example: F = fimath('ProductSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the product data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

ProductSlope = ProductSlopeAd justmentFactor x 2FreductFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('ProductSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

ProductWordLength — Word length of product data type
32 (default) | positive integer

Word length, in bits, of the product data type, specified as a positive integer.
Example: F = fimath('ProductWordLength',b64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

RoundingMethod — Rounding method to use
'Nearest' (default) | 'Ceiling' | 'Convergent' | 'Zero' | 'Floor' | 'Round’

Rounding method to use, specified as one of these values:
* 'Nearest' - Round toward nearest. Ties round toward positive infinity.

* 'Ceiling' - Round toward positive infinity.

* 'Convergent' - Round toward nearest. Ties round to the nearest even stored integer (least
biased).

* 'Zero' - Round toward zero.
* 'Floor' - Round toward negative infinity.

* 'Round' - Round toward nearest. Ties round toward negative infinity for negative numbers, and
toward positive infinity for positive numbers.

Example: F = fimath('RoundingMethod', 'Convergent')
Data Types: char

SumBias — Bias of sum data type
0 (default) | floating-point number

Bias of the sum data type, specified as a floating-point number.

4-368

fimath

Example: F = fimath('SumBias',0)
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SumFixedExponent — Fixed exponent of sum data type
-30 (default) | nonzero integer

Fixed exponent of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFixedExponent', -20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SumFractionLength — Fraction length of sum data type
30 (default) | nonzero integer

Fraction length, in bits, of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFractionLength', 20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SumMode — How the sum data type is determined
"FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the sum data type is determined, specified as one of these values:

* 'FullPrecision' - The full precision of the result is kept.

+ 'KeepLSB' - Keep least significant bits. Specify the sum data type word length. The fraction
length is set to maintain the least significant bits of the sum.

* 'KeepMSB' - Keep most significant bits. Specify the sum data type word length. The fraction
length is set to maintain the most significant bits of the sum and no more fractional bits than
necessary.

* 'SpecifyPrecision' - Specify the word and fraction lengths or slope and bias of the sum data
type.

Example: F = fimath('SumMode', 'KeepLSB')
Data Types: char

SumSlope — Slope of sum data type
9.3132e-10 (default) | floating-point number

Slope of the sum data type, specified as a floating-point number.

Note

4-369

4 Functions

4-370

SumSlope = SumSlopeAd justmentFactor x 25UmFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the sum data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

SumSlope = SumSlopeAd justmentFactor x 25UmFxedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlopeAdjustmentFactor',1)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
SumWordLength — Word length of sum data type

32 (default) | positive integer

Word length, in bits, of the sum data type, specified as a positive integer.

Example: F = fimath('SumWordLength',b64)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
+ Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a fimath
object. You define this object in the MATLAB Function block dialog in the Model Explorer.

* Use to create fimath objects in the generated code.

+ Ifthe ProductMode property of the fimath object is set to anything other than FullPrecision,
the ProductWordLength and ProductFractionLength properties must be constant.

« If the SumMode property of the fimath object is set to anything other than FullPrecision, the
SumWordLength and SumFractionLength properties must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

fimath

See Also
fi| fipref | globalfimath | numerictype | quantizer | removefimath | setfimath

Topics

“fimath Object Construction”

“fimath Object Properties”

How Functions Use fimath

“fimath Properties Usage for Fixed-Point Arithmetic”

Introduced before R2006a

4-371

‘l Functions

fipref

Set fixed-point preferences

Syntax
P = fipref
P = fipref(Name,Value)

Description

P = fipref creates a default fipref object. The fipref object defines the display and logging
attributes for all fi objects.

P = fipref(Name,Value) creates a fipref object with properties specified by Name, Value
pairs.

Your fipref settings persist throughout your MATLAB session. Use reset (fipref) to return to the
default settings during your session. Use savefipref to save your display preferences for
subsequent MATLAB sessions.

Examples

Create a Default fipref Object

P fipref

P =
NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'
FimathDisplay: 'full'
LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

Set fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including properties after
the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and
NumericTypeDisplay to short,

P

fipref('NumberDisplay', 'bin', 'NumericTypeDisplay', 'short')

P =
NumberDisplay: 'bin'
NumericTypeDisplay: 'short'
FimathDisplay: 'full'
LoggingMode: 'Off’

4-372

fipref

DataTypeOverride: 'ForceOff'

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: P =
fipref('NumberDisplay', 'RealWorldValue', 'NumericTypeDisplay', 'short');

Data Type Override Properties

DataTypeOverride — Data type override options
"ForceOff' (default) | 'ScaledDoubles' | 'TrueDoubles' | 'TrueSingles'

Data type override options for fi objects, specified as the comma-separated pair consisting of
'DataTypeOverride' and one of these values:

* 'ForceOff' — No data type override

* 'ScaledDoubles' — Override with scaled doubles
* 'TrueDoubles' — Override with doubles

* 'TrueSingles' — Override with singles

Data type override only occurs when the fi constructor function is called.

Data Types: char

DataTypeOverrideAppliesTo — Data type override setting applicability
"AlINumericTypes' (default) | 'Fixed-Point' | 'Floating-Point'

Data type override setting applicability to fi objects, specified as the comma-separated pair
consisting of 'DataTypeOverrideAppliesTo' and one of these values:

* 'AllNumericTypes' — Apply data type override to all fi data types. This setting does not
override built-in integer types.

* 'Fixed-Point' — Apply data type override only to fixed-point data types
* 'Floating-Point' — Apply data type override only to floating-point fi data types

DataTypeOverrideAppliesTo displays only if DataTypeOverride is not set to ForceOff.
Data Types: char

Display Properties

FimathDisplay — Display options for local fimath attributes of fi objects
"full' (default) | 'none'’

Display options for the local fimath attributes of a i object, specified as the comma-separated pair
consisting of 'FimathDisplay' and one of these values:

4-373

4 Functions

4-374

+ 'full' — Displays all of the fimath attributes of a fixed-point object
* 'none' — None of the fimath attributes are displayed

Data Types: char

NumberDisplay — Display options for the value of a fi object
'RealWorldValue' (default) | 'bin' | 'dec' | "hex' | "int' | 'none’

Display options for the values of a i object, specified as the comma-separated pair consisting of
"NumberDisplay' and one of these values:

* 'bin' — Displays the stored integer value in binary format

* ‘'dec' — Displays the stored integer value in unsigned decimal format

* 'RealWorldValue' — Displays the stored integer value in the format specified by the MATLAB
format function

f1i objects in rat format are displayed according to

1
fixed — pointexponent
2

) x storedinteger

* 'hex' — Displays the stored integer value in hexadecimal format

+ 'int' — Displays the stored integer value in signed decimal format

* 'none' — No value is displayed

The stored integer value does not change when you change the fipref object. The fipref object
only affects the display.

Data Types: char

NumericTypeDisplay — Display options for the numerictype attributes of a fi object
"full' (default) | 'none' | 'short"

Display options for the numerictype attributes of a fi object, specified as the comma-separated
pair consisting of 'NumericTypeDisplay' and one of these values:
« 'full' — Displays all of the numerictype attributes of a fixed-point object
* 'none' — None of the numerictype attributes are displayed
* 'short' — Displays an abbreviated notation of the fixed-point data type and scaling of a fixed-
point object in the format xWL , FL where
* xis s for signed and u for unsigned
* WL is the word length
* FL is the fraction length

Data Types: char
Logging Properties

LoggingMode — Logging options for operations performed on fi objects
"off' (default) | 'on'

fipref

Logging options for operations performed on fi objects, specified as the comma-separated pair
consisting of 'LoggingMode' and one of these values:

« 'off' — Nologging
* 'on' — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are logged as
warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to return logged information
about assignment and creation operations to the MATLAB command line:

* maxlog — Returns the maximum real-world value

* minlog — Returns the minimum value

* noverflows — Returns the number of overflows

* nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log information about
it. To clear the log, use the function resetlog.

Data Types: char

See Also
fi| fimath | numerictype | quantizer | savefipref

Introduced before R2006a

4-375

‘l Functions

4-376

fix
Round toward zero

Syntax

y = fix(a)

Description

y = fix(a) rounds fi object a to the nearest integer in the direction of zero and returns the result
in fi objecty.

Examples

Use fix on a Signed fi Object

The following example demonstrates how the fix function affects the numerictype properties of a
signed f1i object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y = fix(a)
y:

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 5
FractionLength: 0

The following example demonstrates how the fix function affects the numerictype properties of a
signed f1i object with a word length of 8 and a fraction length of 12.

a fi(0.025,1,8,12)

a =
0.0249

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

fix

y = fix(a)
y=
0
DataTypeMode:
Signedness:
WordLength:
FractionLength:

Fixed-point: binary point scaling
Signed

2

0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

* The ceil function rounds values to the nearest integer toward positive infinity.

* The fix function rounds values to the nearest integer toward zero.

* The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a =
y:
y=8x4 object

-2.5000 -2.0000

-1.7500 -1.0000
-1.2500 -1.0000

-0.5000 0
0.5000 1.0000
1.2500 2.0000
1.7500 2.0000
2.5000 3.0000

DataTypeMode:
Signedness:
WordLength:

FractionLength:

fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.51");
[a ceil(a) fix(a) floor(a)]l

-2.0000 -3.0000
-1.0000 -2.0000
-1.0000 -2.0000

0 -1.0000

0 0
1.0000 1.0000
1.0000 1.0000
2.0000 2.0000

Fixed-point: binary point scaling
Signed

16

13

plot(a,y); legend('a','ceil(a)"','fix(a)"', 'floor(a)"', 'location', 'NW");

4-377

4 Functions

4-378

3 T T T T T T T T T

a
—ceil{a)

7t fix(a)
floor{a)

-1 L

D -

At

2 F

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.
fix does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is

trivial when the slope is an integer power of 2 and the bias is 0.

Data Types: fi
Complex Number Support: Yes

Algorithms

* vy and a have the same fimath object and DataType property.

* When the DataType property of a is single, double, or boolean, the numerictype of y is the
same as that of a.

* When the fraction length of a is zero or negative, a is already an integer, and the numerictype of
y is the same as that of a.

fix

* When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | floor | nearest | round

Introduced in R2008a

4-379

‘l Functions

4-380

fixed.aggregateType

Compute aggregate numerictype

Syntax

aggNT = fixed.aggregateType(A,B)

Description

aggNT = fixed.aggregateType(A,B) computes the smallest binary point scaled numerictype
that is able to represent both the full range and precision of inputs A and B.

Input Arguments

A

An integer, binary point scaled fixed-point fi object, or numerictype object.
B

An integer, binary point scaled fixed-point fi object, or numerictype object.

Output Arguments
aggNT

A numerictype object.

Examples

Compute the aggregate numerictype of two numerictype objects.
% can represent range [-4,4
~nt = numerictype(1,16,13)
% can represent range [-2,2
nt = numerictype(1,18,16)

and precision 2"-13

Q

)
) and precision 27-16

(o

% can represent range [-4,4) and precision 2"-16
aggNT = fixed.aggregateType(a nt,b nt)
aggNT

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19
FractionLength: 16

Compute the aggregate numerictype of two fi objects.

% Unsigned, WordLength: 16, FractionLength: 14
a fi = ufi(pi,16);

fixed.aggregateType

[)
“©

Signed, WordLength: 24, FractionLength: 21
b fi = sfi(-pi,24);

% Signed, WordLength: 24, FractionLength: 21
aggNT = fixed.aggregateType(a fi,b fi)
agghNT =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 21

Compute the aggregate numerictype of a fi object and an integer.

Unsigned, WordLength: 16, FractionLength: 14

can represent range [0,3] and precision 2"-14
a fi = ufi(pi,16);

Unsigned, WordLength: 8, FractionLength: 0
can represent range [0,255] and precision 270
cInt = uint8(0);

% Unsigned with WordLength: 14+8, FractionLength: 14
% can represent range [0,255] and precision 2"-14

aggNT = fixed.aggregateType(a fi,cInt)
agghNT =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 22
FractionLength: 14
See Also

fi|numerictype

Introduced in R2011b

4-381

‘l Functions

4-382

fixed.backwardSubstitute

Solve upper-triangular system of equations through backward substitution

Syntax

x = fixed.backwardSubstitute(R, C)

x = fixed.backwardSubstitute(R, C, outputType)
Description

x = fixed.backwardSubstitute(R, C) performs backward substitution on upper-triangular
matrix R to compute x = R\C.

x = fixed.backwardSubstitute(R, C, outputType) returns x = R\C, where the data type of
output variable, X, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations (A’A)x = B using forward and backward
substitution.

Specify the input variables, A and B.

ng default;
gallery('randsvd', [5,3], 1000);

[1; 1; 1; 1; 11;

o> S
1«

Compute the upper-triangular factor, R, of A, where A = QR.
R = fixed.qglessQR(A);
Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5x1
10° x
-0.9088
2.7123
-0.8958
0
0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

fixed.backwardSubstitute

X = 5x1
105 x
-0.9088
2.7123
-0.8958
0
0

Input Arguments

R — Upper-triangular input matrix

matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi

Complex Number Support: Yes

C — Linear system factor

matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is

specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments

X — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R\C.

See Also
fixed.forwardSubstitute | fixed.qlessQR | fixed.qlessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

4-383

‘l Functions

4-384

fixed.forwardSubstitute

Solve lower-triangular system of equations through forward substitution

Syntax

x = fixed.forwardSubstitute(R, B)

x = fixed.forwardSubstitute(R, B, outputType)
Description

x = fixed.forwardSubstitute(R, B) performs forward substitution on upper-triangular matrix
R to compute x = R\B.

x = fixed.forwardSubstitute(R, B, outputType) returns x = R"\B, where the data type of
output variable, X, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations (A’A)x = B using forward and backward
substitution.

Specify the input variables, A and B.

ng default;
gallery('randsvd', [5,3], 1000);

[1; 1; 1; 1; 11;

o> S
1«

Compute the upper-triangular factor, R, of A, where A = QR.
R = fixed.qglessQR(A);
Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5x1
10° x
-0.9088
2.7123
-0.8958
0
0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

fixed.forwardSubstitute

X = 5x1
105 x
-0.9088
2.7123
-0.8958
0
0

Input Arguments

R — Upper-triangular input matrix

matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi

Complex Number Support: Yes

B — Linear system factor

matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is

specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments

X — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R"\B.

See Also
fixed.backwardSubstitute | fixed.qlessQR | fixed.qlessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

4-385

4 Functions

4-386

fixed.qlessQR
Q-less QR decomposition

Syntax

R
R

fixed.qlessQR(A)
fixed.qlessQR(A, forgettingFactor)

Description

R = fixed.qlessQR(A) returns the upper-triangular R factor of the QR decomposition A = Q*R.
This is equivalent to computing

[~,R] = qr(A)

R = fixed.qlessQR(A, forgettingFactor) returns the upper-triangular R factor of the QR
decomposition and multiplies R by the forgettingFactor after each row of A is processed.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations (A’A)x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b=11;1; 1; 1; 11;

Compute the upper-triangular factor, R, of A, where A = QR.
R = fixed.qglessQR(A);
Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5x1
105 x
-0.9088
2.7123
-0.8958
0
0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

fixed.glessQR

x = fixed.qlessQRMatrixSolve(A,b)

X = 5x1
10> x
-0.9088
2.7123
-0.8958
0
0

Compute Upper-Triangular Matrix Factor Using Forgetting Factor

Using a forgetting factor with the fixed.qlessQR function is roughly equivalent to the Complex-
and Real Partial-Systolic Q-less QR with Forgetting Factor blocks. These blocks process one row of
the input matrix at a time and apply the forgetting factor after each row is processed. The
fixed.qlessQR function takes in all rows of A at once, but carries out the computation in the same
way as the blocks. The forgetting factor is applied after each row is processed.

Specifying a forgetting factor is useful when you want to stream an indefinite number of rows
continuously, such as reading values from a sensor array continuously, without accumulating the data
without bound.

Without using a forgetting factor, the accumulation is the square root of the number of rows, so
10000 rows would accumulate to 4/10000 = 100.

A = ones(10000,3);
R = fixed.qlessQR(A)
R = 3x3

100.0000 100.0000 100.0000
0 0.0000 0.0000
0 0 0.0000

To accrue with the effective height of m=16 rows, set the forgetting factor to the following.

m=16;
forgettingFactor = exp(-1/(2*m))

forgettingFactor = 0.9692
Using the forgetting factor, fixed.qlessQR would accumulate to about square root of 16.
R = fixed.qlessQR(A, forgettingFactor)
R = 3x3
3.9377 3.9377 3.9377

0 0.0000 0.0000
0 0 0.0000

4-387

4 Functions

4-388

Input Arguments

A — Input matrix
matrix

Input matrix, specified as a matrix.

Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
after each row of A is processed.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Output Arguments

R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = Q*R.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qglessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

fixed.glessQRMatrixSolve

fixed.glessQRMatrixSolve

Solve system of linear equations (A'A)x = B for x using Q-less QR decomposition

Syntax

X fixed.qlessQRMatrixSolve(A, B)

X fixed.qlessQRMatrixSolve(A, B, outputType)
X fixed.qlessQRMatrixSolve(A, B, outputType, forgettingFactor)
Description

x = fixed.qglessQRMatrixSolve(A, B) solves the system of linear equations (A'A)x = B using
QR decomposition, without computing the Q value.

The result of this code is equivalent to computing

[~,R] = qr(A,0);
x = R\(R'\B)

or

x = (A'*A)\B

x = fixed.qlessQRMatrixSolve(A, B, outputType) returns the solution to the system of
linear equations (A'A)x = B as a variable with the output type specified by outputType.

x = fixed.qlessQRMatrixSolve(A, B, outputType, forgettingFactor) returns the
solution to the system of linear equations, with the forgettingFactor multiplied by R after each
row of A is processed.

Examples

Solve a System of Equations Using Q-Less QR Decomposition

This example shows how to solve the system of linear equations (A’A)x = b using QR decomposition,
without explicitly calculating the Q factor of the QR decomposition.

ng('default');
6;
3;
1;
randn(m,n);
randn(n,p);

r
m
n
p
A
b
X fixed.qlessQRMatrixSolve(A,b)

X 3x1

0.2991
0.0523
0.4182

4-389

‘l Functions

4-390

The fixed.qglessQRMatrixSolve function is equivalent to the following code, hoerver the
fixed.qlessQRMatrixSolve function is more efficient and supports fixed-point data types.

x = (A"*A)\b

X = 3x1
0.2991
0.0523
0.4182

Solve System of Equations Specifying an Output Data Type

This example shows how to specify an output data type to solve a system of equations with fixed-point
data.

Define the data representing the system of equations. Define the matrix A as a zero-mean, normally
distributed random matrix with a standard deviation of 1.

rng('default');

m=6;
n = 3;
p=1;
AO® = randn(m,n);
b0 = randn(n,p);

Specify fixed-point data types for A and b as to avoid overflow during the computation of QR.

T.A = fi([],1,22,16);
T.b fi([1,1,22,16);
A = cast(A0, 'like', T.A)

A=6x3 object

0.5377 -0.4336 0.7254
1.8339 0.3426 -0.0630
-2.2589 3.5784 0.7147
0.8622 2.7694 -0.2050
0.3188 -1.3499 -0.1241
-1.3077 3.0349 1.4897

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 22
FractionLength: 16

b = cast(b0, 'like', T.b)

b=3x1 object
1.4090
1.4172
0.6715

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

fixed.glessQRMatrixSolve

WordLength:
FractionLength:

22
16

Specify an output data type to avoid overflow in the back-substitution.

T.x = fi([]1,1,29,12);

Use the fixed.glessQRMatrixSolve function to compute the solution, x.

x = fixed.qlessQRMatrixSolve(A,b,T.x)

x=3x1 object
0.2988
0.0522
0.4180

DataTypeMode:
Signedness:
WordLength:

FractionLength:

RoundingMethod:
OverflowAction:
ProductMode:
ProductWordLength:
ProductFractionLength:
SumMode:
SumWordLength:
SumFractionLength:
CastBeforeSum:

Fixed-point: binary point scaling
Signed

29

12

Floor

Wrap
SpecifyPrecision
29

12
SpecifyPrecision
29

12

true

Compare this result to the result of the built-in MATLAB® operations in double-precision floating-

point.
x0 = (AOQ'*AQ)\b0O
X0 = 3xI

0.2991
0.0523
0.4182

Input Arguments

A — Coefficient matrix
matrix

Coefficient matrix in the linear system of equations (A'A)x = B.

Data Types: single | double | fi
Complex Number Support: Yes

B — Input array
vector | matrix

4-391

4 Functions

4-392

Input vector or matrix representing B in the linear system of equations (A'A)x = B.

Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi|numerictype

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by the
output of the QR decomposition, R after each row of A is processed.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Output Arguments

X — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then x is
an n-by-p matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

fixed.glessQRUpdate

fixed.glessQRUpdate

Update QR factorization

Syntax

R = fixed.qlessQRUpdate(R, vy)

R = fixed.qlessQRUpdate(R, y, forgettingFactor)

Description

R = fixed.qglessQRUpdate(R, y) updates upper-triangular R with vector y.
This syntax is equivalent to

[~,R] = ar([R;y],0);

R = fixed.qlessQRUpdate(R, y, forgettingFactor) updates upper-triangular R with vector
y and multiplies the result by the value specified by forgettingFactor.

This syntax is equivalent to

[~,R] = ar([R;y],0);
R(:) = forgettingFactor * R;

Examples

Update the Upper-Triangular Factor of a Matrix
This example shows how to update the upper-triangular factor of a matrix as new data streams in.

Define a matrix and compute the upper-triangular factor, R, using the fixed.qlessQR function.

rng('default');

m = 20;

n=4;

A = randn(m,n)

A = 20x4
0.5377 0.6715 -0.1022 -1.0891
1.8339 -1.2075 -0.2414 0.0326
-2.2588 0.7172 0.3192 0.5525
0.8622 1.6302 0.3129 1.1006
0.3188 0.4889 -0.8649 1.5442
-1.3077 1.0347 -0.0301 0.0859
-0.4336 0.7269 -0.1649 -1.4916
0.3426 -0.3034 0.6277 -0.7423
3.5784 0.2939 1.0933 -1.0616
2 -0.7873 1.1093 2.3505

.7694

4-393

‘l Functions

pel
Il

fixed.qlessQR(A)
R = 4x4

7.1017 -2.0103 1.1646 0.7999
0 4.8784 0.5745 -0.3222
0 0 3.1658 -0.4570
0 0 0 4.4965

As new data arrives, for example new values from a sensor array, you can use the
fixed.qlessQRUpdate function to update the upper-triangular factor with the new data.

yl = [1,1,1,1];
R = fixed.qglessQRUpdate(R,yl)

R = 4x4

7.1718 -1.8513 1.2927 0.9315
0 5.0412 0.7646 -0.0904
0 0 3.2332 -0.2584
0 0 0 4.6074

y2 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y2)

R = 4x4
7.2411 -1.6954 1.4184 1.0607
® 5.1929 0.9371 0.1191
0 0 3.2892 -0.0962
0 0 0 4.6928

The result of updating the upper-triangular factor as new data arrives is equivalent to computing the
upper-triangular factor with all of the data.

R = fixed.qlessQR([A;y1;y2])
R = 4x4

7.2411 -1.6954 1.4184 1.0607
0 5.1929 0.9371 0.1191
0 0 3.2892 -0.0962
0 0 0 4.6928

When you want to stream an indefinite number of rows continuously, such as reading values from a
sensor array continuously, without accumulating the data without bound, specify a forgetting factor.

forgettingFactor = exp(-1/(2*m))
forgettingFactor = 0.9753

y3 = [1, 11 1; 1];
R = fixed.qglessQRUpdate(R,y3,forgettingFactor)

R = 4x4

4-394

fixed.glessQRUpdate

7.1294 -1.5046 1.5038 1.1582
0 5.2031 1.0676 0.3020
0 0 3.2543 0.0379
0 0 0 4.6431

Input Arguments

R — Upper-triangular input matrix
matrix
Upper triangular input, specified as a matrix.

Data Types: single | double | fi
Complex Number Support: Yes

y — Measurement vector
vector

Measurement input, specified as a vector.

Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
after each row of R is processed.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

Output Arguments

R — Updated upper-triangular matrix
matrix

Updated upper-triangular factor, returned as a matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

4-395

4 Functions

4-396

fixed.qrAB

Compute C = Q"*B and upper-triangular factor R

Syntax

[C, R] = fixed.qrAB(A, B)

[C, R] = fixed.qrAB(A, B, regularizationParameter)
Description

[C, R] = fixed.qrAB(A, B) computes C = Q'*B and upper-triangular factor R. The function
simultaneously performs Givens rotations to A and B to transform A into R and B into C.

This syntax is equivalent to
[C,R] = qr(A,B)

[C, R] = fixed.qrAB(A, B, regularizationParameter) computes C and R using a
regularization parameter value specified by regularizationParameter. When a regularization
parameter is specified, the function simultaneously performs Givens rotations to transform

AlL ~R
A

and
On, p ~C

where A is an m-by-n matrix, Bis a m-by-p matrix, and A is the regularization parameter.

This syntax is equivalent to

[Q,R] = gr([regularizationParameter*eye(n); Al, 0);
C = Q'[zeros(n,p);B];

Examples

Compute C and R Factors
This example shows how to compute the upper-triangular factor R, and C = Q'b.

Define the input matrices, A, and b.

rng('default');

m= 6;
n=3;
p=1
A = randn(m,n)

fixed.qrAB

A = 6x3

.5377
.8339
.2588
.8622
.3188
.3077

' '
HFOONRFO

-0.4336 0.
0.3426 -0.
3.5784 0.
2.7694 -0.

-1.3499 -0.
3.0349 1

b = randn(m,p)

b = 6x1

.4090
.4172
.6715
.2075
L7172
.6302

'
RO OR R

The fixed.qrAB function to returns the upper-triangular factor, R, and C = Q’b.

[C, R] = fixed.qrAB(A,b)

C = 3x1

-0.3284
0.4055
2.5481

R = 3x3

3.3630
0
0

Solve System of Linear Equations Using Regularization

-2.8841 -1.
4.8472 0.
0 1.

7254
0631
7147
2050
1241

.4897

0421
6885
3258

This example shows how to solve a system of linear equations, Ax = b, by computing the upper-
triangular factor R, and C = Q'b. A regularization parameter can improve the conditioning of least
squares problems, and reduce the variance of the estimates when solving linear systems of equations.

Define input matrices, A, and b.

Use the fixed.qrAB function to compute the upper-triangular factor, R, and C = Q'b.

rng('default');
m = 50;
n=2>5;
p=1;
A = randn(m,n);
b = randn(m,p);

4-397

‘l Functions

[C, R] = fixed.qrAB(A, b, 0.01)

C = 5x1
-0.6361
1.7663
1.5892
-2.0638
-0.1327
R = 5x5
9.0631 0.7471 0.4126 -0.3606 0.1883
0 7.2515 -1.1145 0.6011 -0.7544
0 0 7.6132 -0.9460 -0.7062
0 0 0 6.3065 -2.3238
0 0 0 0 5.9297

Use this result to solve Ax = b using x = R\C. Compute x = R\C using the fixed.qrMatrixSolve

function.

x = fixed.qrMatrixSolve(R,C)

X = 5x1

-0.1148
0.2944
0.1650

-0.3355

-0.0224

Compare the result to computing x = A\b directly.
x = A\b

X 5x1

-0.1148
0.2944
0.1650

-0.3355

-0.0224

Input Arguments

A — Input coefficient matrix
matrix

Input coefficient matrix, specified as a matrix.

Data Types: single | double | fi
Complex Number Support: Yes

4-398

fixed.qrAB

B — Right-hand side matrix
matrix

Right-hand side matrix, specified as a matrix.

Data Types: single | double | fi
Complex Number Support: Yes

regularizationParameter — Regularization parameter
nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fi
Output Arguments

C — Linear system factor
matrix

Linear system factor, returned as a matrix that satisfies C = Q'B.

R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = Q*R.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qlessQRUpdate | fixed.qrMatrixSolve

Introduced in R2020b

4-399

4 Functions

4-400

fixed.grMatrixSolve

Solve system of linear equations Ax = B for x using QR decomposition

Syntax

x = fixed.qrMatrixSolve(A, B)

x = fixed.qrMatrixSolve(A, B, outputType)

x = fixed.qrMatrixSolve(A, B, outputType, regularizationParameter)
Description

x = fixed.qrMatrixSolve(A, B) solves the system of linear equations Ax = B using QR
decomposition.

x = fixed.qrMatrixSolve(A, B, outputType) returns the solution to the system of linear
equations Ax = B as a variable with the output type specified by outputType.

x = fixed.qrMatrixSolve(A, B, outputType, regularizationParameter) returns the
solution to the system of linear equations

AIn]X _[on p]
A B

where A is an m-by-n matrix, Bis an m-by-p matrix, and A is the regularization parameter.

Examples

Solve a System of Equations Using QR Decomposition

This example shows how to solve a simple system of linear equations Ax = b, using QR
decomposition.

In this example, define A as a 5-by-3 matrix with a large condition number. To solve a system of linear
equations involving ill-conditioned (large condition number) non-square matrices, you must use QR
decomposition.

rng default;

A = gallery('randsvd', [5,3], 1000000);
b=1[1;1; 1; 1; 11;
x = fixed.qrMatrixSolve(A,b)
X = 3x1
104 x
-2.3777
7.0686
-2.2703

fixed.grMatrixSolve

Compare the result of the fixed.qgrMatrixSolve function with the result of the mldivide or \
function.

X = A\b

X = 3x1

104 x
-2.3777
7.0686
-2.2703

Specify Regularization Parameter in an Overdetermined System

This example shows the effect of a regularization parameter when solving an overdetermined system.
In this example, a quantity y is measured at several different values of time t to produce the
following observations.

t
y

[0 .3 .8 1.11.6 2.3]";
[.82 .72 .63 .60 .55 .50]"';

Model the data with a decaying exponential function

y(t) = c1 + cpet,

The preceding equation says that the vector y should be approximated by a linear combination of two
other vectors. One is a constant vector containing all ones and the other is the vector with
components exp (-t). The unknown coefficients, c¢; and ¢y, can be computed by doing a least-squares
fit, which minimizes the sum of the squares of the deviations of the data from the model. There are
six equations and two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]
E = 6x2
1.0000 1.0000
1.0000 0.7408
1.0000 0.4493
1.0000 0.3329
1.0000 0.2019
1.0000 0.1003

Use the fixed.qrMatrixSolve function to get the least-squares solution.
c = fixed.qrMatrixSolve(E, vy)
c = 2x1

0.4760

0.3413

In other words, the least-squares fit to the data is

4-401

‘l Functions

4-402

y(t) = 0.4760 + 0.3413e.

The following statements evaluate the model at regularly spaced increments in t, and then plot the
result together with the original data:

T (0:0.1:2.5)"';
Y [ones(size(T)) exp(-T)I*c;
plot(T,Y,'-',t,y,'0")

0.85 T T T T

0.8

0.75

0.7

0.65

0.6

0.55

0.5

In cases where the input matrices are ill-conditioned, small positive values of a regularization
parameter can improve the conditioning of the least squares problem, and reduce the variance of the
estimates. Explore the effect of the regularization parameter on the least squares solution for this
data.

figure;

lambda = [0:0.1:0.5];

plot(t,y,'o"', 'DisplayName', 'Original Data');

for i = 1l:1length(lambda)

c = fixed.qrMatrixSolve(E, y, numerictype('double'), lambda(i));

Y = [ones(size(T)) exp(-T)]*c;

hold on

plot(T,Y,'-"', 'DisplayName', ['lambda =', num2str(lambda(i))])
end

legend('Original Data', 'lambda = 0', 'lambda = 0.1', 'lambda = 0.2', 'lambda = 0.3"',

'lambda

(

fixed.grMatrixSolve

0.85 T T T :
2 Original Data
0.8 P lambda =0 J
lambda = 0.1
lambda =0.2
0757 lambda =0.3 |]
lambda =04
lambda = 0.5
07T
0657
0.6
0.55¢
0.5
0.45 ! ; ! !
1] 0.5 1 1.5 2 2.5

Input Arguments

A — Coefficient matrix

matrix

Coefficient matrix in the linear system of equations Ax = B.
Data Types: single | double | fi

Complex Number Support: Yes

B — Input array

vector | matrix

Input vector or matrix representing B in the linear system of equations Ax = B.
Data Types: single | double | fi

Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is

specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

4-403

4 Functions

4-404

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi | numerictype

regularizationParameter — Regularization parameter
nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Output Arguments

X — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then x is
an n-by-p matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qglessQRUpdate | fixed.qrAB

Introduced in R2020b

fixed.Quantizer

fixed.Quantizer

Quantize fixed-point numbers

Syntax

g = fixed.Quantizer

g = fixed.Quantizer(nt, rm,oa)

g = fixed.Quantizer(s,wl,fl,rm,o0a)
g = fixed.Quantizer(Name,Value)

Description

g = fixed.Quantizer creates a quantizer q that quantizes fixed-point (fi) numbers using default
fixed-point settings.

g = fixed.Quantizer(nt, rm,o0a) uses the numerictype (nt) object information and the
RoundingMethod (rm) and OverflowAction (oa) properties.

The numerictype, rounding method, and overflow action apply only during the quantization. The
resulting, quantized q does not have any fimath attached to it.

g = fixed.Quantizer(s,wl,fl,rm,o0a) usesthe Signed (s), WordLength (wl),
FractionLength (f1l), RoundingMethod (rm), and OverflowAction (oa) properties.

g = fixed.Quantizer(Name,Value) creates a quantizer with the property options specified by
one or more Name, Value pair arguments. You separate pairs of Name, Value arguments with
commas. Name is the argument name, and Value is the corresponding value. Name must appear
inside single quotes (' '). You can specify several name-value pair arguments in any order as
Namel,Valuel,..,NameN, ValueN.

Input Arguments
nt

Binary-point, scaled numerictype object or slope-bias scaled, fixed-point numerictype object. If your
fixed.Quantizer uses a numerictype object that has either a Signedness of Auto or unspecified
Scaling, an error occurs.

rm

Rounding method to apply to the output data. Valid rounding methods are: Ceiling, Convergent,
Floor, Nearest, Round, and Zero. The associated property name is RoundingMethod.

Default: Floor
oa

Overflow action to take in case of data overflow. Valid overflow actions are Saturate and Wrap. The
associated property name is OverflowAction.

Default: Wrap

4-405

4 Functions

4-406

S

Logical value, true or false, indicating whether the output is signed or unsigned, respectively. The
associated property name is Signed.

Default: true

wl

Word length (number of bits) of the output data. The associated property name is WordLength.
Default: 16

fl

Fraction length of the output data. The associated property name is FractionLength.

Default: 15

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Bias

The bias is part of the numerical representation used to interpret a fixed-point number on page 4-408.
Along with the slope, the bias forms the scaling of the number.

Default: 0
FixedExponent

Fixed-point exponent associated with the object. The exponent is part of the numerical representation
used to express a fixed-point number on page 4-408.

The exponent of a fixed-point number is equal to the negative of the fraction length. FixedExponent
must be an integer.

Default: -15
FractionLength

Fraction length of the stored integer value of the object, in bits. The fraction length can be any
integer value.

This property automatically defaults to the best precision possible based on the value of the word
length and the real-world value of the fi object.

Default: 15
OverflowAction

Action to take in case of data overflow. Valid overflow actions are Saturate and Wrap. .

fixed.Quantizer

Default: Wrap
RoundingMethod

Rounding method to apply to the output data. Valid rounding methods are: Ceiling, Convergent,
Floor, Nearest, Round, and Zero.

Default: Floor
Signed
Whether the object is signed. The possible values of this property are:

* 1 — signed

* 0 — unsigned

* true — signed

+ false — unsigned

Note Although the Signed property is still supported, the Signedness property always appears in
the numerictype object display. If you choose to change or set the signedness of your numerictype
object using the Signed property, MATLAB updates the corresponding value of the Signedness
property.

Default: true
Signedness

Whether the object is signed, unsigned, or has an unspecified sign. The possible values of this
property are:

* Signed — signed

* Unsigned — unsigned

Default: Signed

Slope

Slope associated with the object. The slope is part of the numerical representation used to express a
fixed-point number on page 4-408. Along with the bias, the slope forms the scaling of a fixed-point
number.

Default: 27-15

SlopeAdjustmentFactor

Slope adjustment associated with the object. The slope adjustment is equivalent to the fractional
slope of a fixed-point number. The fractional slope is part of the numerical representation used to
express a fixed-point number.

SlopeAdjustmentFactor must be greater than or equal to 1 and less than 2.

Default: 1

4-407

4 Functions

WordLength

Word length of the stored integer value of the object, in bits. The word length can be any positive
integer value.

Default: 16

Output Arguments
q

Quantizer that quantizes fi input numbers

Examples

Use fixed.Quantizer to reduce the word length that results from adding two fixed-point numbers.

g = fixed.Quantizer;

x1l = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2);

Use fixed.Quantizer object to change a binary point scaled fixed-point fi to a slope-bias scaled
fixed-point fi

qsb = fixed.Quantizer(numerictype(1,7,1.6,0.2),...
'Round', 'Saturate');
ysb = quantize(qgsb,fi(pi,1,16,13));

More About

Fixed-point numbers
Fixed-point numbers can be represented as
real-worldvalue = (slope x storedinteger) + bias

where the slope can be expressed as

slope = fractionalslope x 2/xedexponent

Tips

+ Usey = quantize(q,x) to quantize input array x using the fixed-point settings of quantizer q.
x can be any fixed-point number fi, except a Boolean value. If x is a scaled double, the x and y
data will be the same, but y will have fixed-point settings. If x is a double or single then y = x.
This functionality lets you share the same code for both floating-point data types and fi objects
when quantizers are present.

* Usen = numerictype(q) to get a numerictype for the current settings of quantizer q.
* Use clone(q) to create a quantizer object with the same property values as q.

+ Ifyouusea fixed.quantizer in code generation, note that it is a handle object and must be
declared as persistent.

4-408

fixed.Quantizer

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also
fi|numerictype | quantizer

Topics
“Set numerictype Object Properties”

Introduced in R2011b

4-409

4 Functions

4-410

fixpt_instrument_purge

Remove corrupt fixed-point instrumentation from model

Compatibility

Note fixpt instrument purge will be removed in a future release.

Syntax

fixpt _instrument purge
fixpt _instrument purge(modelName, interactive)

Description

The fixpt instrument purge script finds and removes fixed-point instrumentation from a model
left by the Fixed-Point Tool and the fixed-point autoscaling script. The Fixed-Point Tool and the fixed-
point autoscaling script each add callbacks to a model. For example, the Fixed-Point Tool appends
commands to model-level callbacks. These callbacks make the Fixed-Point Tool respond to simulation
events. Similarly, the autoscaling script adds instrumentation to some parameter values that gathers
information required by the script.

Normally, these types of instrumentation are automatically removed from a model. The Fixed-Point
Tool removes its instrumentation when the model is closed. The autoscaling script removes its
instrumentation shortly after it is added. However, there are cases where abnormal termination of a
model leaves fixed-point instrumentation behind. The purpose of fixpt instrument purge isto
find and remove fixed-point instrumentation left over from abnormal termination.

fixpt_instrument purge(modelName, interactive) removes instrumentation from model
modelName. interactive is true by default, which prompts you to make each change. When
interactiveis set to false, all found instrumentation is automatically removed from the model.

See Also
autofixexp | fxptdlg

Introduced before R2006a

floor

floor

Round toward negative infinity

Syntax

y = floor(a)

Description

y = floor(a) rounds fi object a to the nearest integer in the direction of negative infinity and
returns the result in i object y.

Examples

Use floor on a Signed fi Object

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)
a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y = floor(a)
y =
3

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 5
FractionLength: 0

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 12.

a

fi(0.025,1,8,12)

a =
0.0249

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

4-411

‘l Functions

floor(a)

<
Il

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0

Compare Rounding Methods
The functions ceil, fix, and floor differ in the way they round fi objects:

* The ceil function rounds values to the nearest integer toward positive infinity.
* The fix function rounds values to the nearest integer toward zero.
* The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a=fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]1");
y = [a ceil(a) fix(a) floor(a)]
y=8x4 object

-2.5000 -2.0000 -2.0000 -3.0000
-1.7500 -1.0000 -1.0000 -2.0000
-1.2500 -1.0000 -1.0000 -2.0000

-0.5000 0 0 -1.0000
0.5000 1.0000 0 0
1.2500 2.0000 1.0000 1.0000
1.7500 2.0000 1.0000 1.0000
2.5000 3.0000 2.0000 2.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

plot(a,y); legend('a','ceil(a)"','fix(a)"', 'floor(a)"', 'location', 'NW");

4-412

floor

3 T T T T T T T T T

a
—ceil{a)

7t fix(a)
floor{a)

-1 L

D -

At

2 F

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.

floor does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.

Data Types: fi
Complex Number Support: Yes

Algorithms

* vy and a have the same fimath object and DataType property.

* When the DataType property of a is single, double, or boolean, the numerictype of y is the
same as that of a.

* When the fraction length of a is zero or negative, a is already an integer, and the numerictype of
y is the same as that of a.

4-413

4 Functions

* When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | nearest | round

Introduced in R2008a

4-414

fma

fma

Multiply and add using fused multiply add approach

Syntax

X = fma(A, B, C)

Description

X = fma(A, B, C) computes A.*B+C using a fused multiply add approach. Fused multiply add
operations round only once, often making the result more accurate than performing a multiplication
operation followed by an addition.

Examples

Multiply and Add Three Inputs Using Fused Multiply Add

This example shows how to use the fma function to calculate A X B + C using a fused multiply add
approach.

Define the inputs and use the fma function to compute the multiply add operation.

half(10);
half(10);
half(2);
fma(a, b, c)

X 0O T

X
1l

half
102

Compare the result of the fma function with the two-step approach of computing the product and
then the sum.

temp = a * b;
X = temp + cC

X =
half

102

Input Arguments

A — Input array
scalar | vector | matrix | multidimensional array

4-415

4 Functions

4-416

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, Tma performs element-wise multiplication followed by addition.

Data Types: single | double | half

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, fma performs element-wise multiplication followed by addition.

Data Types: single | double | half

C — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array.

Data Types: single | double | half

Output Arguments

X — Result of multiply and add operation
scalar | vector | matrix | multidimensional array

Result of multiply and add operation, A.*B+C, returned as a scalar, vector, matrix, or
multidimensional array.

See Also
half

Introduced in R2019a

for

for

Execute statements specified number of times

Syntax

for index = values
statements
end

Description

for index = valuesstatements, end executes a group of statements in a loop for a specified
number of times.

If a colon operation with fi objects is used as the index, then the fi objects must be whole
numbers.

Refer to the MATLAB for reference page for more information.

Example
Use fi in a For Loop

Use a fi object as the index of a for-loop.

oo
i n
—h
.'_l. -
—
=N

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2014b

4-417

4 Functions

fractionlength

Fraction length of quantizer object

Syntax

fractionlength(q)

Description

fractionlength(q) returns the fraction length of quantizer object q.

Algorithms

For floating-point quantizer objects, f= w - e - 1, where w is the word length and e is the exponent
length.

For fixed-point quantizer objects, fis part of the format [w f].

See Also
fi|numerictype | quantizer |wordlength

Introduced before R2006a

4-418

fxpopt

fxpopt

Optimize data types of a system

Syntax

result = fxpopt(model, sud, options)

Description

result = fxpopt(model, sud, options) optimizes the data types in the model or subsystem
specified by sud in the model, model, with additional options specified in the
fxpOptimizationOptions object, options.

Examples

Optimize Fixed-Point Data Types

This example shows how to optimize the data types used by a system based on specified tolerances.
To begin, open the system for which you want to optimize the data types.

model = 'ex auto gain controller';

sud = 'ex auto gain controller/sud';
open_system(model)

(@]
]
m_diff
Real .
Complex x ¥ floating_point re_diff

v
double

J

| >
mag] .
= = + e >
AGC_floatin it
diff
——» convert proe [y—»| convert

input_signal e output_signal

sud

Copyright 2017 The MathWorks, Inc.

Create an fxpOptimizationOptions object to define constraints and tolerances to meet your
design goals. Set the UseParallel property of the fxpOptimizationOptions object to true to
run iterations of the optimization in parallel. You can also specify word lengths to allow in your design
through the AllowableWordLengths property.

opt = fxpOptimizationOptions('AllowableWordLengths', 10:24, 'UseParallel', true)

4-419

‘l Functions

opt =
fxpOptimizationOptions with properties:

MaxIterations: 50
MaxTime: 600
Patience: 10
Verbosity: High
AllowableWordLengths: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
UseParallel: 1

Advanced Options
AdvancedOptions: [1x1 struct]

Use the addTolerance method to define tolerances for the differences between the original
behavior of the system, and the behavior using the optimized fixed-point data types.

tol = 10e-2;
addTolerance(opt, [model '/output signal'l, 1, 'AbsTol', tol);

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in your
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing total bit width.

result = fxpopt(model, sud, opt);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
+ Preprocessing
+ Modeling the optimization problem
- Constructing decision variables
+ Running the optimization solver
Analyzing and transferring files to the workers ...done.
- Evaluating new solution: cost 180, does not meet the tolerances.
- Evaluating new solution: cost 198, does not meet the tolerances.
- Evaluating new solution: cost 216, does not meet the tolerances.
- Evaluating new solution: cost 234, does not meet the tolerances.
- Evaluating new solution: cost 252, does not meet the tolerances.
- Evaluating new solution: cost 270, does not meet the tolerances.
- Evaluating new solution: cost 288, does not meet the tolerances.
- Evaluating new solution: cost 306, meets the tolerances.
- Evaluating new solution: cost 324, meets the tolerances.
- Evaluating new solution: cost 342, meets the tolerances.
- Evaluating new solution: cost 360, meets the tolerances.
- Evaluating new solution: cost 378, meets the tolerances.
- Evaluating new solution: cost 396, meets the tolerances.
- Evaluating new solution: cost 414, meets the tolerances.
- Evaluating new solution: cost 432, meets the tolerances.
- Updated best found solution, cost: 306
- Evaluating new solution: cost 304, meets the tolerances.
- Evaluating new solution: cost 304, meets the tolerances.
- Evaluating new solution: cost 301, meets the tolerances.
- Evaluating new solution: cost 305, does not meet the tolerances.
- Evaluating new solution: cost 305, meets the tolerances.
- Evaluating new solution: cost 301, meets the tolerances.
- Evaluating new solution: cost 299, meets the tolerances.

4-420

fxpopt

Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:

Updated best found
Updated best found
Updated best found
Updated best found
Updated best found

Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
solution,

solution,

solution,

solution,

solution,

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost

299,
296,
299,
291,
296,
299,
300,
296,
301,
303,
299,
304,
300,
cost:
cost:
cost:
cost:
cost:
280,
287,
288,
287,
283,
283,
262,
283,
282,
288,
289,
288,
290,
281,
286,
287,
284,
282,
285,
277,

Updated best found solution, cost:
Updated best found solution, cost:

Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:
Evaluating new solution:

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost

272,
266,
269,
271,
274,
275,
274,
275,
276,
271,
267,
270,
272,
264,
265,
269,
270,
269,

meets the tolerances.
meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.
304
301
299
296
291
meets the tolerances.
meets the tolerances.

does not meet the tolerances.
does not meet the tolerances.

meets the tolerances.

does not meet the tolerances.
does not meet the tolerances.
does not meet the tolerances.
does not meet the tolerances.

meets the tolerances.
meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.
does not meet the tolerances.

meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.
280
277
meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.
meets the tolerances.

does not meet the tolerances.

meets the tolerances.

does not meet the tolerances.

meets the tolerances.
meets the tolerances.
meets the tolerances.
meets the tolerances.

does not meet the tolerances.
does not meet the tolerances.

meets the tolerances.
meets the tolerances.
meets the tolerances.

4-421

‘l Functions

- Evaluating new solution: cost 276, meets the tolerances.
- Evaluating new solution: cost 274, meets the tolerances.
- Updated best found solution, cost: 272
Updated best found solution, cost: 266
+ Optlmlzatlon has finished.
- Neighborhood search complete.
- Maximum number of iterations completed.
+ Fixed-point implementation that met the tolerances found.
- Total cost: 266
- Maximum absolute difference: 0.087035
- Use the explore method of the result to explore the implementation.

(] = = &3
File Toals View Simulation Help
@ - ‘-@ @ I]D? [] E} - {d‘L * D - 5 @ -

floating point

1 S IS —S ————— S EESSSSSSSSESSSSSS————————————————————-—__—————-__-—.—.—.—.—.—.,...,

im_diff
1 I L D L L e e e

Ready Sample based T=0.000

Use the explore method of the OptimizationResult object, result, to launch Simulation Data
Inspector and explore the design containing the smallest total number of bits while maintaining the
numeric tolerances specified in the opt object.

explore(result);

4-422

fxpopt

You can revert your model back to its original state using the revert method of the
OptimizationResult object.

revert(result);

Input Arguments

model — Model containing system under design, sud
character vector

Name of the model containing the system that you want to optimize.

Data Types: char

sud — Model or subsystem whose data types you want to optimize
character vector

Model or subsystem whose data types you want to optimize, specified as a character vector
containing the path to the system.

Data Types: char

options — Additional optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying additional options to use during the data type
optimization process.

Output Arguments

result — Object containing the optimized design
OptimizationResult obhject

Result of the optimization, returned as an OptimizationResult object. Use the explore method of
the object to open the Simulation Data Inspector and view the behavior of the optimized system. You

can also explore other solutions found during the optimization that may or may not meet the
constraints specified in the fxpOptimizationOptions object, options.

See Also

Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

4-423

4 Functions

4-424

fxptdig

Start Fixed-Point Tool

Syntax

fxptdlg('modelname")

Description

fxptdlg('modelname') starts the Fixed-Point Tool for the Simulink model specified by modelname.
You can also access this tool by the following methods:

* From the Apps tab, under Code Generation click Fixed-Point Tool.

* From a subsystem context (right-click) menu, select Fixed-Point Tool.

In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides convenient access
to:

* Model and subsystem parameters that control the signal logging, fixed-point instrumentation
mode, and data type override.

* Plotting capabilities that enable you to plot data that resides in the MATLAB workspace, namely,
simulation results associated with Scope, To Workspace, and root-level Outport blocks, in addition
to logged signal data (see “Signal Logging” in the Simulink User's Guide)

* An interactive automatic data typing feature that proposes fixed-point data types for appropriately
configured objects in your model, and then allows you to selectively accept and apply the data
type proposals

You can launch the Fixed-Point Tool for any system or subsystem, and the tool controls the object
selected in its System under design pane. If Fixed-Point Designer software is installed, the Fixed-
Point Tool displays the name, data type, design minimum and maximum values, minimum and
maximum simulation values, and scaling of each model object that logs fixed-point data. Additionally,
if a signal saturates or overflows, the tool displays the number of times saturation or overflow
occurred.

Note If your model uses accelerator or rapid accelerator simulation modes, the Fixed-Point Tool
changes the simulation mode to normal during range collection, and then sets it back to its original
simulation mode once the range collection simulation is complete.

Overriding Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software.
However, even if you do not have Fixed-Point Designer software, you can configure data type override
settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink software
temporarily overrides fixed-point data types with floating-point data types when simulating the model.

fxptdlg

Note If you use fi on page 4-340 objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You can set fipref on page 4-
340 to prevent the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:
1 Enter the following at the command line.

set param(gcs, 'DataTypeOverride', 'Double’,...
'DataTypeOverrideAppliesTo', 'AllNumericTypes', ...
'MinMaxOverflowLogging', 'ForceOff"')

2 Ifyou use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles or TrueSingles (to be consistent with the
model-wide data type override setting) and the DataTypeOverrideAppliesTo property to A1l
numeric types.

For example, at the MATLAB command line, enter:

p = fipref('DataTypeOverride', 'TrueDoubles',
'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
“Propose Fraction Lengths Using Simulation Range Data” | Fixed-Point Tool

Introduced before R2006a

4-425

4 Functions

4-426

ge

Determine whether real-world value of one fi object is greater than or equal to another

Syntax

c = ge(a,b)
a>=b

Description

¢ = ge(a,b) is called for the syntax a >= b when a or b is a i object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a >= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the ge function to determine whether the real-world value of one fi object is greater than or
equal to another.

ans = logical
0

Input a has a 16-bit word length, while input b has a 32-bit word length. The ge function returns 0
because after quantization, the value of a is slightly greater than that of b.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the i object.

a = fi(pi);
b = pi;
a>=>b

ge

ans = logical
1

The ge function casts b to the same word length as a, and returns 1 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq|gt]|le|lt|ne

Introduced before R2006a

4-427

4 Functions

get

Property values of object

Syntax

value = get(o, 'propertyname')
structure = get(o)

Description

value = get(o, 'propertyname') returns the property value of the property 'propertyname'
for the object o. If you replace 'propertyname' by a cell array of a vector of strings containing
property names, get returns a cell array of a vector of corresponding values.

structure = get(o) returns a structure containing the properties and states of object o.

ocan bea fi, fimath, fipref, numerictype, or quantizer object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* The syntax structure = get(o) is not supported.

See Also
set

Introduced before R2006a

4-428

getlsb

getisb

Least significant bit

Syntax

c = getlshb(a)

Description
c = getlsb(a) returns the value of the least significant bit in a as a ul, 0.
a can be a scalar fi object or a vector fi object.

getlsb only supports fi objects with fixed-point data types.

Examples

The following example uses getlsb to find the least significant bit in the fi object a.

fi(-26, 1, 6, 0);
getlsb(a)

a
C

C

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: ©

You can verify that the least significant bit in the i object a is 0 by looking at the binary
representation of a.

disp(bin(a))

100110

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getmsb

4-429

4 Functions

Introduced in R2007b

4-430

getmsb

getmsb

Most significant bit

Syntax

c = getmsb(a)

Description
c = getmsb(a) returns the value of the most significant bit in a as a ul, 0.
a can be a scalar fi object or a vector fi object.

getmsb only supports fi objects with fixed-point data types.

Examples

The following example uses getmsb to find the most significant bit in the fi object a.

fi(-26, 1, 6, 0);
getmsb(a)

a
C

C

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 1
FractionLength: ©
>>

You can verify that the most significant bit in the fi object a is 1 by looking at the binary
representation of a.

disp(bin(a))

100110

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getlsb

4-431

4 Functions

Introduced in R2007b

4-432

globalfimath

globalfimath

Configure global fimath and return handle object

Syntax

G
G
G

globalfimath
globalfimath('PropertyNamel' , PropertyValuel,...)
globalfimath(f)

Description

G = globalfimath returns a handle object to the global fimath. The global fimath has identical
properties to a fimath object but applies globally.

G = globalfimath('PropertyNamel' PropertyValuel,...) setsthe global fimath using the
named properties and their corresponding values. Properties that you do not specify in this syntax
are automatically set to that of the current global fimath.

G = globalfimath(f) sets the properties of the global fimath to match those of the input fimath
object f, and returns a handle object to it.

Unless, in a previous release, you used the saveglobalfimathpref function to save global fimath

settings to your MATLAB preferences, the global fimath properties you set with the globalfimath

function apply only to your current MATLAB session. It is best practice to remove global fimath from
the MATLAB preferences so that you start each MATLAB session using the default fimath settings.

To remove the global fimath, use the removeglobalfimathpref function.

Examples

Modifying globalfimath
Use the globalfimath function to set, change, and reset the global fimath.

Create a fimath object and use it as the global fimath.
G = globalfimath('RoundMode', 'Floor', 'OverflowMode"', 'Wrap"')
G —3

RoundingMethod: Floor

OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Create another fimath object using the new default.
F1 = fimath
F1 =

RoundingMethod: Floor
OverflowAction: Wrap

4-433

‘l Functions

ProductMode:
SumMode:

FullPrecision
FullPrecision

Create a fi object, A, associated with the global fimath.

A = fi(pi)
A=
3.1416
DataTypeMode:
Signedness:
WordLength:
FractionLength:

Fixed-point: binary point scaling
Signed

16

13

Now set the "SumMode" property of the global fimath to "KeepMSB" and retain all the other property
values of the current global fimath.

G

G

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:
SumWordLength:
CastBeforeSum:

globalfimath('SumMode"', 'KeepMSB")

Floor

Wrap
FullPrecision
KeepMSB

32

true

Change the global fimath by directly interacting with the handle object G.

G.ProductMode = 'SpecifyPrecision’
G =
RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 32
ProductFractionLength: 30
SumMode: KeepMSB
SumWordLength: 32
CastBeforeSum: true

Reset the global fimath to the factory default by calling the reset method on G. This is equivalent to
using the resetglobalfimath function.

reset(G);
G
G —
RoundingMethod:
OverflowAction:
ProductMode:
SumMode:
Tips

Nearest
Saturate
FullPrecision
FullPrecision

If you always use the same fimath settings and you are not sharing code with other people, using
the globalfimath function is a quick, convenient method to configure these settings. However, if

4-434

globalfimath

you share the code with other people or if you use the fiaccel function to accelerate the algorithm
or you generate C code for your algorithm, consider the following alternatives.

Goal

Issue Using globalfimath

Solution

Share code

If you share code with someone
who is using different global
fimath settings, they might see
different results.

Separate the fimath properties
from your algorithm by using
types tables. For more
information, see “Separate Data
Type Definitions from
Algorithm”.

Accelerate your algorithm using
fiaccel or generate C code
from your MATLAB algorithm
using codegen

You cannot use globalfimath
within that algorithm. If you
generate code with one
globalfimath setting and run
it with a different
globalfimath setting, results
might vary. For more
information, see Specifying
Default fimath Values for MEX
Functions.

Use types tables in the
algorithm from which you want
to generate code. This insulates
you from the global settings and
makes the code portable. For
more information, see “Separate
Data Type Definitions from
Algorithm”.

See Also

codegen | fiaccel | fimath | removeglobalfimathpref | resetglobalfimath

Introduced in R2010a

4-435

‘l Functions

4-436

gt

Determine whether real-world value of one fi object is greater than another

Syntax

gt(a,b)
b

A\ ||

C
a
Description

¢ = gt(a,b) is called for the syntax a > b when a or b is a fi object. a and b must have the same
dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a > b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the gt function to determine whether the real-world value of one fi object is greater than
another.

fi(pi);
fi(pi, 1, 32);
b

a
b
a

A2 |

ans = logical
1

Input a has a 16-bit word length, while input b has a 32-bit word length. The gt function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the i object.

a = fi(pi);
b = pi;
a>b

gt

ans = logical
0

The gt function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eqg|ge|le|lt|ne

Introduced before R2006a

4-437

4 Functions

4-438

half

Construct half-precision numeric object

Description

Use the half constructor to assign a half-precision data type to a number or variable. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size.

For more information, see “Floating-Point Numbers”.

Creation

Syntax

a = half(v)

Description

a = half(v) converts the values in v to half-precision.
Input Arguments

v — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical

Object Functions

These functions are supported for use with half-precision inputs.

Math and Arithmetic

abs Absolute value and complex magnitude
acos Inverse cosine in radians

acosh Inverse hyperbolic cosine

asin Inverse sine in radians

asinh Inverse hyperbolic sine

atan Inverse tangent in radians

atan2 Four-quadrant inverse tangent

atanh Inverse hyperbolic tangent

ceil Round toward positive infinity

conj Complex conjugate

half

conv
conv?2
cos
cospi
dot

exp
expml
fft

fft2

fftn
fftshift
fix
floor
fma
hypot
ifft

ifft2
ifftn
ifftshift
imag
ldivide
log
log10
loglp
mean
minus
mldivide
mod
mrdivide
mtimes
plus
powl0
pow2
power
prod
rdivide
real
rem
round
rsqrt
sign
sin
sinh
sinpi
sqrt
sum
tan
tanh
times
uminus
uplus

Convolution and polynomial multiplication

2-D convolution

Cosine of argument in radians

Compute cos(X*pi) accurately

Dot product

Exponential

Compute exp(x)-1 accurately for small values of x
Fast Fourier transform

2-D fast Fourier transform

N-D fast Fourier transform

Shift zero-frequency component to center of spectrum
Round toward zero

Round toward negative infinity

Multiply and add using fused multiply add approach
Square root of sum of squares (hypotenuse)
Inverse fast Fourier transform

2-D inverse fast Fourier transform
Multidimensional inverse fast Fourier transform
Inverse zero-frequency shift

Imaginary part of complex number

Left array division

Natural logarithm

Common logarithm (base 10)

Compute log(1+x) accurately for small values of x
Average or mean value of array

Subtraction

Solve systems of linear equations Ax = B for x
Remainder after division (modulo operation)
Solve systems of linear equations xA = B for x
Matrix multiplication

Addition or append strings

Base 10 power and scale half-precision numbers
Base 2 power and scale floating-point numbers
Element-wise power

Product of array elements

Right array division

Real part of complex number

Remainder after division

Round to nearest decimal or integer

Reciprocal square root

Sign function (signum function)

Sine of argument in radians

Hyperbolic sine

Compute sin(X*pi) accurately

Square root

Sum of array elements

Tangent of argument in radians

Hyperbolic tangent

Multiplication

Unary minus

Unary plus

4-439

4 Functions

Data Types

cast Convert variable to different data type
cell Cell array

double Double-precision arrays

eps Floating-point relative accuracy

Inf Create array of all Inf values

intl6 16-bit signed integer arrays

int32 32-bit signed integer arrays

int64 64-bit signed integer arrays

int8 8-bit signed integer arrays

isa Determine if input has specified data type
isfloat Determine whether input is floating-point data type
islogical Determine if input is logical array

isnan Determine which array elements are NaN
isnumeric Determine whether input is numeric array
isreal Determine whether array uses complex storage
logical Convert numeric values to logicals

NaN Create array of all NaN values

single Single-precision arrays

uint16 16-bit unsigned integer arrays

uint32 32-bit unsigned integer arrays

uint64 64-bit unsigned integer arrays

uint8 8-bit unsigned integer arrays

Relational and Logical Operators

all Determine if all array elements are nonzero or true
and Find logical AND

any Determine if any array elements are nonzero

eq Determine equality

ge Determine greater than or equal to

gt Determine greater than

isequal = Determine array equality
isequaln Determine array equality, treating NaN values as equal

le Determine less than or equal to
It Determine less than

ne Determine inequality

not Find logical NOT

or Find logical OR

Array and Matrix Operations

cat Concatenate arrays

circshift Shift array circularly

colon Vector creation, array subscripting, and for-loop iteration
complex Create complex array

ctranspose Complex conjugate transpose

eye Identity matrix

flip Flip order of elements

full Convert sparse matrix to full storage

horzcat Horizontal concatenation for heterogeneous arrays

iscolumn Determine whether input is column vector

4-440

half

isempty Determine whether array is empty

isfinite Determine which array elements are finite
isinf Determine which array elements are infinite
ismatrix Determine whether input is matrix

isrow Determine whether input is row vector
isscalar Determine whether input is scalar
isvector Determine whether input is vector

length Length of largest array dimension

max Maximum elements of an array

min Minimum elements of an array

ndims Number of array dimensions

numel Number of array elements

ones Create array of all ones

permute Permute array dimensions

repelem Repeat copies of array elements

repmat Repeat copies of array

reshape Reshape array

size Array size

subsasgn Redefine subscripted assignment

subsref Subscripted reference

transpose = Transpose vector or matrix

vertcat Vertical concatenation for heterogeneous arrays
Zeros Create array of all zeros

Language Fundamentals
display Show information about variable or result of expression

Graphics

area Area of 2-D alpha shape
bar Bar graph

barh Horizontal bar graph

fplot Plot expression or function
line Create primitive line

plot 2-D line plot

plot3 3-D point or line plot

plotmatrix Scatter plot matrix
rgbplot Plot colormap

scatter Scatter plot

scatter3 3-D scatter plot

xlim Set or query x-axis limits
ylim Set or query y-axis limits
zlim Set or query z-axis limits

Deep Learning

activations Compute deep learning network layer activations
classify Classify data using a trained deep learning neural network
predict Reconstruct the inputs using trained autoencoder

predictAndUpdateState Predict responses using a trained recurrent neural network and update the
network state

To display the complete list of supported functions, at the MATLAB Command Window, enter:

4-441

‘l Functions

methods (half(1))

Examples

Convert Value to Half Precision
To cast a double-precision number to half precision, use the half function.

a half(pi)

a =
half
3.1406

You can also use the half function to cast an existing variable to half-precision.

v = single(magic(3))
v = 3x3 single matrix
8 1 6
3 5 7
4 9 2
a = half(v)
a =
3x3 half matrix
8 1 6
3 5 7
4 9 2
Limitations
The following functions which support half-precision inputs, do not support complex half-precision
inputs.
* rsqrt
« fma

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

All functions that support half-precision inputs support code generation, except for the rsqrt
function.

4-442

half

In MATLAB, the isobject function returns true with a half-precision input. In generated code, this
function returns false.

If your target hardware does not have native support for half-precision, then half is used as a
storage type, with arithmetic operations performed in single-precision.

Some functions use half only as a storage type and the arithmetic is performed in single-precision,
regardless of the target hardware.

For deep learning code generation, half inputs are cast to single precision and computations are
performed in single precision.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

« CUDA® compute capability of 5.3 or higher is required for generating and executing code with
half-precision data types.

» CUDA toolkit version of 10.0 or later is required for generating and executing code with half-
precision data types.

* You must set the memory allocation (malloc) mode to 'Discrete’ for generating CUDA code.
* Half-precision complex data types are not supported for GPU code generation.
» For GPU Code generation, you can perform half-precision matrix multiplication with real inputs.

* In MATLAB, the isobject function returns true with a half-precision input. In generated code,
this function returns false.

o fft, fft2, fftn, fftshift, ifft, ifft2, ifftn,and ifftshift are not supported for GPU
code generation.

» Ifyour target hardware does not have native support for half-precision, then half is used as a
storage type, with arithmetic operations performed in single-precision.

* Some functions use half only as a storage type and the arithmetic is performed in single-
precision, regardless of the target hardware.

» For deep learning code generation, half inputs are cast to single precision and computations are
performed in single precision. To perform computations in half, set the library target to
"tensorrt' and set the data type to 'FP16"' in coder.DeepLearningConfig.

See Also
double | single

Topics
“Floating-Point Numbers”

“Edge Detection with Sobel Method in Half-Precision” (MATLAB Coder)
Edge Detection with Sobel Method in Half-Precision (GPU Coder)

Introduced in R2018b

4-443

4 Functions

4-444

hex

Hexadecimal representation of stored integer of fi object

Syntax

b = hex(a)

Description
b = hex(a) returns the stored integer of fi object a in hexadecimal format as a character vector.

Fixed-point numbers can be represented as

2—fractionlength

real-worldvalue = x storedinteger

or, equivalently as
real-worldvalue = (slope x storedinteger) + bias
The stored integer is the raw binary number, in which the binary point is assumed to be at the far

right of the word.

Examples

View Stored Integer of fi Object in Hexadecimal Format

Create a signed f1i object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a=fi([-111, 1, 8, 7)

a=I1x2 object
-1.0000 0.9922

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 8
FractionLength: 7

Find the hexadecimal representation of the stored integers of fi object a.

b = hex(a)

‘80 7T

hex

Write Hex Data to a File
This example shows how to write hexadecimal data from the MATLAB workspace into a text file.

Define your data and create a writable text file called hexdata. txt.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

Use the fprintf function to write your data to the hexdata. txt file.

for k = 1:length(a)
fprintf(h, '%s\n', hex(a(k)));
end

fclose(h);

To see the contents of the file you created, use the type function.
type hexdata.txt

0000
1000
2000
3000
4000
5000
6000
7000
8000
9000
aboo
b00O
c000
dooo
€000
000

Read Hex Data From a File
This example shows how to read hexadecimal data from a text file back into the MATLAB workspace.

Define your data, create a writable text file called hexdata. txt, and write your data to the
hexdata. txt file.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

for k = 1:length(a)
fprintf(h, '%s\n', hex(a(k)));
end

fclose(h);

4-445

‘l Functions

Open hexdata. txt for reading and read its contents into a workspace variable
h = fopen('hexdata.txt', 'r');

nextline = '';
str = '";

while ischar(nextline)
nextline = fgetl(h);
if ischar(nextline)
str = [str; nextline];
end
end

fclose(h);

Create a fi object with the correct scaling and assign it the hex values stored in the str variable.

b =fi([], 0, 16, 16);
b.hex = str

b=16x1 object
0
.0625
.1250
.1875
.2500
.3125
.3750
.4375
.5000
.5625
.6250
.6875
.7500
.8125
.8750
.9375

[cNoNoNoNoNoNoNoNoNoNoNoNoNOoNO]

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 16

Input Arguments

a — Stored integer
f1i object

Stored integer, specified as a fi object.

Data Types: fi

See Also
bin|dec|oct|storedInteger

4-446

hex

Introduced before R2006a

4-447

‘l Functions

4-448

hex2num

Convert hexadecimal string to number using quantizer object

Syntax

X = hex2num(q,h)
[x1,x2,...] = hex2num(q,hl,h2,...)

Description

x = hex2num(q, h) converts hexadecimal character vector h to numeric matrix x. The attributes of
the numbers in x are specified by quantizer object g. When h is a cell array, hex2num returns x as
a cell array of the same dimension containing numbers. For fixed-point hexadecimal representations,
hex2num uses two's complement representation. For floating-point, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point
conversion zero-fills on the left. Floating-point conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,hl,h2,...) converts hexadecimal representations h1l, h2,... to
numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that num2hex returns the
hexadecimal representations in a column.

Examples

To create all the 4-bit fixed-point two's complement numbers in fractional form, use the following
code.

g = quantizer([4 31);

h=['73FB';'"'62EA'";'51D9';'40C28'];

x = hex2num(q,h)

X =
0.8750 0.3750 -0.1250 -0.6250
0.7500 0.2500 -0.2500 -0.7500
0.6250 0.1250 -0.3750 -0.8750
0.5000 0 -0.5000 -1.0000

See Also

bin2num | num2bin | num2hex | num2int

Introduced before R2006a

horzcat

horzcat

Concatenate multiple fi objects horizontally

Syntax
C = horzcat(A,B)
C = horzcat(Al,A2,..An)

Description

C = horzcat(A,B) concatenates B horizontally to the end of A when A and B have compatible sizes
(the lengths of the dimensions match except in the second dimension).

C = horzcat(Al,A2,..An) concatenates Al1,A2, .., An horizontally.

horzcat is equivalent to using square brackets for horizontally concatenating arrays. For example,
[A,B] or [A B] is equal to horzcat(A,B) when A and B are compatible arrays.

Note The fimath and numerictype properties of a concatenated matrix of fi objects, C, are taken
from the leftmost fi object in the list A1,A2, .., An.

Input Arguments

A — First input
scalar | vector | matrix | multidimensional array

First input, specified as a scalar, vector, matrix, or multidimensional array.

B — Second input
scalar | vector | matrix | multidimensional array

Second input, specified as a scalar, vector, matrix, or multidimensional array.

The elements of B are concatenated to the end of the first input along the second dimension. The
sizes of the input arguments must be compatible. For example, if the first input is a matrix of size 3-
by-2, then B must have 3 rows.

Al,A2,..An — List of inputs
scalar | vector | matrix | multidimensional array

List of inputs, specified as a comma-separated list of elements to concatenate in the order they are
specified.

Any number of matrices can be concatenated within one pair of brackets. Multidimensional arrays
are horizontally concatenated along the second dimension.

The inputs must have compatible sizes. For example, if Al is a column vector of length m, then the
remaining inputs must each have m rows to concatenate horizontally.

4-449

4 Functions

Tips

Horizontal and vertical concatenation can be combined together, asin [1 2;3 4].

The matrices in a concatenation expression can themselves be formed via a concatenation, as in
[a b;[c d]I.

[A B;C] is allowed if the number of rows of A equals the number of rows of B and if the number
of columns of A plus the number of columns of B equals the number of columns of C.

When concatenating an empty array to a nonempty array, horzcat omits the empty array in the
output. For example,

horzcat(fi([1 2]),[])
ans =

1 2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
vertcat

Introduced before R2006a

4-450

innerprodintbits

innerprodintbits

Number of integer bits needed for fixed-point inner product

Syntax

innerprodintbits(a,b)

Description

innerprodintbits(a,b) computes the minimum number of integer bits necessary in the inner
product of a' *b to guarantee that no overflows occur and to preserve best precision.

* aand b are fi vectors.

* The values of a are known.

* Only the numeric type of b is relevant. The values of b are ignored.

Examples

The primary use of this function is to determine the number of integer bits necessary in the output Y
of an FIR filter that computes the inner product between constant coefficient row vector B and state
column vector Z. For example,

for k=1:1length(X);
Z = [X(k);Z(1l:end-1)];

Y(k) =B * Z;
end
Algorithms

In general, an inner product grows 1og2 (n) bits for vectors of length n. However, in the case of this
function the vector a is known and its values do not change. This knowledge is used to compute the
smallest number of integer bits that are necessary in the output to guarantee that no overflow will
occur.

The largest gain occurs when the vector b has the same sign as the constant vector a. Therefore, the
largest gain due to the vector a is a*sign(a'), which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no overflow occurs in the inner
product is computed by:

n = ceil(log2(sum(abs(a)))) + number of integer bits in b + 1 sign bit

The extra sign bit is only added if both a and b are signed and b attains its minimum. This prevents
overflow in the event of (-1)*(-1).

Introduced before R2006a

4-451

4 Functions

4-452

int
Get stored integer value of a fi object

Syntax
i = int(a)
Description

i = int(a) returns the integer value of a fi object, stored in one of the built-in integer data types.

Examples

Get the Stored Integer Value of a fi Object

Create a fi object with default settings. Use the int function to get its stored integer value. The
output is an int16 because the input used the default word length of 16-bits.

a = fi(pi);

b = int(a)

b = intlé
25736

Create a fi object that uses a 20-bit word length and get the stored integer value of the fi object.

a = fi(pi,1,20);

b = int(a)

b = int32
411775

The output is an int32 to accommodate the larger input word length.

Input Arguments

a — Fixed-point numeric object
scalar | vector | matrix | multidimensional array

Fixed-point numeric object from which you want to get the stored integer value. The word length of
the input determines the data type of the output.

Data Types: fi
Complex Number Support: Yes

Output Arguments

i — Stored integer value
scalar | vector | matrix | multidimensional array

int

Stored integer value of the input fi object, returned as one of the built-in integer data types. The
word length of the input determines the data type of the output. The output has the same dimensions
as the input.

See Also

Functions
bin | hex | oct | sdec | storedInteger

Introduced in R2006a

4-453

4 Functions

int8
Convert fi object to signed 8-bit integer

Syntax

c = int8(a)

Description

Cc = int8(a) returns the built-in int8 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int8.

Examples

This example shows the int8 values of a fi object.

a
C

fi([-pi 0.1 pi],1,8);
int8(a)

C

-3 0 3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
intl6 | int32 | int64 | storedInteger |uintl6 | uint32 | uint64 | uint8

Introduced before R2006a

4-454

intl6

intl6

Convert fi object to signed 16-bit integer

Syntax

c = intl6(a)

Description

¢ = intl6(a) returns the built-in int16 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int16.

Examples

This example shows the int16 values of a fi object.

a
C

fi([-pi 0.1 pil,1,16);
intl6(a)

C

-3 0 3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int32 | int64 | int8 | storedInteger | uintl1l6 | uint32 | uint64 | uint8

Introduced before R2006a

4-455

4 Functions

int32

Convert fi object to signed 32-bit integer

Syntax

c = int32(a)

Description

¢ = int32(a) returns the built-in int32 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int32.

Examples

This example shows the int32 values of a fi object.

a
C

fi([-pi 0.1 pil,1,32);
int32(a)

C

-3 0 3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
intl6 | int64 | int8 | storedInteger | uintl1l6 | uint32 | uint64 | uint8

Introduced before R2006a

4-456

int64

int64d

Convert fi object to signed 64-bit integer

Syntax

c = int64(a)

Description

C = int64(a) returns the built-in int64 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int64.

Examples

This example shows the int64 values of a fi object.

a
C

fi([-pi 0.1 pil,1,64);
int64(a)

C

-3 0 3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
int16 | int32 | int8 | storedInteger | uint1l6 | uint32 | uint64 | uint8

Introduced in R2008b

4-457

‘l Functions

intmax

Largest positive stored integer value representable by numerictype of fi object

Syntax

X = intmax(a)

Description
X = intmax(a) returns the largest positive stored integer value representable by the numerictype
of a.
Examples
a = fi(pi, true, 16, 12);
X = intmax(a)
X =
32767
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0

See Also

eps | intmin | lowerbound | Lsb | range | realmax | realmin | stripscaling | upperbound

Introduced before R2006a

4-458

intmin

iIntmin
Smallest stored integer value representable by numerictype of fi object

Syntax

X = intmin(a)

Description

X = intmin(a) returns the smallest stored integer value representable by the numerictype of a.

Examples
a = fi(pi, true, 16, 12);
X = intmin(a)
X =
-32768
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0

See Also

eps | intmax | lowerbound | 1sb | range | realmax | realmin | stripscaling | upperbound

Introduced before R2006a

4-459

‘l Functions

isboolean

Determine whether input is Boolean

Syntax

tf = isboolean(a)
tf isboolean(T)

Description

tf = isboolean(a) returns 1 (true) when the DataType property of fi object a is Boolean.
Otherwise, it returns 0 (false).

tf = isboolean(T) returns 1 (true) when the DataType property of numerictype object T is
Boolean. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Boolean

Create a fi object and determine if its data type is Boolean.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf = isboolean(a)

tf = logical
0

a = fi(pi, 'DataType', 'Boolean')

a =
1

DataTypeMode: Boolean
tf = isboolean(a)

tf = logical
1

4-460

isboolean

Determine Whether numerictype Object is a Boolean

Create a numerictype object and determine if its data type is Boolean.

T

numerictype
T:
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isboolean(T)

tf = logical
0

—
1}

numerictype('Boolean')

DataTypeMode: Boolean
tf = isboolean(T)

tf = logical
1

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also

isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |

isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4-461

‘l Functions

isdouble

Determine whether input is double-precision data type

Syntax

tf
tf

isdouble(a)
isdouble(T)

Description

tf = isdouble(a) returns 1 (true) when the DataType property of fi object a is double.
Otherwise, it returns 0 (false).

tf = isdouble(T) returns 1 (true) when the DataType property of numerictype object T is
double. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a double

Create a fi object and determine if its data type is double.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf = isdouble(a)

tf = logical
0

a = fi(pi, 'DataType', 'double')

a =
3.1416

DataTypeMode: Double
tf = isdouble(a)

tf = logical
1

4-462

isdouble

Determine Whether numerictype Object is a double

Create a numerictype object and determine if its data type is double.

T

numerictype
T:
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

tf = isdouble(T)
tf = logical
0

T = numerictype('Double")

DataTypeMode: Double
tf = isdouble(T)

tf = logical
1

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also

isboolean | isfixed | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint |

isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4-463

‘l Functions

4-464

isequal

Determine whether real-world values of two fi objects are equal, or determine whether properties of
two fimath, numerictype, or quantizer objects are equal

Syntax

y = isequal(a,b,..)
y = isequal(F,G,..)
y = isequal(T,U,..)
y = isequal(q,r,..)
Description

y = isequal(a,b,..) returns logical 1 (true) if all the fi object inputs have the same real-world
value. Otherwise, it returns logical 0 (false).

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

y = isequal(F,G,..) returns logical 1 (true) if all the fimath object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(T,U,..) returns logical 1 (true) if all the numerictype object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(q,r,..) returns logical 1 (true) if all the quantizer object inputs have the same
properties. Otherwise, it returns logical 0 (false).

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

format long
a = fi(pi)

a =
3.141601562500000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

b = fi(pi,1,32)

b:
3.141592653468251

isequa

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 29

isequal(a,b)

<
1]

logical
0

<
]

Input a has a 16-bit word length, while input b has a 32-bit word length. The isequal function
returns 0 because the two f1i objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the i object.

a = fi(pi);

b = pi;

y = isequal(a,b)
y = logical

1

The isequal function casts b to the same word length as a, and returns 1. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

Compare Two fimath Objects

Use the isequal function to determine if two fimath objects have the same properties.

fimath('OverflowAction', 'Saturate', 'RoundingMethod', 'Convergent');
fimath('RoundingMethod', 'Convergent', 'ProductMode', 'FullPrecision');
isequal(F,G)

< < oo™
I

logical
1

Compare Two numerictype Objects

Use the isequal function to determine if two numerictype objects have the same properties.

T = numerictype;
U = numerictype(true, 16, 15);
y = isequal(T,U)

4-465

4 Functions

4-466

y = logical
1

Compare Two quantizer Objects

Use the isequal function to determine if two quantizer objects have the same properties.

q = quantizer('fixed', [5 41);
r = quantizer('fixed', 'floor', 'saturate', [5 4]);
y = isequal(q,r)
y = logical
1

Input Arguments

a,b,..— fi objects to be compared
scalar | vector | matrix | multidimensional array

f1i objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi
Complex Number Support: Yes

F,G,..— fimath objects to be compared
fimath object

fimath objects to be compared.

T,U,.. — numerictype objects to be compared
scalar | vector | matrix | multidimensional array

numerictype objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.

q,r,.— quantizer objects to be compared
quantizer object

quantizer objects to be compared.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq| fi| fimath | ispropequal | numerictype | quantizer

isequal

Introduced before R2006a

4-467

‘l Functions

4-468

isequivalent

Determine if two numerictype objects have equivalent properties

Syntax

y = isequivalent (T1, T2)

Description
y = isequivalent (T1, T2) determines whether the numerictype object inputs have

equivalent properties and returns a logical 1 (true) or 0 (false). Two numerictype objects are
equivalent if they describe the same data type.

Examples

Compare two numerictype objects

Use isequivalent to determine if two numerictype objects have the same data type.

Tl = numerictype(l, 16, 2"~-12, 0)

Tl =
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 2"-12
Bias: 0
T2 = numerictype(l, 16, 12)
T2 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12

isequivalent(T1,T2)
ans = logical

1

Although the Data Type Mode is different for T1 and T2, the function returns 1 (true) because the
two objects have the same data type.

isequivalent

Input Arguments

Tl, T2 — Inputs to be compared
numerictype objects

Inputs to be compared, specified as numerictype objects.

See Also
eq | isequal | ispropequal

Introduced in R2014a

4-469

4 Functions

isfi
Determine whether variable is fi object

Syntax

tf = isfi(a)

Description

tf = isfi(a) returns 1 (true)if ais a fi object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fi Object

Create a variable and determine whether it is a fi object.

a = fi(pi);
tf = isfi(a)

tf = logical
1

b = single([1 2 3 4]);
tf = isfi(b)

tf = logical
0

Input Arguments

a — Input array
array

Input array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Avoid using the isfi function in code that you intend to convert using the automated workflow.
The value returned by isf1i in the fixed-point code might differ from the value returned in the
original MATLAB algorithm. The behavior of the fixed-point code might differ from the behavior of
the original algorithm.

4-470

isfi

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi|isfimath|isfipref |isnumerictype|isquantizer

Introduced before R2006a

4-471

‘l Functions

isfimath
Determine whether variable is fimath object

Syntax

tf = isfimath(F)

Description

tf = isfimath(F) returns 1 (true)if F is a fimath object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fimath Object

Create a variable and determine whether it is a fimath object

F = fimath;
tf = isfimath(F)
tf = logical

1
T = numerictype;
tf = isfimath(T)
tf = logical

0
A= fi([1 2 3 4]);

tf = isfimath(A)

tf logical

(o}

Input Arguments

F — Input array
array

Input array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4-472

isfimath

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer

Introduced before R2006a

4-473

‘l Functions

isfimathlocal

Determine whether fi object has local fimath

Syntax

tf = isfimathlocal(a)

Description

tf = isfimathlocal(a) returns 1 (true) if the fi object a has a local fimath object. Otherwise,
it returns 0 (false).

Examples

Determine Whether fi Object has Local fimath

Create a fi object and determine whether it has local fimath.

F = fimath;
a = fi(pi);
b = fi(pi,F);
tf a = isfimathlocal(a)
tf a = logical
0
tf b = isfimathlocal(b)
tf b = logical
1

Input Arguments

a — Input array
array

Input array.
Data Types: fi
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4-474

isfimathlocal

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi|isfimathlocal | isfipref | isnumerictype | isquantizer | removefimath |
sfi|ufi

Introduced in R2009b

4-475

‘l Functions

isfipref
Determine whether input is fipref object

Syntax

tf = isfipref(P)

Description

tf = isfipref(P) returns 1 (true) if Pis a fipref object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a fipref Object

Create a variable and determine whether it is a fipref object.

P = fipref;
tf = isfipref(P)

tf = logical
1

F = fimath;
tf = isfipref(F)

tf = logical
0

Input Arguments

P — Input array
array

Input array.

See Also
fipref |isfi|isfimath | isnumerictype | isquantizer

Introduced in R2008a

4-476

isfixed

isfixed

Determine whether input is fixed-point data type
Syntax

tf = isfixed(a)

tf = isfixed(T)
tf isfixed(q)

Description

tf = isfixed(a) returns 1 (true) when the DataType property of fi object a is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(T) returns 1 when the DataType property of numerictype object T is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(q) returns 1 when q is a fixed-point quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a Fixed-Point Data Type

Create a fi object and determine whether it is a fixed-point data type.
a = fi([pi pi/2])

a=1x2 object
3.1416 1.5708

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf

isfixed(a)

tf logical

=

Create a numerictype object and determine whether it is a fixed-point data type.

T = numerictype('Double")

T

DataTypeMode: Double

4-477

‘l Functions

tf

isfixed(T)

tf

logical

Create a quantizer object and determine whether it is a fixed-point data type.

g = quantizer('mode', 'single')
q =
DataMode = single
Format = [32 8]
tf = isfixed(q)
tf = logical

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

q — Input quantizer object
scalar

Input quantizer object, specified as a scalar.

See Also

isboolean | isdouble | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4-478

isfloat

isfloat

Determine whether input is floating-point data type

Syntax

isfloat(a)
isfloat(T)
isfloat(q)

Yy
Yy
Yy

Description

y = isfloat(a) returns 1 when the DataType property of i object a is single, or double, and
0 otherwise.

y = isfloat(T) returns 1 when the DataType property of numerictype object T is single, or
double, and 0 otherwise.

y = isfloat(q) returns 1 when q is a floating-point quantizer, and 0 otherwise

See Also
isboolean | isdouble | isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4-479

‘l Functions

isnumerictype

Determine whether input is numerictype object

Syntax

tf = isnumerictype(T)

Description

tf = isnumerictype(T) returns 1 (true)if T is a numerictype object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a numerictype Object

Create a variable and determine whether it is a numerictype object.

T = numerictype;
tf = isnumerictype(T)

tf = logical
1

g = quantizer;
tf = isnumerictype(q)

tf

logical

Input Arguments

T — Input array
array

Input array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4-480

isnumerictype

See Also
isfi|isfimath | isfipref | isquantizer | numerictype

Introduced before R2006a

4-481

‘l Functions

ispropequal

Determine whether properties of two fi objects are equal

Syntax

tf = ispropequal(a,b)

Description

tf = ispropequal(a,b) returns 1 (true)if a and b are both fi objects and have the same
properties. Otherwise, it returns 0 (false).

Examples

Determine Whether Properties of Two fi Objects are Equal

Create two fi objects and determine whether they have the same properties.

F = fimath;
a = fi(pi);
b = fi(pi,F);
c = fi(pi/2,F);
d = fi(pi/2,0);
tf = ispropequal(a,b)
tf = logical
tf = ispropequal(b,c)
tf = logical
0
tf = ispropequal(c,d)
tf = logical

Input Arguments

a,b — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.

Data Types: fi

4-482

ispropequal

Tips
To compare the real-world values of two fi objects a and b, use a == b or isequal(a,b).

See Also
fi|isequal

Introduced before R2006a

4-483

‘l Functions

isquantizer

Determine whether input is quantizer object

Syntax

tf = isquantizer(q)

Description

tf = isquantizer(q) returns 1 (true) when q is a quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Variable is a quantizer Object

Create a variable and determine whether it is a quantizer object.

g = quantizer('fixed', 'Ceiling', 'Wrap', [16 12])
q:
DataMode = fixed
RoundMode = ceil
OverflowMode = wrap
Format = [16 12]

tf = isquantizer(q)

tf = logical
1

y = quantize(q, [pi pi/2])
y = 1Ix2

3.1416 1.5708

tf = isquantizer(y)

tf = logical
0

Input Arguments

g — Input array
array

4-484

isquantizer

Input array.

See Also
isfi|isfimath | isfipref | isnumerictype | quantizer

Introduced in R2008a

4-485

‘l Functions

4-486

isscaleddouble

Determine whether input is scaled double data type

Syntax

tf
tf

isscaleddouble(a)
isscaleddouble(T)

Description

tf = isscaleddouble(a) returns 1 (true) when the DataType property of fi object a is
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaleddouble(T) returns 1 (true) when the DataType property of numerictype object
T is ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Scaled Double

Create a fi object and determine whether its DataType property is set to ScaledDouble.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf = isscaleddouble(a)

tf = logical

0
T = numerictype('DataType', 'ScaledDouble"');
a = fi(pi,T)

Q
|

3.1416

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

tf = isscaleddouble(a)

isscaleddouble

tf = logical
1

Determine Whether numerictype Object is a Scaled Double

Create a numerictype object and determine whether its DataType property is set to
ScaledDouble.

T = numerictype

T

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

tf = isscaleddouble(T)
tf = logical
0

T = numerictype('DataType', 'ScaledDouble")

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isscaleddouble(T)

tf = logical
1

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input i object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

4-487

4 Functions

See Also
isboolean | isdouble | isfixed | isfloat | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4-488

isscaledtype

isscaledtype

Determine whether input is fixed-point or scaled double data type

Syntax

tf
tf

isscaledtype(a)
isscaledtype(T)

Description

tf = isscaledtype(a) returns 1 (true) when the DataType property of fi object a is Fixed or
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaledtype(T) returns 1 (true) when the DataType property of numerictype object T

is Fixed or ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Fixed-Point or Scaled Double Data Type
Create a fi object and determine whether its DataType property is set to Fixed or ScaledDouble.

tf = isscaledtype(a)

tf = logical
1

Create a numerictype object and determine whether its DataType property is set to Fixed or
ScaledDouble.

Tl
tf

numerictype('DataType', 'ScaledDouble');
isscaledtype(T1)

tf = logical
1

T2
tf

numerictype('DataType', 'Single');
isscaledtype(T2)

tf = logical
0

4-489

4 Functions

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input i object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle | numerictype

Introduced in R2008a

4-490

isscalingbinarypoint

isscalingbinarypoint
Determine whether input has binary point scaling

Syntax

tf
tf

isscalingbinarypoint(a)
isscalingbinarypoint(T)

Description

tf = isscalingbinarypoint(a) returns 1 (true) when the fi object a has binary point scaling
or trivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial
when the slope is an integer power of two and the bias is zero.

tf = isscalingbinarypoint(T) returns 1 (true) when the numerictype object T has binary
point scaling or trivial slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Binary Point Scaling

Create a fi object and determine whether it has binary point scaling.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf

isscalingbinarypoint(a)

tf logical

b = fi(pi,1,16,3,2)

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 3
Bias: 2

tf = isscalingbinarypoint(b)

4-491

‘l Functions

4-492

tf = logical
0

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingbinarypoint returns 1.

¢ = fi(pi,1,16,4,0)
C =
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 272
Bias: 0
tf = isscalingbinarypoint(c)

tf = logical
1

Create a numerictype object and determine whether it has binary point scaling.

T = numerictype
T=
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

tf = isscalingbinarypoint(T)
tf = logical

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input i object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

isscalingbinarypoint

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2010b

4-493

‘l Functions

4-494

isscalingslopebias
Determine whether input has nontrivial slope and bias scaling

Syntax

tf
tf

isscalingslopebias(a)
isscalingslopebias(T)

Description

tf = isscalingslopebias(a) returns 1 (true) when the fi object a has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

tf = isscalingslopebias(T) returns 1 (true) when the numerictype object T has nontrivial
slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Nontrivial Slope and Bias Scaling

Create a fi object and determine whether it has nontrivial slope and bias scaling.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf

isscalingslopebias(a)

tf

logical

(o)

b = fi(pi,1,16,3,1)

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 3
Bias: 1

tf = isscalingslopebias(b)

isscalingslopebias

tf = logical
1

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingslopebias returns 0.

¢ = fi(pi,1,16,4,0)
C =
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 272
Bias: 0
tf = isscalingslopebias(c)

tf

logical

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

T = numerictype
T=
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isscalingslopebias(T)

tf = logical

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input i object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

4-495

4 Functions

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingunspecified | issingle

Introduced in R2010b

4-496

isscalingunspecified

isscalingunspecified

Determine whether input has unspecified scaling

Syntax

tf =
tf

isscalingunspecified(a)
isscalingunspecified(T)

Description

tf = isscalingunspecified(a) returns 1 (true)if fi object a has a fixed-point or scaled
double data type and its scaling has not been specified.

tf = isscalingunspecified(T) returns 1 (true)if numerictype object T has a fixed-point or
scaled double data type and its scaling has not been specified.

Examples

Determine Whether Input has Unspecified Scaling

Create a numerictype object and determine whether it has unspecified scaling.

Tl
T1

tf
tf

T2
T2

tf
tf

numerictype(0)

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 16

isscalingunspecified(T1)

logical

numerictype(0,24,12, 'DataType', 'ScaledDouble")

DataTypeMode: Scaled double: binary point scaling
Signedness: Unsigned
WordLength: 24
FractionLength: 12

isscalingunspecified(T2)

logical

4-497

4 Functions

4-498

Create a fi object and determine whether it has unspecified scaling.

a = fi(pi,1)
a =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13
tf = isscalingunspecified(a)
tf = logical

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | issingle

Introduced in R2010b

issigned

issigned

Determine whether fi object is signed

Syntax

tf = issigned(a)

Description

tf = issigned(a) returns 1 (true) if the fi object a is signed. Otherwise, it returns 0 (false).
Examples

Determine Whether fi Object is Signed

Create a i object and determine whether it is signed or unsigned.

al

fi(pi,1)
al

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf = issigned(al)

tf logical

a2 = fi(pi,0)

a2 =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 14

tf = issigned(a2)

tf = logical
0

If a numerictype object with Auto Signedness is used to create a i object, the Signedness

property of the fi object automatically defaults to Signed.

T = numerictype('Signedness', "Auto')

4-499

‘l Functions

4-500

DataTypeMode: Fixed-point: binary point scaling
Signedness: Auto
WordLength: 16
FractionLength: 15

a3 = fi(pi,T)
a3

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

tf = issigned(a3)

tf logical

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
isfi|isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified

Introduced before R2006a

issingle

issingle
Determine whether input is single-precision data type

Syntax

tf = issingle(a)
tf issingle(T)

Description

tf = issingle(a) returns 1 (true) when the DataType property of fi object a is single.
Otherwise, it returns 0 (false).

tf = issingle(T) returns 1 (true) when the DataType property of numerictype object T is
single. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Single-Precision Data Type

Create a i object and determine whether it is single-precision data type.
a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

tf = issingle(a)

tf logical

Create a numerictype object and determine whether it is single-precision data type.

T

numerictype('Single")

T

DataTypeMode: Single

tf = issingle(T)

tf logical

4-501

4 Functions

4-502

Input Arguments

a — Input fi object
scalar | vector | matrix | multidimensional array

Input i object, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified

Introduced in R2008a

isslopebiasscaled

isslopebiasscaled

Determine whether numerictype object has nontrivial slope and bias scaling

Syntax

tf = isslopebiasscaled(T)

Description

tf = isslopebiasscaled(T) returns 1 (true) when numerictype T has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

Examples

Determine Whether numerictype Object has Nontrivial Slope and Bias Scaling

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

Tl = numerictype

Tl =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
tf = isslopebiasscaled(T1)
tf = logical
0

T2 = numerictype('DataTypeMode', 'Fixed-point: slope and bias scaling',...
'"WordLength', 32, 'Slope', 2"-2, 'Bias', 4)

T2 =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 32
Slope: 0.25
Bias: 4

tf = isslopebiasscaled(T2)
tf

logical

4-503

‘l Functions

T3 = numerictype('DataTypeMode', 'Fixed-point: slope and bias scaling',...
'WordLength', 32, 'Slope', 272, 'Bias', 0)

T3 =
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 32
Slope: 272
Bias: 0
tf = isslopebiasscaled(T3)
tf = logical
0

Input Arguments

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype | issingle |
numerictype

Introduced in R2008a

4-504

le

Determine whether real-world value of fi object is less than or equal to another

Syntax

c = le(a,b)
a<=b

Description

¢ = le(a,b) is called for the syntax a <= b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a <= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the le function to determine whether the real-world value of one fi object is less than or equal
to another.

Input a has a 16-bit word length, while input b has a 32-bit word length. The le function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the i object.

a = fi(pi);
b = pi;
a<=b

4-505

4 Functions

4-506

ans = logical
1

The le function casts b to the same word length as a, and returns 1 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
» Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eg|ge|gt|lt|ne

Introduced before R2006a

logreport

logreport

Quantization report

Syntax

logreport(a)
logreport(a, b, ...)

Description

logreport(a) displays the minlog, maxlog, Llowerbound, upperbound, noverflows, and

nunderflows for the fi object a.

logreport(a, b, ...) displays the report for each fi objecta, b,

Examples

The following example produces a logreport for fi objects a and b:

fipref('LoggingMode', 'On');
a fi(pi);
b fi(randn(10),1,8,7);

Warning: 35 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

Warning: 2 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

logreport(a,b)

logreport(a,b)

minlog maxlog lowerbound upperbound noverflows
a 3.141602 3.141602 -4 3.999878 0
b -1 0.9921875 -1 0.9921875 35

See Also
fipref | quantize | quantizer

Introduced in R2008a

nunderflows
0
2

4-507

4 Functions

lowerbound

Lower bound of range of fi object

Syntax

lowerbound(a)

Description

lowerbound(a) returns the lower bound of the range of fi object a. If L=1owerbound(a) and
U=upperbound(a), then [L,U]l=range(a).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | Usb | range | realmax | realmin | upperbound

Introduced before R2006a

4-508

Isb

Isb

Scaling of least significant bit of fi object, or value of least significant bit of quantizer object

Syntax

b
p

lsb(a)
Lsb(q)

Description

b = lsb(a) returns the scaling of the least significant bit of fi object a. The result is equivalent to
the result given by the eps function.

p = lsb(q) returns the quantization level of quantizer object q, or the distance from 1.0 to the
next largest floating-point number if q is a floating-point quantizer object.

Examples

This example uses the 1sb function to find the value of the least significant bit of the quantizer
object q.

g = quantizer('fixed',[8 7]);
p = lsb(q)
p =

0.0078

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation supports scalar fixed-point signals only.
* Code generation supports scalar, vector, and matrix, fi single and double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lowerbound | quantize | range | realmax | realmin | upperbound

Introduced before R2006a

4-509

‘l Functions

4-510

It

Determine whether real-world value of one fi object is less than another

Syntax
c = lt(a,b)
a<bhb
Description

¢ = lt(a,b) is called for the syntax a < b when a or b is a fi object. a and b must have the same
dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a < b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the 1t function to determine whether the real-world value of one fi object is less than another.

a = fi(pi);
b = fi(pi, 1, 32);
a<b

ans = logical
0

Input a has a 16-bit word length, while input b has a 32-bit word length. The 1t function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a<hb

ans = logical
0

The 1t function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eqg|ge|gt|le|ne

Introduced before R2006a

4-511

4 Functions

4-512

mat2str

Convert matrix to string

Syntax

str = mat2str(A)

str = mat2str(A, n)

str = mat2str(A, 'class')
str = mat2str(A, n, 'class')
Description

str = mat2str(A) converts fi object A to a string representation. The output is suitable for input
to the eval function such that eval(str) produces the original fi object exactly.

str = mat2str(A, n) converts fi ohject A to a string representation using n bits of precision.

str = mat2str(A, 'class') creates a string representation with the name of the class of A
included. This option ensures that the result of evaluating st r will also contain the class information.

str = mat2str(A, n, 'class') uses n bits of precision and includes the class of A.

Examples

Convert fi Object to a String

Convert the fi object a to a string.

'3.1416015625"

Convert fi Object to a String with Specified Precision
Convert the fi object a to a string using eight bits of precision.

fi(pi);
= mat2str(a, 8)

str =
'3.1416016'

mat2str

Input Arguments

A — Input array
scalar | vector | matrix

Input array, specified as a scalar, vector, or matrix. A cannot be a multidimensional array.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

n — Number of bits of precision
positive integer

Number of bits of precision in the output, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Output Arguments

str — String representation of input array
character array

String representation of input array, returned as a character array.

See Also
mat2str | tostring

Introduced in R2015b

4-513

4 Functions

4-514

maxX

Largest element in array of fi objects

Syntax

X = max(a)

x= max(a,[],dim)
[x, y] =max(__)

m = max(a,b)

Description
x = max(a) returns the largest elements along different dimensions of fi array a.
If a is a vector, max (a) returns the largest element in a.

If a is a matrix, max(a) treats the columns of a as vectors, returning a row vector containing the
maximum element from each column.

If a is a multidimensional array, max operates along the first nonsingleton dimension and returns an
array of maximum values.

x= max(a, [],dim) returns the largest elements along dimension dim.

[x,y] = max() finds the indices of the maximum values and returns them in array y, using any
of the input arguments in the previous syntaxes. If the largest value occurs multiple times, the index
of the first occurrence is returned.

m = max(a,b) returns an array the same size as a and b with the largest elements taken from a or
b.

Examples

Largest Element in a Vector

Create a fixed-point vector, and return the maximum value from the vector.

a=fi([1,5,4,9,2]1,1,16);
X = max(a)
X =

9

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 11

maXx

Largest Element of Each Matrix Row
Create a fixed-point matrix.
a = fi(magic(4),1,16)

a=4x4 object

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

Find the largest element of each row by finding the maximum values along the second dimension.
x = max(a,[],2)
x=4x1 object

16

11

12
15

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

The output vector, x, is a column vector that contains the largest element of each row.

Largest Element of Each Matrix Column
Create a fixed-point matrix.
a = fi(magic(4),1,16)

a=4x4 object

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

Find the largest element of each column.

X = max(a)

4-515

‘l Functions

x=1x4 object
16 14 15 13

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

The output, X, is a row vector that contains the largest elements from each column of a.

Find the index of each of the maximum elements.
[x,y] = max(a)

x=1x4 object
16 14 15 13

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

y = 1Ix4
Vector y contains the indices to the minimum elements in X.

Maximum Elements from Two Arrays

Create two fixed-point arrays of the same size.

a

fi([2.3,4.7,6,;0,7,9.231,1,16);
b = fi

[2
([9.8,3.21,1.6;pi1,2.3,11,1,16);

Find the largest elements from a or b.
m = max(a,b)
m=2x3 object

9.7998 4.7002 6.0000
3.1416 7.0000 9.2300

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 11

m contains the largest elements from each pair of corresponding elements in a and b.

4-516

maX

Largest Element of a Complex Vector

Create a complex fixed-point vector, a.
a = fi([1+21,3+61,6+31,2-41i],1,16)

a=1x4 object
1.0000 + 2.0000i 3.0000 + 6.00001 6.0000 + 3.0000i 2.0000 - 4.00001

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12

The function finds the largest element of a complex vector by taking the element with the largest
magnitude.

abs(a)

ans=1x4 object
2.2361 6.7083 6.7083 4.4722

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12

In vector a, the largest elements, at position 2 and 3, have a magnitude of 6.7083. The max function
returns the largest element in output x and the index of that element in output y.

[x,y] = max(a)

X =
3.0000 + 6.00001
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12
y =2

Although the elements at index 2 and 3 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments

a — Input fi array
fi object | numeric variable

f1i input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of a
and b must match unless one is a scalar.

The max function ignores NaNs.

4-517

4 Functions

4-518

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

b — Second input fi array
f1i object | numeric variable

Second f1i input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions
of a and b must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments

X — Maximum values
scalar | vector | matrix | multidimensional array

Maximum values, returned as a scalar, vector, matrix, or multidimensional array. x always has the
same data type as the input.

y — Index of maximum values
scalar | vector | matrix | multidimensional array

Indices of the maximum values in array x, returned as a scalar, vector, matrix, or multidimensional
array. If the largest value occurs more than once, then y contains the index to the first occurrence of
the value. y is always of data type double.

m — Array of maximum values
scalar | vector | matrix | multidimensional array

Array of maximum values of a and b, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms

When a or b is complex, the max function returns the elements with the largest magnitude. If two
magnitudes are equal, then max returns the first value. This behavior differs from how the builtin max
function resolves ties between complex numbers.

max

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mean | median | min | sort

Introduced before R2006a

4-519

‘l Functions

4-520

maxlog

Log maximums

Syntax

maxlog(a)
maxlog(q)

Yy
Yy

Description

y = maxlog(a) returns the largest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = maxlog(q) is the maximum value after quantization during a call to quantize(q, ...) for
quantizer object q. This value is the maximum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). maxlog(q) is equivalent to
get(qg, 'maxlog') and q.maxlog.

Examples

Example 1: Using maxlog with fi objects

1 P = fipref('LoggingMode', 'on');
format long g
a = fi([-1.5 eps 0.5], true, 16, 15);
a(l) = 3.0;
maxlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =
0.999969482421875

The largest value maxlog can return is the maximum representable value of its input. In this
example, a is a signed f1i object with word length 16, fraction length 15 and range:

lsx=s1-20 (4-10
)

2 You can obtain the numerical range of any fi object a using the range function:

maxlog

format long g
r = range(a)

r =
-1 0.999969482421875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Example 2: Using maxlog with quantizer objects

1

g = quantizer;
warning on

format long g

X = [-20:10];

y = quantize(q,x);
maxlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =
0.999969482421875

The largest value maxlog can return is the maximum representable value of its input.
You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

-1 0.999969482421875

See Also
fipref | minlog | noverflows | nunderflows | reset | resetlog

Introduced before R2006a

4-521

4 Functions

4-522

mean

Average or mean value of fixed-point array

Syntax

M = mean(A)

M = mean(A,dim)
Description

M = mean(A) computes the mean value of the real-valued fixed-point array A along its first
nonsingleton dimension.

M = mean(A,dim) computes the mean value of the real-valued fixed-point array A along dimension
dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The fixed-point output array, M, has the same numerictype properties as the fixed-point input array;,
A.

If the input array, A, has a local fimath, then it is used for intermediate calculations. The output, M, is
always associated with the default fimath.

When A is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Mean Along Columns of Fixed-Point Array

Create a matrix and compute the mean of each column. A is a signed f1i object with a 32-bit word
length and a best-precision fraction length of 28 bits.

A=fi([612; 345],1,32);
M = mean(A)
A:
0 1 2
3 4 5
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 28
M:

1.5000 2.5000 3.5000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

mean

WordLength: 32
FractionLength: 28

Mean Along Rows of Fixed-Point Array

Create a matrix and compute the mean of each row. A is a signed f1i object with a 32-bit word length
and a best-precision fraction length of 28 bits.

A=fi([612; 345],1,32)
M = mean(A,2)
A:
0 1 2
3 4 5
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 28
M=
1
4

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 28

Input Arguments

A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

+ If Ais a scalar, then mean (A) returns A.
+ If Ais an empty fixed-point array (value = []), the value of the output array is zero.

Data Types: fi

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive, real-valued, integer scalar with a power-of-two
slope and a bias of 0. If no value is specified, then the default is the first array dimension whose size
does not equal 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

4-523

4 Functions

4-524

Algorithms
The general equation for computing the mean of an array A, across dimension dim is:
sum(A,dim)/size(A,dim)

Because size(a,dim) is always a positive integer, the algorithm for computing mean casts
size(A,dim) to an unsigned 32-bit fi object with a fraction length of zero (denote this fi object
'SizeA'). The algorithm then computes the mean of A according to the following equation, where Tx
represents the numerictype properties of the fixed-point input array A:

c = Tx.divide(sum(A,dim), SizeA)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
max | median | min

Introduced in R2010a

median

median

Median value of fixed-point array

Syntax
¢ = median(a)
¢ = median(a,dim)

Description

¢ = median(a) computes the median value of the fixed-point array a along its first nonsingleton
dimension.

¢ = median(a,dim) computes the median value of the fixed-point array a along dimension dim.
dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The input to the median function must be a real-valued fixed-point array.

The fixed-point output array ¢ has the same numerictype properties as the fixed-point input array a.
If the input, a, has a local fimath, then it is used for intermediate calculations. The output, c, is
always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Compute the median value along the first dimension of a fixed-point array.

= fi([0612; 345;722;6429], 1, 32)

x 1is a signed FI object with a 32-bit word length
and a best-precision fraction length of 27 bits

1 = median(x,1)

Compute the median value along the second dimension (columns) of a fixed-point array.
x = fi([012; 345;722;649], 1, 32)
x 1s a signed FI object with a 32-bit word length

and a best-precision fraction length of 27 bits
mx2 = median(x, 2)

)
“©
)

“©

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
max | mean | min

Introduced in R2010a

4-525

4 Functions

4-526

min

Smallest element in array of fi objects

Syntax

X = min(a)

x= min(a,[],dim)
[x, y] =min(__)

m = min(a,b)

Description
X = min(a) returns the smallest elements along different dimensions of fi array a.
If a is a vector, min(a) returns the smallest element in a.

If a is a matrix, min(a) treats the columns of a as vectors, returning a row vector containing the
minimum element from each column.

If a is a multidimensional array, min operates along the first nonsingleton dimension and returns an
array of minimum values.

x= min(a, [],dim) returns the smallest elements along dimension dim.

[Xx,y] = min() finds the indices of the minimum values and returns them in array y, using any
of the input arguments in the previous syntaxes. If the smallest value occurs multiple times, the index
of the first occurrence is returned.

m = min(a,b) returns an array the same size as a and b with the smallest elements taken from a or
b.

Examples

Smallest Element in a Vector

Create a fixed-point vector, and return the minimum value from the vector.

a=fi([1,5,4,9,2]1,1,16);
X = min(a)
X =

1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 11

min

Minimum Element of Each Matrix Row
Create a matrix of fixed-point values.
a = fi(magic(4),1,16)

a=4x4 object

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

Find the smallest element of each row by finding the minimum values along the second dimension.
x = min(a,[],2)

x=4x1 object

O UIN

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

The output, X, is a column vector that contains the smallest element of each row of a.

Minimum Element of Each Matrix Column
Create a fixed-point matrix.
a = fi(magic(4),1,16)

a=4x4 object

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 10

Find the smallest element of each column.

X = min(a)

4-527

‘l Functions

x=1x4 object
4 2 3 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 10

The output, X, is a row vector that contains the smallest element of each column of a.

Find the index of each of the minimum elements.
[x,y] = min(a)

x=1x4 object
4 2 3 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 10

y = 1x4

Minimum Elements from Two Arrays

Create two fixed-point arrays of the same size.

[2.3,4.7,6,;0,7,9.23],1,16);
i([9.8,3.21,1.6;p1,2.3,1]1,1,16);

a
b
Find the minimum elements from a or b.
m = min(a,b)
m=2x3 object
2.2998 3.2100 1.6001
0 2.2998 1.0000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 11

m contains the smallest elements from each pair of corresponding elements in a and b.

4-528

min

Minimum Element of a Complex Vector

Create a complex fixed-point vector, a.
a = fi([1+2i,2+1i,3+8i,9+i],1,8)

a=1x4 object
1.0000 + 2.00001 2.0000 + 1.00001i 3.0000 + 8.0000i 9.0000 + 1.00001

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

The function finds the smallest element of a complex vector by taking the element with the smallest
magnitude.

abs(a)

ans=1x4 object
2.2500 2.2500 8.5000 9.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3

In vector a, the smallest elements, at position 1 and 2, have a magnitude of 2.25. The min function
returns the smallest element in output x, and the index of that element in output, y.

[x,y] = min(a)

X =
1.0000 + 2.00001
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y =1

Although the elements at index 1 and 2 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments

a — Input fi array
fi object | numeric variable

f1i input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of a
and b must match unless one is a scalar.

The min function ignores NaNs.

4-529

4 Functions

4-530

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

b — Second input fi array
f1i object | numeric variable

Second f1i input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions
of a and b must match unless one is a scalar.

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments

X — Minimum values
scalar | vector | matrix | multidimensional array

Minimum values, returned as a scalar, vector, matrix, or multidimensional array. x always has the
same data type as the input.

y — Index of minimum values
scalar | vector | matrix | multidimensional array

Indices of the minimum values in array X, returned as a scalar, vector, matrix, or multidimensional
array. If the smallest value occurs more than once, then y contains the index to the first occurrence of
the value. y is always of data type double.

m — Array of minimum values
scalar | vector | matrix | multidimensional array

Array of minimum values of a and b, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms

When a or b is complex, the min function returns the element with the smallest magnitude. If two
magnitudes are equal, then min returns the first value. This behavior differs from how the builtin min
function resolves ties between complex numbers.

min

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
max | mean | median | sort

Introduced before R2006a

4-531

‘l Functions

4-532

minlog

Log minimums

Syntax

minlog(a)
minlog(q)

y
y

Description

y = minlog(a) returns the smallest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = minlog(q) is the minimum value after quantization during a call to quantize(q, ...) for
quantizer object q. This value is the minimum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). minlog(q) is equivalent to
get(qg, 'minlog') and gq.minlog.

Examples

Example 1: Using minlog with fi objects
1 ef('LoggingMode','on');

f f
f 1.5 eps 0.5], true, 16, 15);
0

ip
i([-

’

P r
a [
a(l) =3
minlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory

In fi (line 226)

Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =
-1

The smallest value minlog can return is the minimum representable value of its input. In this
example, a is a signed f1i object with word length 16, fraction length 15 and range:

l=sx=s1-21 (4-11
)

2 You can obtain the numerical range of any fi object a using the range function:

format long g
r = range(a)

minlog

-1 0.999969482421875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Example 2: Using minlog with quantizer objects

1

g = quantizer;
warning on

X = [-20:101];

y = quantize(q,Xx);
minlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =
-1

The smallest value minlog can return is the minimum representable value of its input.
You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

-1 0.999969482421875

See Also
fipref | maxlog | noverflows | nunderflows | reset | resetlog

Introduced before R2006a

4-533

4 Functions

4-534

minus

Matrix difference between fi objects

Syntax

minus(a,b)

Description
minus(a,b) is called for the syntax a - b when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same dimensions unless one is a
scalar value (a 1-by-1 matrix). A scalar value can be subtracted from any other value.

minus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mtimes | plus | times | uminus

Introduced before R2006a

mod

mod

Modulus after division for fi objects

Syntax

m = mod(x,y)

Description

m = mod(Xx,y) returns the modulus after division of x by y, where x is the dividend and y is the
divisor. This function is often called the modulo operation, which can be expressed asm = x -
floor(x./y).*y.

For fixed-point or integer input arguments, the output data type is the aggregate type of both input
signedness, word lengths, and fraction lengths. For floating-point input arguments, the output data
type is the same as the inputs.

The mod function ignores and discards any fimath attached to the inputs. The output is always
associated with the default fimath.

Note The combination of fixed-point and floating-point inputs is not supported.

Examples

Modulus of two fi Objects

Calculate the mod of two fi objects.

x = fi(-3,1,7,0);

y = fi(2,1,15,0);

ml = mod(x,y)

m2 = mod(y,x)

ml =

1
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 15
FractionLength: 0
m2 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

4-535

4 Functions

4-536

WordLength: 15
FractionLength: 0

Modulus of Two Floating-Point Inputs

Convert the fi inputs in the previous example to double type and calculate the mod.

Mfl = mod(double(x),double(y))
Mf2 = mod(double(y),double(x))
Mfl =

1
Mf2 =

-1

Input Arguments

x — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array. x must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

y — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array. y must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi
Output Arguments

m — Result of modulus operation
scalar | vector | matrix | multidimensional array

Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.

If both inputs x and y are floating-point, then the data type of m is the same as the inputs. If either
input x or y is fixed-point, then the data type of m is the aggregate numerictype. This value equals
that of fixed.aggregateType(x,y).

The output m is always associated with the default fimath.

mod

Algorithms

mod(x,y) for a fi object uses the same definition as the built-in MATLAB mod function.

See Also
fixed.aggregateType | mod

Introduced in R2011b

4-537

4 Functions

4-538

mpower

Fixed-point matrix power (™)

Syntax

C
C

mpower(a, k)
a~k

Description

¢ = mpower(a,k) and ¢ = a™k compute matrix power. The exponent k requires a positive, real-
valued integer value.

The fixed-point output array ¢ has the same local fimath as the input a. If a has no local fimath, the

output ¢ also has no local fimath. The matrix power operation is performed using default fimath
settings.

Examples

Compute the power of a 2-dimensional square matrix for exponent values 0, 1, 2, and 3.

x = fi([0 1; 2 41, 1, 32);

px0 = x™0
px1l = x"1
px2 = x"2
px3 = x"3
Tips

For more information about the mpower function, see the MATLAB mpower reference page.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* When the exponent k is a variable and the input is a scalar, the ProductMode property of the
governing fimath must be SpecifyPrecision.

* When the exponent K is a variable and the input is not scalar, the SumMode property of the
governing fimath must be SpecifyPrecision.

* Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or Keep LSB.

» For variable-sized signals, you may see different results between the generated code and
MATLAB.

mpower

* In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

* In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Both inputs must be scalar, and the exponent input, k, must be a constant integer.

See Also
mpower | power

Introduced in R2010a

4-539

‘l Functions

4-540

mpy

Multiply two objects using fimath object

Syntax

c = mpy(F,a,b)

Description

c = mpy(F,a,b) performs elementwise multiplication on a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and b, or if the fimath
properties associated with a and b are different. The output fi object ¢ has no local fimath.

a and b can both be f1i objects with the same dimensions unless one is a scalar. If either a or b is
scalar, then c has the dimensions of the nonscalar object. a and b can also be doubles, singles, or
integers.

Examples

In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1l));
F = fimath('ProductMode', 'SpecifyPrecision', ...
'ProductWordLength',40, 'ProductFractionLength',30);
c = mpy(F, a, b)
C =
8.5397
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40
FractionLength: 30
Algorithms
c = mpy(F,a,b) is similar to
a.fimath = F;
b.fimath = F;
c=a.*b
C =
8.5397

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

mpy

FractionLength: 30

RoundingMethod: nearest
OverflowAction: saturate
ProductMode: SpecifyPrecision
ProductWordLength: 40
ProductFractionLength: 30
SumMode: FullPrecision

but not identical. When you use mpy, the fimath properties of a and b are not modified, and the
output fi object ¢ has no local fimath. When you use the syntax ¢ = a .* b, where a and b have
their own fimath objects, the output fi ohject c gets assigned the same fimath object as inputs a
and b. See “fimath Rules for Fixed-Point Arithmetic” in the Fixed-Point Designer User's Guide for
more information.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation does not support the syntax F.mpy(a, b). You must use the syntax mpy (F,a,b).

* When you provide complex inputs to the mpy function inside of a MATLAB Function block, you
must declare the input as complex before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known complex inputs to On.

See Also
add | divide | fi | fimath | mrdivide | numerictype | rdivide | sub | sum

Introduced before R2006a

4-541

‘l Functions

4-542

mrdivide, /

Package: embedded

Right-matrix division

Syntax

X = A/b

X = mrdivide(A, b)

Description

X = A/b performs right-matrix division.

X = mrdivide(A, b) is an alternative way to execute X = A/b.
Examples

Divide fi Matrix by a Constant

In this example, you use the forward slash (/) operator to perform right matrix division on a 3-by-3
magic square of fi objects. Because the numerator input is a fi object, the denominator input b
must be a scalar.

A = fi(magic(3))

A=3x3 object

8 1 6
3 5 7
4 9 2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 11

b = fi(3,1,12,8)

b:
3
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 12
FractionLength: 8
X = A/b

X=3x3 object
2.6250 0.3750 2.0000
1.0000 1.6250 2.3750

mrdivide, /

1.3750 3.0000 0.6250

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 3

Perform Matrix Division

You can perform right-matrix division when neither input is a fi object. The matrix dimensions must
be compatible for matrix division.

A=12,3,1;0,8, 4;1, 1, 0]

A = 3x3
2 3 1
0 8 4
1 1 0

B=1[7,6, 6; 1, 0, 5; 9, 0, 4]

B = 3x3
7 6 6
1 0 5
9 0 4

X = mrdivide(A,B)
X = 3x3

0.5000 -0.2927 -0.1341
1.3333 0.0325 -1.0407
0.1667 -0.2033 0.0041

Input Arguments

A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. If one or both of the inputs
is a i object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

4-543

4 Functions

4-544

Denominator, specified as a real scalar, vector, matrix, or multidimensional array. If one or both of the
inputs is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

If neither input is a fi object, then the sizes of the input matrices must be compatible for matrix
division.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments

X — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as an array with the same dimensions as the numerator input A. When A is
complex, the real and imaginary parts of A are independently divided by b.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
add | divide | fi | fimath | numerictype | rdivide | sub | sum

Introduced in R2009a

mtimes

mtimes

Matrix product of fi objects

Syntax

mtimes(a,b)

Description
mtimes(a,b) is called for the syntax a * b when a or b is an object.

a * bis the matrix product of a and b. A scalar value (a 1-by-1 matrix) can multiply any other value.
Otherwise, the number of columns of a must equal the number of rows of b.

mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Any non-fi input must be constant; that is, its value must be known at compile time so that it can

be cast to a fi object.

* Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.

+ For variable-sized signals, you may see different results between the generated code and
MATLAB.
* In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

* In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
minus | plus | times | uminus

4-545

4 Functions

Introduced before R2006a

4-546

ne

ne

Determine whether real-world values of two fi objects are not equal

Syntax
¢ = ne(a,b)
a~=>b
Description

¢ = ne(a,b) is called for the syntax a ~= b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and @ where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi ohject, with best-precision scaling.

Examples

Compare Two fi Objects

Use the ne function to determine whether the real-world values of two fi objects are not equal.
fi(pi);
fi(pi, 1, 32);

=b

a
b
a

Lo

ans = logical
1

Input a has a 16-bit word length, while input b has a 32-bit word length. The ne function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a i object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a~=b>b

ans = logical
0

4-547

4 Functions

4-548

The ne function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eqg|ge|gt|le]|lt

Introduced before R2006a

nearest

nearest

Round toward nearest integer with ties rounding toward positive infinity

Syntax

y = nearest(a)

Description

y = nearest(a) rounds fi object a to the nearest integer or, in case of a tie, to the nearest integer
in the direction of positive infinity, and returns the result in fi object y.

Examples

Use nearest on a Signed fi Object

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)
a =
3.1250
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 3
y = nearest(a)
y =
3

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 12.

a fi(0.025,1,8,12)

a =
0.0249

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 12

4-549

‘l Functions

4-550

nearest(a)

<
1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 2
FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

* The convergent function rounds ties to the nearest even integer.
* The nearest function rounds ties to the nearest integer toward positive infinity.
* The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

fi([-3.5:3.51");
[a convergent(a) nearest(a) round(a)]l

a
y

y=8x4 object
-3.5000 -4.0000 -3.0000 -4.0000
-2.5000 -2.0000 -2.0000 -3.0000
-1.5000 -2.0000 -1.0000 -2.0000

-0.5000 0 0 -1.0000
0.5000 0 1.0000 1.0000
1.5000 2.0000 2.0000 2.0000
2.5000 2.0000 3.0000 3.0000
3.5000 3.9999 3.9999 3.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Input Arguments

a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.
For complex fi objects, the imaginary and real parts are rounded independently.

nearest does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.

Data Types: fi

nearest

Complex Number Support: Yes

Algorithms

* yand a have the same fimath object and DataType property.

* When the DataType property of a is single, double, or boolean, the numerictype of y is the
same as that of a.

* When the fraction length of a is zero or negative, a is already an integer, and the numerictype of
y is the same as that of a.

* When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | floor | round

Introduced in R2008a

4-551

4 Functions

4-552

nextpow?2

Package: embedded

Exponent of next higher power of 2 of fi object

Syntax

P = nextpow2(N)

Description

P = nextpow2(N) returns the first P such that 2.”P >= abs(N). By convention, nextpow2(0)
returns zero.

Examples

Next Power of 2 of fi Object

Define a fi object and calculate the exponent for the next higher power of 2.

N = fi(1000,1,18,2);
P = nextpow2(N)
P =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 6
FractionLength: 0

Next Power of 2 of fi Values

Define a vector of fi values and calculate the exponents for the next power of 2 higher than those
values.

N = fi([1l -2 3 -4 5 9 5191,1,16,3,2);
P = nextpow2(N)
P =
1 0 1 2 3 3 10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

nextpow?2

WordLength: 5
FractionLength: 0

Input Arguments

N — Input values
scalar | vector | N-dimensional array

Input values, specified as a real-valued scalar, vector, or N-dimensional array.

Data Types: fi

Output Arguments

P — Exponent of next higher power of 2
scalar | vector | N-dimensional array

Exponent of next higher power of 2, returned as a scalar, vector, or N-dimensional array.

The output is returned as an unsigned fi object with binary-point scaling, a fraction length of zero,
and the smallest word length which can represent the value of the largest returned exponent.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
fi| nextpow?2

Introduced in R2020a

4-553

‘l Functions

4-554

nnz

Package: embedded

Number of nonzero elements in fi object

Syntax

N = nnz(X)

Description
N = nnz(X) returns the number of nonzero elements in X.
When X is a built-in MATLAB type, floating-point fi object, or scaled double fi object, N is returned

as a double. When X is a fixed-point fi object, N is returned as a uint32 if X has fewer than 232
elements. Otherwise, N is returned as a uint64.

Examples

Number of Nonzero Elements in fi Object

Create a fi object and determine the number of nonzero elements it contains.

p = fi([],1,24,12);
X = eye(2,3,'like",p)
X 3
1 0 0
0 1 0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12
N = nnz(X)
N 1
uint32

Input Arguments

X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

nnz

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi|nnz

Introduced in R2020b

4-555

4 Functions

4-556

noperations

Number of operations

Syntax

noperations(q)

Description

noperations(q) is the number of quantization operations during a call to quantize(q, ...) for
quantizer object q. This value accumulates over successive calls to quantize. You reset the value
of noperations to zero by issuing the command resetlog(q).

Each time any data element is quantized, noperations is incremented by one. The real and complex
parts are counted separately. For example, (complex * complex) counts four quantization
operations for products and two for sum, because(a+bi)*(c+di) = (a*c - b*d) + (a*d +
b*c). In contrast, (real*real) counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized individually. As a result, for a
complex input of length 204 elements, noperations counts 408 quantizations: 204 for the real part
of the input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded from real values to
complex values, with a corresponding increase in the number of quantization operations recorded by
noperations. In concrete terms, (real*real) requires fewer quantizations than
(real*complex) and (complex*complex). Changing all the values to complex because one is
complex, such as the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

See Also
maxlog | minlog

Introduced before R2006a

normalizedReciproca

normalizedReciprocal

Compute normalized reciprocal

Syntax

[y,e]l] = normalizedReciprocal(u)

Description

[y,e]l] = normalizedReciprocal(u) returns y and e such that (2.7e).*y = 1./uand 0.5 <
abs(y) <= 1.

 Ifu = 0and uis a fixed-point or scaled-double data type, theny = 2 — eps(y) ande =
2™ (nextpow2(w)) — w + f, where w is the word length of u and f'is the fraction length of u.

* Ifu = 0and uis a floating-point data type, theny = Infandt = 1.

Examples

Compute Normalized Reciprocal of a Fixed-Point Vector

This example shows how to compute the element-wise normalized reciprocal of a vector of fixed-point
values.

u= fi([-pi,0.01,pi])

u=Ix3 object
-3.1416 0.0100 3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

[y,e]l] = normalizedReciprocal(u)

y=1x3 object
-0.6367 0.7806 0.6367

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 14

e = 1Ix3 int32 row vector

-1 7 -1

4-557

4 Functions

4-558

Input Arguments

u — Input to take normalized reciprocal of
scalar | vector | matrix | N-dimensional array

Input to take the normalized reciprocal of, specified as a real-valued scalar, vector, matrix, or N-
dimensional array.

Data Types: single | double | fi

Output Arguments

y — Normalized reciprocal
scalar | vector | matrix | N-dimensional array

Normalized reciprocal that satisfies 0.5 < abs(y) <= land (2.7%e).*y = 1./u, returned as a
scalar, vector, matrix, or N-dimensional array.

» Ifthe input u is a signed fixed-point or scaled-double data type with word length w, then y is a
signed fixed-point or scaled-double with word length w and fraction length w — 2.

+ If the input u is an unsigned fixed-point or scaled-double data type with word length w, then y is
an unsigned fixed-point or scaled-double with word length w and fraction length w — 1.

» Ifthe input u is a double, then y is a double.
« Ifthe input u is a single, the y is a single.

e — Exponent
scalar | vector | matrix | N-dimensional array

Exponent that satisfies 0.5 < abs(y) <= land (2.7%e).*y = 1./u, returned as an integer
scalar, vector, matrix, or N-dimensional array.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also

Functions
fi

Blocks
Normalized Reciprocal HDL Optimized

Topics
“How to Use HDL Optimized Normalized Reciprocal”

normalizedReciprocal

Introduced in R2020a

4-559

4 Functions

noverflows

Number of overflows

Syntax

noverflows(a)
noverflows(q)

Yy
Yy

Description

y = noverflows(a) returns the number of overflows of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a i object
using the resetlog function.

y = noverflows(q) returns the accumulated number of overflows resulting from quantization
operations performed by a quantizer object q.

See Also
maxlog | minlog | nunderflows | resetlog

Introduced before R2006a

4-560

nts

nts

Determine fixed-point data type

Syntax

nts
nts({'block',PORT})
nts({line-handle})
nts({gsl})

Description

nts opens the NumericTypeScope window. To connect to a signal in a Simulink model, select the
signal and then, in the NumericTypeScope window, select File > Connect to Simulink Signal.

The NumericTypeScope suggests a fixed-point data type in the form of a numerictype object based
on the dynamic range of the input data and the criteria that you specify in the “Bit Allocation Panel”
on page 4-567. The scope allows you to visualize the dynamic range of data in the form of a 1og2
histogram. It displays the data values on the X-axis and the number or percentage of occurrences on
the Y-axis. Each bin in the histogram corresponds to a bit in a word. For example, 2° corresponds to
the first integer bit in the binary word, 2! corresponds to the first fractional bit in the binary word.

nts({'block',PORT}) opens the NumericTypeScope window and connects the scope to the
signal output from block on output port with index PORT. If the block has more than one output port,
you must specify the port index. The scope cannot connect to more than one output port.

nts({line-handle}) opens the NumericTypeScope window and connects the scope to the
Simulink signal which has the line handle specified in line-handle.

nts({gsl}) opens the NumericTypeScope window and connects the scope to the currently

selected Simulink signal. You must select a signal in a Simulink model first, otherwise the scope
opens with no signal selected.

Input Arguments
block

Full path to the specified block.
line-handle

Handle of the Simulink signal that you want to view with the scope. To get the handle of the currently
selected signal, at the MATLAB command line, enter gs1.

PORT
Index of the output port that you want to view with the scope. If the block has more than one output

port, you must specify the index. The scope cannot connect to more than one output port.

4-561

4 Functions

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars on page 4-564 displayed at the top of the
window and the dialog panels on page 4-567 to the right.

4-562

nts

-

(4] NumericTypeScope [1] - Simulink: fxpdemo_approx/Even

File
&
®r®E>:w

Signed

View Simulation

IL=2

b
[=]
|

Cccurrences (%)

£
=
|

Help

WL=16

| I | | | |
92 ol g0 5=l 52 5o8 ol 93 56 oo gl 578 oo100 5

FL=14

numerictype(1,16,14)

Data Values

I T I
11 2-12 2-13 2-14

TYYTYY

E=8(EoR(=>=
|
T ¥ Legend X
B Outside range
I oo
|:| Below precision
T ¥ Resulting Type A X
numerictype(1, 16,14}
¥ Data Details
Outside range 0 (0.0%)
Below precision 0 (0.0%)
SONR Inf dB
¥ Type Details
Signedness: Signed
Word length: 16 bits
Integer length: 2 bits
Fraction length: 14 bits
Representable Max: +1.995%
Representable Min: -2
+ ¥ Bit Allocation n X
Signedness: | Signed -
Word length: | Specify hd
Walue: 16
Graphical control
Specify constraint:
Fractional bits hd
Value: 14
T ¥ Input Data o
¥ Counts
Total 101
Positive 99
Zero 2
Negative 0
¥ Statistics
Max 1
Average 062734
Kin 0.015825

4-563

Functions

4-564

Toolbars

By default the scope displays a toolbar that provides these options:

Button

Action

L

New NumericTypeScope.

o

Connect to Simulink signal. The scope connects to the currently selected signal. If a
block with only one output port is selected and the Connect scope on selection of is
set to Signal lines or blocks, connects to the output port of the selected block.
For more information, see “Sources Pane” on page 4-566.

After connecting the scope to a signal in a Simulink model, the scope displays an additional toolbar
with the following options:

Button Action

(m) Stop simulation

® Start simulation

I Simulate one step

(i Snapshot. Freezes the display so that you can examine the results. To reenable display

refreshing, click the button again.

L

Highlight Simulink signal.

o]

Persistent. By default, the scope makes a persistent connection to the selected signal. If
you want to view different signals during the simulation, click this button to make a
floating connection. You can then select any signal in the model and the scope displays

it.

Dialog Boxes and Panels

* “Configuration Dialog Box” on page 4-564

* “Dialog Panels” on page 4-567

Configuration Dialog Box

Use the NumericTypeScope configuration dialog box to control the behavior and appearance of the
scope window.

To open the Configuration dialog box, from the scope main menu, select File > Configuration >
Edit, or, with the scope as your active window, press the N key.

nts

i =)

4\ Configuration: NumericTypeScope [1] @

Core Sources

Name Description

[llﬁeneral U1 Scope user interface settings

2 Source UI Common source settings

4 | 1 3

For information about each pane, see “Core Pane” on page 4-565 and “Sources Pane” on page 4-
566.

To save configuration settings for future use, select File > Configuration > Save as. The
configuration settings you save become the default configuration settings for the
NumericTypeScope.

Caution Before saving your own set of configuration settings in the matlab/toolbox/fixpoint
folder, save a backup copy of the default configuration settings in another location. If you do not save
a backup copy of the default configuration settings, you cannot restore these settings at a later time.

To save your configuration settings for future use, save them in the matlab/toolbox/fixpoint
folder with the file name NumericTypeScopeSL.cfg. You can re-save your configuration settings at
anytime, but you must save them in this folder with this filename.

Core Pane
The Core pane controls the general settings of the scope.

To open the Core - General Ul Properties dialog box, select General Ul and then click Properties.

4\ Core - General UI Properties: NumericTypeScope [1] @

General UL Properties

Display the full path

OK] [Cancel Apply

4-565

4 Functions

+ Display the full source path in the title bar—Select this check box to display the full path to
the selected block in the model. Otherwise, the scope displays only the block name.

To open the Core - Source UI Properties dialog box, select Source UI and then click Properties.

i)

4\ Core - Source Ul Properties: NumericTypeScope [1] @
Source UI Properties

Keyboard commands respect source playback modes

Recently used sources list: 8 entries

OK] [Cancel Al

=)
=]

* Keyboard commands respect source playback modes—Has no effect. The following table
shows the keyboard shortcut mapping. You cannot disable this mapping.

Action Keyboard Shortcut
Open new NumericTypeScope Insert

Change configuration N

Display keyboard help K

Play simulation p

Pause simulation Space

Stop simulation S

Step forward Right arrow, Page down

* Recently used sources list—Sets the maximum number of recently used sources displayed
under the Files menu option.

Sources Pane

The Sources pane controls how the scope connects to Simulink. You cannot disable the Simulink
source.

To open the Sources - Simulink Properties dialog box, select the Sources tab and then click
Properties.

i =

4\ Sources - Simulink Properties: NumericTypeScope [1] @

Simulink Source Properties

Load Simulink model if not open

Connect scope on selection of: [Signai lines only h]

OK] [Cancel Apply

* Load Simulink model if not open—When selected, if you specify a signal in a Simulink model
that is not currently open, the scope opens the model.

4-566

nts

Connect scope on selection of —Connects the scope only when you select signal lines or when
you select signal lines or blocks. If you select Signal lines or blocks, the scope cannot
connect to blocks that have more than one output port.

Dialog Panels

Bit Allocation Panel

The scope Bit Allocation panel provides options for specifying data type criteria. Adjust these
criteria to observe the effect on suggested numerictype. For streaming data, the suggested
numerictype adjusts over time in order to continue to satisfy the specified criteria.

¥ ¥ Bit Allocation A X
Signedness: | Signed w7
Word length: | Specify -

Value: |16

Specify constraint:

Graphical control

Max occurrences outside range i

0| Percent -

Extra IL bits: |0

You can:

Specify a known word length and signedness and, using Specify constraint, add additional
constraints such as the maximum number of occurrences outside range or the smallest value that
the suggested data type must represent.

Specify Integer length and Fraction length constraints so that the scope suggests an
appropriate word length.

Set the Signedness and Word length to Auto so that the scope suggests values for these
parameters.

Enable Graphical control and use the cursors on either side of the binary point to adjust the
fraction length and observe the effect on the suggested numerictype on the input data. For
example, you can see the number of values that are outside range, below precision, or both. You
can also view representable minimum and maximum values of the changed suggested data type.
Specify extra bits for either the fraction length or the integer length. The extra bits act as a safety
margin to minimize the risk of overflow and precision loss.

Legend

The scope Legend panel informs you which colors the scope uses to indicate values. These colors
represent values that are outside range, in range, or below precision when displayed in the scope.

4-567

4 Functions

* ¥ Legend A X
I outside range
I - anoe

[Below precision

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope settings. By
manipulating the visual display (via the Bit Allocation panel or with the cursors), you can change
the data type specification.

T ¥ Resulting Type nx

numerictype(1,16,14)
¥ Data Details

COutzide range 0 (0.0%)
Below precision 0 (0.0%)
SONR Inf dB

¥ Tvpe Detailz

Signedness: Signed
Word length: 16 bits
Integer length: 2 bits
Fraction length: 14 bits
Representable Max: +1.99909
Representable Min: -2

The Data Details section displays the percentage of values that fall outside range or below precision
with the numerictype object located at the top of this panel. SQNR (Signal Quantization Noise
Ratio) varies depending on the signal. If the parameter has no value, then there is not enough data to
calculate the SQNR. When scope information or the numerictype changes, the SQNR resets.

The Type Details section provides details about the fixed-point data type. You can copy the
numerictype specification by right-clicking the Resulting Type pane and then selecting Copy
numerictype.

Input Data

The Input Data panel provides statistical information about the values currently displayed in the
NumericScopeType.

T ¥ Input Data nx

¥ Countz

Total 101
Positive 59
Zero 2
Megative 0

¥ Statistics

Max 1
Average 062734
Min 0.015625

4-568

nts

Examples

Connect a NumericTypeScope to a signal in a Simulink model
Open a NumericTypeScope window and connect to a signal.

Open the model.

fxpdemo_approx

Open a NumericTypeScope.

nts
In the fxpdemo_approx model, select the yEven signal.
In the NumericTypeScope window, select File > Connect to Simulink Signal.

Run the simulation to view the dynamic range of the output. The NumericTypeScope suggests a
data type for the output.

4-569

4 Functions

-

(4] NumericTypeScope [1] - Simulink: fxpdemo_approx/Even
File View Simulation Help
@@ (B
Signed numerictype(1,16,14)
707 WL=16
IL=2 FL=14
60
a0
3?40—
t
]
o
=
E
=
]
8
30 —
20
10
J |2 |'1 0 1 2 3 4 & il I? IB IE I'h’} I11 I12 |13 |14
2 2 2 2 2= 2- 27 22t 2 22ty ey
Data Values

TYYTYY

|
T ¥ Legend X
B Outside range
I oo
|:| Below precision
T ¥ Resulting Type A X
numerictype(1, 16,14}
¥ Data Details
Outside range 0 (0.0%)
Below precision 0 (0.0%)
SONR Inf dB
¥ Type Details
Signedness: Signed
Word length: 16 bits
Integer length: 2 bits
Fraction length: 14 bits
Representable Max: +1.995%
Representable Min: -2
+ ¥ Bit Allocation n X
Signedness: | Signed -
Word length: | Specify hd
Walue: 16
Graphical control
Specify constraint:
Fractional bits hd
Value: 14
T ¥ Input Data o
¥ Counts
Total 101
Positive 99
Zero 2
Negative 0
¥ Statistics
Max 1
Average 062734
Kin 0.015825

4-570

nts

Connect a NumericTypeScope to a block output port
Connect a NumericTypeScope to a block output port and view the dynamic range of block output.

Specify the block path and name and the output port number.

blk='fxpdemo approx/Even';
nts({blk,1})

Run the simulation to view the dynamic range of the output. The NumericTypeScope suggests a
data type for the output.

Specify a Simulink signal to display

Connect a NumericTypeScope to a signal selected in a model.
Open the model.

fxpdemo_approx

In the fxpdemo approx model, select the yEven signal.

Open a NumericTypeScope, specifying the line handle of the selected signal.

nts({gsl})

Tips
* Use the NumericTypeScope to help you identify any values that are outside range or below

precision based on the current data type.

When the information is available, the scope indicates values that are outside range, below
precision, and in range of the data type by color-coding the histogram bars as follows:

* Blue — Histogram bin contains values that are in range of the current data type.

* Red — Histogram bin contains values that are outside range in the current data type.

* Yellow — Histogram bin contains values that are below precision in the current data type.

* Select View > Vertical Units to select whether to display values as a percentage or as an actual
count.

* Use the View > Bring All NumericTypeScope Windows Forward menu option to manage your
NumericTypeScope windows. Selecting this option or pressing Ctrl+F brings all
NumericTypeScope windows into view.

See Also
hist | log2 | numerictypescope

Introduced in R2012a

4-571

‘l Functions

4-572

num2bin

Convert number to binary representation using quantizer object

Syntax

y = num2bin(qg,x)

Description

y = num2bin(q, x) converts the numeric array x into a binary character vector returned in y using
the data type properties specified by the quantizer object q.

If x is a cell array containing numeric matrices, then x will be a cell array of the same dimension
containing binary strings. If X is a structure, then each numeric field of x is converted to binary.

[yl,y2,...] = num2bin(qg,x1,x2,...) converts the numeric matrices x1, x2, ... to binary strings y1, y2,

Examples

Convert Numeric Matrix to Binary Character Vector

Convert a matrix of numeric values to a binary character vector using the attributes specified by a
quantizer object.

X = magic(3)/9
X = 3x3

0.8889 0.1111 0.6667
0.3333 0.5556 0.7778
0.4444 1.0000 0.2222

g = quantizer([5,3])

q:
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [5 3]

y = num2bin(q,x)

y = 9x5 char array
'00111"
'00010"
'00011"
'00000"

numz2bin

'00100"
‘01000
'00101"
'00110°
‘00001

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

g = quantizer([4 3])
q:
DataMode = fixed
RoundMode = floor
OverflowMode = saturate
Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

X = 1x16
0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b num2bin(q, x)

b = 16x4 char array
'0111"
'0110"
'0101"
'0100'
'0011"
'0010'
'0001"'
'0000'
'1111"
'1110"
'1101"
'1100"

4-573

‘l Functions

4-574

'1011'
'1010'
‘1001
‘1000

Use bin2num to perform the inverse operation.
y = bin2num(q,b)
y = 16x1

.8750
.7500
.6250
.5000
.3750
.2500
.1250

0
.1250
.2500

[cNoNoNoNoNoNO)

[
[oNo)

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

g = quantizer([3 21);
b=1['011 111"

'010 110'

'001 101°

'000 100']1;

Use bin2num to view the numeric equivalents of these values.

x = bin2num(q,b)

X = 4x2

0.7500 -0.2500
0.5000 -0.5000
0.2500 -0.7500

0 -1.0000

Input Arguments

q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.

Example: q = quantizer([16 15]);

X — Numeric input array
scalar | vector | matrix | multidimensional array | cell array | structure

numz2bin

Numeric input array, specified as a scalar, vector, matrix, multidimensional array, cell array, or
structure.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
struct | cell

Tips

* num2bin and bin2num are inverses of one another. Note that num2bin always returns the binary
representations in a column.

Algorithms

* The fixed-point binary representation is two's complement.
* The floating-point binary representation is in IEEE Standard 754 style.

See Also
bin2num | hex2num | num2hex | num2int | quantizer

Introduced before R2006a

4-575

‘l Functions

4-576

num2hex

Convert number to hexadecimal equivalent using quantizer object

Syntax

y = num2hex(q,x)

Description

y = num2hex(q, x) converts numeric matrix x into a hexadecimal string returned in y. The
attributes of the number are specified by the quantizer object q.

[yl,y2,...] = num2hex(q,x1,x2,...) converts numeric matrices x1, X2, ... to hexadecimal strings y1,
y2, ...

Examples

Convert Numeric Matrix to Hexadecimal
Use num2hex to convert a matrix of numeric values to hexadecimal representation.

Convert Floating-Point Values

This is a floating-point example using a quantizer object q that has a 6-bit word length and a 3-bit
exponent length.

magic(3);
quantizer('float',[6 31);
num2hex(q, x)

< < o X
I n

9x2 char array
118"
112!
14"
oc!
115"
118"
16"
117!
10"

Convert Fixed-Point Values

All of the 4-bit fixed-point two's complement numbers in fractional form are given by:

g = quantizer([4 31);

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0 -0.500 -1.000];

y = num2hex(q, x)

num2hex

y = 16x1 char array
7
G
g
4
13
Y
1
g
Ifl
‘e
Idl
e
Ibl
g
g
g

Input Arguments

g — Attributes of the number
quantizer object

Attributes of the number, specified as a quantizer object.

X — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array

Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array
of doubles.

Data Types: double | cell
Complex Number Support: Yes

Output Arguments

y — Hexadecimal strings
column vector | cell array

Hexadecimal strings, returned as a column vector. If X is a cell array containing numeric matrices,
then y is returned as a cell array of the same dimension containing hexadecimal strings.

Tips

* num2hex and hex2num are inverses of each other, except that hex2num returns the hexadecimal
values in a column.

Algorithms

» For fixed-point quantizer objects, the representation is two's complement.
» For floating-point quantizer objects, the representation is IEEE Standard 754 style.

For example, for ¢ = quantizer('double'):

4-577

‘l Functions

g = quantizer('double');
num2hex(q, nan)

ans =
'fff8000000000000"

The leading fraction bit is 1, and all the other fraction bits are 0. Sign bit is 1, and exponent bits
are all 1.

num2hex(q, inf)

ans =
'7ffO000000000000

Sign bit is 0, exponent bits are all 1, and all fraction bits are 0.
num2hex(q, -inf)

ans =
'fff0000000000000"

Sign bit is 1, exponent bits are all 1, and all fraction bits are 0.

See Also
bin2num | hex2num | num2bin | num2int | quantizer

Introduced before R2006a

4-578

num?2int

num2int

Convert number to signed integer using quantizer object

Syntax

y = num2int(q,x)

Description

y = num2int(q, x) converts numeric values in x to output y containing integers using the data type
properties specified by the fixed-point quantizer object q. If x is a cell array containing numeric
matrices, then y will be a cell array of the same dimension.

[yl,y2,..] = num2int(q,x1,x2,...) uses q to convert numeric values x1, x2,... to integers y1, y2,....

Examples

Convert Matrix of Numeric Values to Signed Integer

All the two's complement 4-bit numbers in fractional form are given by:
x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750

0.625 0.125 -0.375 -0.875
0.500 0.000 -0.500 -1.000];

Define a quantizer object to use for conversion.
g = quantizer([4 3]);

Use num2int to convert to signed integer.

y = num2int(q,x)

y:
7 3 -1 -5
6 2 -2 -6
5 1 -3 -7
4 0 -4 -8

Input Arguments

q — Data type format to use for conversion
fixed-point quantizer object

Data type format to use for conversion, specified as a fixed-point quantizer object.

Example: q = quantizer([5 4]);

4-579

4 Functions

4-580

X — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array
Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

Algorithms
* When q is a fixed-point quantizer object, fis equal to fractionlength(q), and x is numeric:

y=xx2f

* num2int is meaningful only for fixed-point quantizer objects. When q is a floating-point
quantizer object, x is returned unchanged (y = x).

* yisreturned as a double, but the numeric values will be integers, also known as floating-point
integers or flints.

See Also
bin2num | hex2num | num2bin | num2hex | quantizer

Introduced before R2006a

num2str

num2str

Convert numbers to character array

Syntax

num2str(A)
num2str(A,precision)
num2str (A, formatSpec)

S
S
S

Description

s = num2str(A) converts i object A into a character array representation. The output is suitable
for input to the eval function such that eval(s) produces the original fi object exactly.

s = num2str(A,precision) converts fi object A to a character array representation using the
number of digits of precision specified by precision.

s = num2str(A, formatSpec) applies a format specified by formatSpec to all elements of A.

Examples

Convert a fi Object to a Character Vector
Create a fi object, A, and convert it to a character vector.
A = fi(pi)
A =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 13

S = num2str(A)
'3.1416"
Convert a fi Object to a Character with Specified Precision
Create a fi object and convert it to a character vector with 8 digits of precision.

A = fi(pi)

A =

4-581

4 Functions

4-582

3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

S = num2str(A,8)

'3.1416016"

Input Arguments

A — Input array
numeric array

Input array, specified as a numeric array.

Data Types: fi | double | single |int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 |
uint64 | logical
Complex Number Support: Yes

precision — Number of digits of precision
positive integer

Maximum number of significant digits in the output string, specified as a positive integer.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can include
ordinary text and special characters.

For more information on formatting operators, see the num2str reference page in the MATLAB
documentation.

Output Arguments

s — Text representation of input array
character array

Text representation of the input array, returned as a character array.

See Also
mat2str | num2str | tostring

Introduced in R2016a

nume

numel

Number of data elements in fi array

Syntax

n = numel (A)

Description
n = numel(A) returns the number of elements, n, in fi array A.

Using numel in your MATLAB code returns the same result for built-in types and fi objects. Use
numel to write data-type independent MATLAB code for array handling.

Examples

Number of Elements in 2-D fi Array

Create a 2-by-3- array of fi objects.
X = fi(ones(2,3),1,24,12)
X=2x3 object

1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

numel counts 6 elements in the matrix.

numel (X)

>
Il

n==6

Number of Elements in Multidimensional fi Array
Create a 2-by-3-by-4 array of fi objects.
X = fi(ones(2,3,4),1,24,12)

X:
(:,:

1)

1

1 1 1
(:,:,2)

4-583

4 Functions

4-584

1 1 1

1 1 1
(:,:,3) =

1 1 1

1 1 1
(:,:,4) =

1 1 1

1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24
FractionLength: 12

numel counts 24 elements in the matrix.

n numel(X)

n =24

Input Arguments

A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
numel

Introduced in R2013b

numerictype

numerictype

Construct an embedded. numerictype object describing fixed-point or floating-point data type

Syntax

T = numerictype

T = numerictype(s)

T = numerictype(s,w)

T = numerictype(s,w,f)

T = numerictype(s,w,slope,bias)

T = numerictype(s,w,slopeadjustmentfactor, fixedexponent,bias)
T = numerictype(,Name,Value)

T = numerictype(T1, Name Value)

T = numerictype('Double')

T = numerictype('Single')

T = numerictype('Boolean')

Description

T = numerictype creates a default numerictype object.

T = numerictype(s) creates a fixed-point numerictype object with unspecified scaling, a signed
property value of s, and a 16-bit word length.

T = numerictype(s,w) creates a fixed-point numerictype object with unspecified scaling, a
signed property value of s, and word length of w.

T = numerictype(s,w,) creates a fixed-point numerictype object with binary point scaling, a
signed property value of s, word length of w, and fraction length of f.

T = numerictype(s,w,slope,bias) creates a fixed-point numerictype object with slope and
bias scaling, a signed property value of s, word length of w, slope, and bias.

T = numerictype(s,w,slopeadjustmentfactor, fixedexponent,bias) creates a fixed-point
numerictype object with slope and bias scaling, a signed property value of s, word length of w,
slopeadjustmentfactor, and bias.

T = numerictype(,Name,Value) allows you to set properties using name-value pairs. All
properties that you do not specify a value for are assigned their default values.

T = numerictype(T1l,Name,Value) allows you to make a copy, T1, of an existing numerictype
object, T, while modifying any or all of the property values.

T = numerictype('Double') creates a numerictype object of data type double.
T = numerictype('Single') creates a numerictype object of data type single.
T = numerictype('Boolean') creates a numerictype object of data type Boolean.

4-585

‘l Functions

4-586

Examples

Create a Default numerictype Object
This example shows how to create a numerictype object with default property settings.

T = numerictype

T

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

Create a numerictype Object with Default Word Length and Scaling

This example shows how to create a numerictype object with the default word length and scaling
by omitting the arguments for word length, w, and fraction length, f.

T

numerictype(1)
T =
DataTypeMode: Fixed-point: unspecified scaling
Signedness: Signed
WordLength: 16
The object is signed, with a word length of 16 bits and unspecified scaling.
You can use the signedness argument, s, to create an unsigned numerictype object.

T

numerictype(0)

T

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 16

The object is has the default word length of 16 bits and unspecified scaling.

Create a numerictype Object with Unspecified Scaling

This example shows how to create a numerictype object with unspecified scaling by omitting the
fraction length argument, f.

T = numerictype(1,32)

numerictype

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Signed
WordLength: 32

The object is signed, with a 32-bit word length.

Create a numerictype Object with Specified Word and Fraction Length

This example shows how to create a signed numerictype object with binary-point scaling, a 32-bit
word length, and 30-bit fraction length.

T = numerictype(1,32,30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30

Create a numerictype Object with Slope and Bias Scaling

This example shows how to create a numerictype object with slope and bias scaling. The real-world
value of a slope and bias scaled number is represented by:

realworldvalue = (slope X integer) + bias

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope of 2”-2, and a bias of 4.

T = numerictype(1,16,2"-2,4)
T:

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 0.25
Bias: 4

Alternatively, the slope can be represented by:

slope = slopeadjustmentfactor x 2xedexponent

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope adjustment factor of 1, a fixed exponent of -2, and a bias of 4.

T = numerictype(1,16,1,-2,4)

4-587

‘l Functions

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 0.25
Bias: 4

Create a numerictype Object with Specified Property Values

This example shows how to use name-value pairs to set numerictype properties at obhject creation.

T = numerictype('Signed',true, 'DataTypeMode', 'Fixed-point: slope and bias scaling',
'WordLength',32, 'Slope',2”-2, 'Bias"',4)

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 32
Slope: 0.25
Bias: 4

Create a numerictype Object with Unspecified Sign

This example shows how to create a numerictype object with an unspecified sign by using name-
value pairs to set the Signedness property to Auto.

T = numerictype('Signedness', "Auto"')
T=
DataTypeMode: Fixed-point: binary point scaling
Signedness: Auto

WordLength: 16
FractionLength: 15

Create a numerictype Object with Specified Data Type

This example shows how to create a numerictype object with a specific data type by using
arguments and name-value pairs.

T = numerictype(0,24,12, 'DataType', 'ScaledDouble")

T

4-588

numerictype

DataTypeMode: Scaled double: binary point scaling
Signedness: Unsigned
WordLength: 24
FractionLength: 12

The returned numerictype object, T, is unsigned, and has a word length of 24 bits, a fraction length
of 12 bits, and a data type set to scaled double.

Create a Single, Double, or Boolean numerictype Object

This example shows how to create a numerictype object with data type set to single, double, or
Boolean at object creation.

Create a numerictype object with the data type mode set to single.

T

numerictype('Single")

T

DataTypeMode: Single

Create a numerictype object with the data type mode set to double.
T = numerictype('Double")

T =

DataTypeMode: Double

Create a numerictype object with the data type mode set to Boolean.

T

numerictype('Boolean')

T =

DataTypeMode: Boolean

Input Arguments

s — Whether object is signed
true or 1 (default) | falseor 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).
Example: T = numerictype(true)

Data Types: logical

w — Word length
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.

4-589

4 Functions

4-590

Example: T = numerictype(true,16)
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

f — Fraction length
15 (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

Fraction length can be greater than word length. For more information, see “Binary Point
Interpretation” (Fixed-Point Designer).

Example: T
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

numerictype(true,16,15)

slope — Slope
3.0518e-05 (default) | finite floating-point number greater than zero

Slope, specified as a finite floating-point number greater than zero.

The slope and the bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor x 2fxedexponent

Changing one of these properties affects the others.

Example: T = numerictype(true,16,2™-2,4)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

bias — Bias associated with object
0 (default) | floating-point number

Bias associated with the object, specified as a floating-point number.
The slope and the bias determine the scaling of a fixed-point number.

Example: T = numerictype(true,16,2™-2,4)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

slopeadjustmentfactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

numerictype

Note

slope = slopead justmentfactor x 2fxedexponent

Changing one of these properties affects the others.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

fixedexponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: F = numerictype('DataTypeMode', 'Fixed-point: binary point
scaling', 'DataTypeOverride', 'Inherit")

Note When you create a numerictype object by using name-value pairs, Fixed-Point Designer
creates a default numerictype object, and then, for each property name you specify in the
constructor, assigns the corresponding value. This behavior differs from the behavior that occurs
when you use a syntax such as T = numerictype(s,w). See “Example: Construct a numerictype
Object with Property Name and Property Value Pairs”.

Bias — Bias
0 (default) | floating-point number

Bias, specified as a floating-point number.

The slope and bias determine the scaling of a fixed-point number.

Example: T = numerictype('DataTypeMode', 'Fixed-point: slope and bias
scaling', 'Bias',4)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

DataType — Data type category
'"Fixed' (default) | 'Boolean' | 'Double’ | 'ScaledDouble' | 'Single’

Data type category, specified as one of these values:

* 'Fixed' - Fixed-point or integer data type

4-591

4 Functions

4-592

* 'Boolean' - Built-in MATLAB Boolean data type
* 'Double’ - Built-in MATLAB double data type

* 'ScaledDouble' - Scaled double data type

* 'Single’' - Built-in MATLAB single data type

Example: T = numerictype('Double’)

Data Types: char

DataTypeMode — Data type and scaling mode

'Fixed-point: binary point scaling' (default) | 'Fixed-point: slope and bias
scaling' | 'Fixed-point: unspecified scaling' | 'Scaled double: binary point
scaling' | 'Scaled double: slope and bias scaling' | 'Scaled double: unspecified
scaling' | 'Double’ | 'Single’ | 'Boolean’

Data type and scaling mode associated with the object, specified as one of these values:
* 'Fixed-point: binary point scaling' - Fixed-point data type and scaling defined by the

word length and fraction length

* 'Fixed-point: slope and bias scaling' - Fixed-point data type and scaling defined by
the slope and bias

* 'Fixed-point: unspecified scaling' - Fixed-point data type with unspecified scaling

* 'Scaled double: binary point scaling' - Double data type with fixed-point word length
and fraction length information retained

*+ 'Scaled double: slope and bias scaling' - Double data type with fixed-point slope and
bias information retained

* 'Scaled double: unspecified scaling' - Double data type with unspecified fixed-point
scaling

* 'Double' - Built-in double

* 'Single' - Built-in single

* 'Boolean' - Built-in boolean

Example: T = numerictype('DataTypeMode', 'Fixed-point: binary point scaling')

Data Types: char

DataTypeOverride — Data type override settings
'Inherit' (default) | 'Off’

Data type override settings, specified as one of these values:

* 'Inherit' - Turn on DataTypeOverride
* 'Off' - Turn off DataTypeOverride

Note The DataTypeOverride property is not visible when its value is set to the default,
"Inherit"’.

Example: T = numerictype('DataTypeOverride', '0ff")
Data Types: char

numerictype

FixedExponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Example: T = numerictype('FixedExponent"',-12)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

FractionLength — Fraction length of the stored integer value
best precision (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

The default value is the best precision fraction length based on the value of the object and the word
length.

Example: T = numerictype('FractionLength',12)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Scaling — Fixed-point scaling mode
'BinaryPoint' (default) | 'SlopeBias' | 'Unspecified’

Fixed-point scaling mode of the object, specified as one of these values:

* 'BinaryPoint' - Scaling for the numerictype object is defined by the fraction length.
* 'SlopeBias' - Scaling for the numerictype object is defined by the slope and bias.

* ‘'Unspecified' - Temporary setting that is only allowed at numerictype object creation, and
allows for the automatic assignment of a best-precision binary point scaling.

Example: T = numerictype('Scaling', 'BinaryPoint")
Data Types: char

Signed — Whether the object is signed
true or 1 (default) | false or 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).

Note Although the Signed property is still supported, the Signedness property always appears in
the numerictype object display. If you choose to change or set the signedness of your numerictype
object using the Signed property, MATLAB updates the corresponding value of the Signedness
property.

Example: T = numerictype('Signed"', true)

Data Types: logical

Signedness — Whether the object is signed
'Signed' (default) | 'Unsigned’' | 'Auto’

4-593

4 Functions

4-594

Whether the object is signed, specified as one of these values:
* 'Signed' - Signed

* 'Unsigned' - Unsigned

* 'Auto' - Unspecified sign

Note Although you can create numerictype objects with an unspecified sign (Signedness:

Auto), all fixed-point numerictype objects must have a Signedness of Signed or Unsigned. If you
use a numerictype object with Signedness: Auto to construct a numerictype object, the
Signedness property of the numerictype object automatically defaults to Signed.

Example: T = numerictype('Signedness', 'Signed")

Data Types: char

Slope — Slope
3.0518e-05 (default) | finite, positive floating-point number

Slope, specified as a finite, positive floating-point number.

The slope and bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor x 2fxedexponent

Changing one of these properties affects the others.

Example: T = numerictype('DataTypeMode', 'Fixed-point: slope and bias
scaling', 'Slope',2"-2)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SlopeAdjustmentFactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

slope = slopead justmentfactor x 2/™edexponent

Changing one of these properties affects the others.

numerictype

Example: T = numerictype('DataTypeMode', 'Fixed-point: slope and bias
scaling', 'SlopeAdjustmentFactor',1.5)

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

WordLength — Word length of the stored integer value
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.

Example: T = numerictype('WordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

+ Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a
numerictype object that is populated with the signal's data type and scaling information.

* Returns the data type when the input is a non fixed-point signal.

* Use to create numerictype objects in generated code.

* All numerictype object properties related to the data type must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi| fimath | fipref | quantizer
Topics

“numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects”
“numerictype Object Properties”

Introduced before R2006a

4-595

4 Functions

4-596

NumericTypeScope

Determine fixed-point data type

Syntax

H = NumericTypeScope
show (H)

step(H, data)
release(H)

reset(H)

Description

The NumericTypeScope is an object that provides information about the dynamic range of your
data. The scope provides a visual representation of the dynamic range of your data in the form of a
log?2 histogram. In this histogram, the bit weights appear along the X-axis, and the percentage of
occurrences along the Y-axis. Each bin of the histogram corresponds to a bit in the binary word. For
example, 2° corresponds to the first integer bit in the binary word, 2! corresponds to the first
fractional bit in the binary word.

The scope suggests a data type in the form of a numerictype object that satisfies the specified
criteria. See the section on Bit Allocation in “Dialog Panels” on page 4-601.

H = NumericTypeScope returns a NumericTypeScope object that you can use to view the dynamic
range of data in MATLAB. To view the NumericTypeScope window after creating H, use the show
method.

show(H) opens the NumericTypeScope object H and brings it into view. Closing the scope window
does not delete the object from your workspace. If the scope object still exists in your workspace, you
can open it and bring it back into view using the show method.

step(H, data) processes your data and allows you to visualize the dynamic range. The object H
retains previously collected information about the variable between each call to step.

release(H) releases system resources (such as memory, file handles or hardware connections) and
allows all properties and input characteristics to be changed.

reset (H) clears all stored information from the NumericTypeScope object H. Resetting the object
clears the information displayed in the scope window.

Identifying Values Outside Range and Below Precision

The NumericTypeScope can also help you identify any values that are outside range or below
precision based on the current data type. To prepare the NumericTypeScope to identify them,
provide an input variable that is a fi object and verify that one of the following conditions is true:

* The DataTypeMode of the fi object is set to Scaled doubles: binary point scaling.

* The DataTypeOverride property of the Fixed-Point Designer fipref object is set to
ScaledDoubles.

NumericTypeScope

When the information is available, the scope indicates values that are outside range, below precision,
and in range of the data type by color-coding the histogram bars as follows:

* Blue — Histogram bin contains values that are in range of the current data type.
* Red — Histogram bin contains values that are outside range in the current data type.
* Yellow — Histogram bin contains values that are below precision in the current data type.

For an example of the scope color coding, see the figures in “Vertical Units” on page 4-603.
See also Legend in “Dialog Panels” on page 4-601.

See the “Examples” on page 4-0 section to learn more about using the NumericTypeScope to
select data types.

Dialog Boxes and Toolbar

* “The NumericTypeScope Window” on page 4-597

* “Configuration Dialog Box” on page 4-599

* “Dialog Panels” on page 4-601

* “Vertical Units” on page 4-603

* “Bring All NumericType Scope Windows Forward” on page 4-604
* “Toolbar (Mac Only)” on page 4-605

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars displayed at the top of the window and the
dialog panels to the right.

4-597

4 Functions

-

(4] NumericTypeScope [1] - Simulink: fxpdemo_approx/Even
File View Simulation Help
@@ (B
Signed numerictype(1,16,14)
707 WL=16
IL=2 FL=14
60
a0
3?40—
t
]
o
=
E
=
]
8
30 —
20
10
J |2 |'1 0 1 2 3 4 & il I? IB IE I'h’} I11 I12 |13 |14
2 2 2 2 2= 2- 27 22t 2 22ty ey
Data Values

TYYTYY

|
T ¥ Legend X
B Outside range
I oo
|:| Below precision
T ¥ Resulting Type A X
numerictype(1, 16,14}
¥ Data Details
Outside range 0 (0.0%)
Below precision 0 (0.0%)
SONR Inf dB
¥ Type Details
Signedness: Signed
Word length: 16 bits
Integer length: 2 bits
Fraction length: 14 bits
Representable Max: +1.995%
Representable Min: -2
+ ¥ Bit Allocation n X
Signedness: | Signed -
Word length: | Specify hd
Walue: 16
Graphical control
Specify constraint:
Fractional bits hd
Value: 14
T ¥ Input Data o
¥ Counts
Total 101
Positive 99
Zero 2
Negative 0
¥ Statistics
Max 1
Average 062734
Kin 0.015825

4-598

NumericTypeScope

Configuration Dialog Box

The NumericTypeScope configuration allows you to control the behavior and appearance of the
scope window.

To open the Configuration dialog box, select File > Configuration, or, with the scope as your active
window, press the N key.

=): NumericType Scope [2] - Configuration il
Care |
Name Description
General UI Scope user intetface settings

Opkions ... | ok Cancel Apply

The Configuration Dialog box contains a series of panes each containing a table of configuration
options. See the reference section for each pane for instructions on setting the options on each one.
This dialog box has one pane, the Core pane, with only one option, for General Ul settings for the
scope user interface.

To save configuration settings for future use, select File > Configuration > Save as. The
configuration settings you save become the default configuration settings for the
NumericTypeScope object.

Caution Before saving your own set of configuration settings in the matlab/toolbox/fixedpoint/
fixedpoint folder, save a backup copy of the default configuration settings in another location. If you
do not save a backup copy of the default configuration settings, you cannot restore these settings at a
later time.

To save your configuration settings for future use, save them in the matlab/toolbox/fixedpoint/
fixedpoint folder with the file name NumericTypeScopeComponent. cfg. You can re-save your
configuration settings at anytime, but remember to do so in the specified folder using the specified
file name.

Core Pane

The Core pane in the Configuration dialog box controls the general settings of the scope.

4-599

4 Functions

4-600

=): NumericType Scope [2] - Configuration x|
Care
Name Description
General LT Scope user interface settings

Opkions ... | Ok Cancel Apply

Click General Ul and then click Options to open the Core:General Ul Options dialog box.

W Display the Full source path in the Litle bar

Cpen message log: IF-:ur warn)Fail messages LI

=): NumericType Scope [2] - CoresGeneral l.lI El
General UL Options

J

(04 Cancel | Apply

Display the full source path in the title bar—Select this check box to display the file name and
variable name in the scope title bar. If the scope is not from a file, or if you clear this check box,
the scope displays only the variable name in the title bar.

Open message log—Control when the Message Log window opens. The Message log window
helps you debug issues with the scope. Choose to open the Message Log window for any of these
conditions:

for any new messages
for warn/fail messages
only for fail messages
manually

The option defaults to for warn/fail messages.

You can open the Message Log at any time by selecting Help > Message Log or by pressing Ctrl
+M. The Message Log dialog box provides a system level record of loaded configuration settings
and registered extensions. The Message Log displays summaries and details of each message, and
you can filter the display of messages by Type and Category.

Type—Select the type of messages to display in the Message Log. You can select Al1, Info,
Warn, or Fail. Type defaults to ALL.

Category—Select the category of messages to display in the Message Log. You can select Al1,
Configuration, or Extension. The scope uses Configuration messages to indicate when
new configuration files are loaded, and Extension messages to indicate when components are
reg