
Fixed-Point Designer™
Reference

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Reference
© COPYRIGHT 2013–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2013 Online only New for Version 4.0 (R2013a)
September 2013 Online only Revised for Version 4.1 (R2013b)
March 2014 Online only Revised for Version 4.2 (R2014a)
October 2014 Online Only Revised for Version 4.3 (R2014b)
March 2015 Online Only Revised for Version 5.0 (R2015a)
September 2015 Online Only Revised for Version 5.1 (R2015b)
October 2015 Online only Rereleased for Version 5.0.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 5.2 (R2016a)
September 2016 Online only Revised for Version 5.3 (R2016b)
March 2017 Online only Revised for Version 5.4 (R2017a)
September 2017 Online only Revised for Version 6.0 (R2017b)
March 2018 Online only Revised for Version 6.1 (R2018a)
September 2018 Online only Revised for Version 6.2 (R2018b)
March 2019 Online only Revised for Version 6.3 (R2019a)
September 2019 Online only Revised for Version 6.4 (R2019b)
March 2020 Online only Revised for Version 7.0 (R2020a)
September 2020 Online only Revised for Version 7.1 (R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Blocks
2

Properties
3

fi Object Properties . 3-2
bin . 3-2
data . 3-2
dec . 3-2
double . 3-2
fimath . 3-2
hex . 3-2
int . 3-3
NumericType . 3-3
oct . 3-3
Value . 3-3

quantizer Object Properties . 3-4
DataMode . 3-4
Format . 3-4
OverflowMode . 3-5
RoundingMode . 3-5

iii

Contents

Functions
4

Classes
5

Methods
6

Selected Bibliography
A

iv Contents

Apps

1

Fixed-Point Converter
Convert MATLAB code to fixed point

Description
The Fixed-Point Converter app converts floating-point MATLAB® code to fixed-point MATLAB code.

Using the app, you can:

• Propose data types based on simulation range data, static range data, or both.
• Propose fraction lengths based on default word lengths or propose word lengths based on default

fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• View a histogram of bits used by each variable.
• Specify replacement functions or generate approximate functions for functions in the original

MATLAB algorithm that do not support fixed point.
• Test the numerical behavior of the fixed-point code. You can then compare its behavior against the
floating-point version of your algorithm using either the Simulation Data Inspector or your own
custom plotting functions.

If your end goal is to generate fixed-point C code, use the MATLAB Coder™ app instead. See “Convert
MATLAB Code to Fixed-Point C Code” (MATLAB Coder).

If your end goal is to generate HDL code, use the HDL Coder™ workflow advisor instead. See
“Floating-Point to Fixed-Point Conversion” (HDL Coder).

1 Apps

1-2

Open the Fixed-Point Converter App
• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter fixedPointConverter.
• To open an existing Fixed-Point Converter app project, either double-click the .prj file or open

the app and browse to the project file.

Creating a project or opening an existing project causes any other Fixed-Point Converter or
MATLAB Coder projects to close.

• A MATLAB Coder project opens in the MATLAB Coder app. To convert the project to a Fixed-Point
Converter app project, in the MATLAB Coder app:

1
Click and select Reopen project as.

2 Select Fixed-Point Converter.

 Fixed-Point Converter

1-3

Examples
• “Propose Data Types Based on Simulation Ranges”
• “Propose Data Types Based on Derived Ranges”

Programmatic Use
fixedPointConverter opens the Fixed-Point Converter app.

fixedPointConverter -tocode projectname converts the existing project named
projectname.prj to the equivalent script of MATLAB commands. It writes the script to the
Command Window.

fixedPointConverter -tocode projectname -script scriptname converts the existing
project named projectname.prj to the equivalent script of MATLAB commands. The script is
named scriptname.m.

• If scriptname already exists, fixedPointConverter overwrites it.
• The script contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the same fixed-
point conversion settings as the project.

• Run the fiaccel command to convert the floating-point MATLAB function to a fixed-point
MATLAB function.

Before converting the project to a script, you must complete the Test step of the fixed-point
conversion process.

See Also
Functions
fiaccel

Topics
“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Derived Ranges”
“Fixed-Point Conversion Workflows”
“Automated Fixed-Point Conversion”
“Generated Fixed-Point Code”
“Automated Fixed-Point Conversion in MATLAB”

Introduced in R2014b

1 Apps

1-4

Fixed-Point Tool
Convert floating-point model to fixed-point

Description
In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides convenient access
to:

• An interactive automatic data typing feature that proposes fixed-point data types for appropriately
configured objects in your model, and then allows you to selectively accept and apply the data
type proposals

• Model and subsystem parameters that control the signal logging, fixed-point instrumentation
mode, and data type override

• Plotting capabilities that enable you to plot data that resides in the MATLAB workspace

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software.
However, even if you do not have Fixed-Point Designer software, you can configure data type override
settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink®

software temporarily overrides fixed-point data types with floating-point data types when simulating
the model.

Open the Fixed-Point Tool
• In the Simulink Apps tab, select Fixed-Point Tool.
• From a subsystem context (right-click) menu, select Fixed-Point Tool.
• From the MATLAB command prompt, enter fxptdlg(system_name) where system_name is the

name of the model or system you want to convert, specified as a string.

Examples
• “Convert Floating-Point Model to Fixed Point”
• “Convert a Model to Fixed Point Using the Command Line”

See Also
“Autoscaling Using the Fixed-Point Tool” | “The Command-Line Interface for the Fixed-Point Tool” |
fxptdlg

Topics
“Convert Floating-Point Model to Fixed Point”
“Convert a Model to Fixed Point Using the Command Line”

Introduced before R2006a

 Fixed-Point Tool

1-5

Lookup Table Optimizer
Optimize an existing lookup table or approximate a function with a lookup table

Description
Use the Lookup Table Optimizer to obtain an optimized (memory-efficient) lookup table that
approximates an existing Simulink block, including Subsystem blocks and math function blocks, or a
function handle. The optimizer supports any combination of floating-point and fixed-point data types.
The original input and output data types can be kept or changed as desired. To minimize memory
used, the optimizer selects the data types of breakpoints and table data, as well as the number and
spacing of breakpoints.

Open the Lookup Table Optimizer
• In a Simulink model, on the Apps tab, click the arrow on the far right of the Apps section. In the

Code Generation gallery, click Lookup Table Optimizer.
• In a Simulink model with a Lookup Table block, select the Lookup Table block, in the Lookup

Table tab, select Lookup Table Optimizer.

1 Apps

1-6

See Also
Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare | displayallsolutions | displayfeasiblesolutions |
solutionfromID | solve | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 Lookup Table Optimizer

1-7

Single Precision Converter
Convert double-precision system to single precision

Description
The Single Precision Converter automatically converts a double-precision system to single precision.

During the conversion process, the converter replaces all user-specified double-precision data types,
as well as output data types that compile to double precision, with single-precision data types. The
converter does not change built-in integer, Boolean, or fixed-point data types.

Open the Single Precision Converter
• From the Simulink Apps tab, select Single Precision Converter.

Examples
• “Convert a System to Single Precision”

Programmatic Use
report = DataTypeWorkflow.Single.convertToSingle(systemToConvert) converts the
system specified by systemToConvert to single-precision and returns a report. The
systemToConvert must be open before you begin the conversion.

See Also
Functions
DataTypeWorkflow.Single.convertToSingle

Topics
“Convert a System to Single Precision”
“Getting Started with Single Precision Converter”

Introduced in R2016b

1 Apps

1-8

Blocks

2

Complex Burst Matrix Solve Using Q-less QR
Decomposition
Compute the value of X in the equation A'AX = B for complex-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Complex Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued matrices.

Creation

fixed.getQlessQRMatrixSolveModel(A,B) generates a template model containing a Complex
Burst Matrix Solve Using Q-less QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value is 1

2 Blocks

2-2

(true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-3

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2 Blocks

2-4

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Complex Burst Matrix Solve
Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020a

 Complex Burst Matrix Solve Using Q-less QR Decomposition

2-5

Complex Burst Matrix Solve Using QR
Decomposition
Compute the value of x in the equation Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Complex Burst Matrix Solve Using QR Decomposition block solves the system of linear equations
Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x = A-1, set
B to be the identity matrix.

Creation

fixed.getMatrixSolveModel(A,B) generates a template model containing a Complex Burst
Matrix Solve Using QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

2 Blocks

2-6

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

 Complex Burst Matrix Solve Using QR Decomposition

2-7

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2 Blocks

2-8

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-
less QR Decomposition | Real Burst Matrix Solve Using QR Decomposition

Functions
fixed.qrMatrixSolve

Introduced in R2019b

 Complex Burst Matrix Solve Using QR Decomposition

2-9

Complex Burst Q-less QR Decomposition
Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Complex Burst Q-less QR Decomposition block uses QR decomposition to compute the economy
size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued matrix,
without computing Q. The solution to A'Ax = B is x = R\R'\b.

Creation

fixed.getQlessQRDecompositionModel(A,B) generates a template model containing a Complex
Burst Q-less QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of complex matrix A
vector

Rows of complex matrix A, specified as a vector. A is a m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input
samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

2 Blocks

2-10

Data Types: Boolean

Output

R(i,:) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper-
triangular matrix. The output at R(i,:) has the same data type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

 Complex Burst Q-less QR Decomposition

2-11

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
Blocks
Complex Partial-Systolic Q-less QR Decomposition | Complex Burst QR Decomposition | Real Burst Q-
less QR Decomposition

Functions
fixed.qlessQR

2 Blocks

2-12

Introduced in R2020a

 Complex Burst Q-less QR Decomposition

2-13

Complex Burst QR Decomposition
QR decomposition for complex-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Complex Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = B is x =
R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be
the identity matrix.

Creation

fixed.getQRDecompositionModel(A,B) generates a template model containing a Complex Burst
QR Decomposition block for complex-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

2 Blocks

2-14

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. R has the same data type as A.
Data Types: single | double | fixed point

C(i,:) — Rows of matrix C=Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

The number of rows in matrices A and B, specified as a positive integer-valued scalar.

 Complex Burst QR Decomposition

2-15

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

2 Blocks

2-16

General
InputPipeline Number of input pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic QR Decomposition | Complex Burst Q-less QR Decomposition | Real Burst
QR Decomposition

Functions
fixed.qrAB

Introduced in R2019b

 Complex Burst QR Decomposition

2-17

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition
Compute the value of X in A'AX = B for complex-valued matrices using Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations, A'AX = B, using Q-less QR decomposition, where A and B are complex-valued
matrices.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
vector

Matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B must be
the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point scaling,
and have the same word length as A. Slope-bias representation is not supported for fixed-point data
types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validInA — Whether input A is valid
Boolean scalar

Whether input A is valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value at readyA is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

2 Blocks

2-18

Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the value at readyB is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
matrix | vector

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-19

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following

2 Blocks

2-20

table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-21

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor |
Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve
Using Q-less QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Topics
“Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer”

Introduced in R2020b

2 Blocks

2-22

Complex Partial-Systolic Matrix Solve Using Q-less
QR Decomposition with Forgetting Factor
Compute the value of X in A'AX = B for complex-valued matrices with infinite number of rows using
Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
block solves the system of linear equations, A'AX = B, using Q-less QR decomposition, where A and B
are complex-valued matrices. A is an infinitely tall matrix representing streaming data.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B — Matrix B
matrix | vector

Matrix B, specified as a vector or a matrix. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(i, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-23

Data Types: Boolean

validInB — Whether input B is valid
Boolean scalar

Whether input B is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
matrix | vector

Matrix X, returned as a matrix or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

2 Blocks

2-24

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-25

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

2 Blocks

2-26

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Burst Q-less QR Decomposition | Complex Partial Systolic Q-less QR Decomposition | Real
Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real Partial-
Systolic Q-less QR Decomposition with Forgetting Factor

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

 Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-27

Complex Partial-Systolic Matrix Solve Using QR
Decomposition
Compute value of x in Ax = B for complex-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Complex Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are complex-valued matrices. To compute x
= A-1, set B to be the identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the ready value is 1
(true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

2 Blocks

2-28

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i, :) — Rows of matrix X
scalar | vector

Rows of matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in input matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

 Complex Partial-Systolic Matrix Solve Using QR Decomposition

2-29

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | non-negative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: k
Type: character vector
Values: positive integer-valued scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

2 Blocks

2-30

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

 Complex Partial-Systolic Matrix Solve Using QR Decomposition

2-31

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Complex Burst Matrix Solve Using QR Decomposition | Complex Partial-Systolic Matrix Solve Using
Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Introduced in R2020b

2 Blocks

2-32

Complex Partial-Systolic Q-less QR Decomposition
Q-less QR decomposition for complex-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Complex Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a complex-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input
samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

 Complex Partial-Systolic Q-less QR Decomposition

2-33

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

2 Blocks

2-34

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

 Complex Partial-Systolic Q-less QR Decomposition

2-35

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2 Blocks

2-36

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
Blocks
Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor | Complex Burst Q-less QR
Decomposition | Real Partial-Systolic Q-less QR Decomposition

Functions
fixed.qlessQR

Introduced in R2020b

 Complex Partial-Systolic Q-less QR Decomposition

2-37

Complex Partial-Systolic Q-less QR Decomposition
with Forgetting Factor
Q-less QR decomposition for complex-valued matrices with infinite number of rows
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall complex-valued matrix representing streaming data.

The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data at
the A(i,:) input port is valid. When this value is 1 (true) and the value at ready is 1 (true), the block
captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the input
samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.

2 Blocks

2-38

Data Types: Boolean

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-39

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

2 Blocks

2-40

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

 Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-41

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
Blocks
Complex Partial-Systolic QR Decomposition | Complex Burst Q-less QR Decomposition | Complex
Partial Systolic Q-less QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with
Forgetting Factor

Functions
fixed.qlessQR

Introduced in R2020b

2 Blocks

2-42

Complex Partial-Systolic QR Decomposition
QR decomposition for complex-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Complex Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C =
Q'B, where QR = A, and A and B are complex-valued matrices. The least-squares solution to Ax = B is
x = R\C. R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to
be the identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is single or
double, A must be the same data type as B. If A is a fixed-point data type, A must be signed, use
binary-point scaling, and have the same word length as B. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

B(i,:) — Rows of matrix B
vector

Rows of matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point
Complex Number Support: Yes

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

 Complex Partial-Systolic QR Decomposition

2-43

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false), and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
matrix

Economy-size QR decomposition matrix R, returned as a matrix. R is an upper triangular matrix. R
has the same data type as A.
Data Types: single | double | fixed point

C — Matrix C=Q'B
matrix

Economy-size QR decomposition matrix C=Q'B, returned as a matrix or vector. C has the same
number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in input matrices A and B
4 (default) | positive integer-valued scalar

The number of rows in input matrices A and B, specified as a positive integer-valued scalar.

2 Blocks

2-44

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

The number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

The number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | non-negative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: k
Type: character vector
Values: positive integer-valued scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

 Complex Partial-Systolic QR Decomposition

2-45

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

2 Blocks

2-46

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

 Complex Partial-Systolic QR Decomposition

2-47

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Burst QR Decomposition | Complex Partial Systolic Q-less QR Decomposition | Real Partial
Systolic QR Decomposition

Functions
fixed.qrAB

Introduced in R2020b

2 Blocks

2-48

Hyperbolic Tangent HDL Optimized
Computes CORDIC-based hyperbolic tangent and generates optimized HDL code
Library: Fixed-Point Designer / Math Operations

Description
The Hyperbolic Tangent HDL Optimized block returns the hyperbolic tangent of x, computed using a
CORDIC-based implementation optimized for HDL code generation.

Ports
Input

x — Angle in radians
real finite scalar

Angle in radians, specified as a real finite scalar. If x is a fixed-point or scaled double data type, x
must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the x input port is valid. When this value is 1 (true), the block captures the value on the x input port.
When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

y — Hyperbolic tangent of x
scalar

Hyperbolic tangent of the value at x, returned as a scalar. The value at y is the CORDIC-based
approximation of the hyperbolic tangent of x. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is a fixed-point data type, the
output has the same word length as the input and a fraction length equal to 2 less than the word
length.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

 Hyperbolic Tangent HDL Optimized

2-49

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the output y. When this value is 0 (false), the output
data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true), and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Algorithms
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers.

The block automatically determines the number of iterations, niters, the CORDIC algorithm
performs based on the data type of the input.

Data type of input x niters
single 23
double 52
fixed point One less than the word length of x. The minimum

number of CORDIC iterations is 7.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

2 Blocks

2-50

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

x must use binary-point scaling. Slope-bias representation is not supported for fixed-point data types.

See Also
Functions
cordictanh

Topics
“Implement Hardware-Efficient Hyperbolic Tangent”

Introduced in R2020a

 Hyperbolic Tangent HDL Optimized

2-51

Normalized Reciprocal HDL Optimized
Computes normalized reciprocal and generates optimized HDL code
Library: Fixed-Point Designer / Math Operations

Description
The Normalized Reciprocal HDL Optimized block computes the normalized reciprocal of u, returned
as y and t such that 0.5 < |y| ≤ 1 and 2ey = 1/u.

• If u = 0 and u is a fixed-point or scaled-double data type, then y = 2 – eps(y) and e = 2nextpow2(w) – w
+ f, where w is the word length of u and f is the fraction length of u.

• If u = 0 and u is a floating-point data type, then y = Inf and t = 1.

Ports
Input

u — Value to take normalized reciprocal of
real scalar

Value to take the normalized reciprocal of, specified as a real scalar.
Data Types: single | double | fixed point

validIn — Whether input is valid
Boolean scalar

Whether input is valid, specified as a Boolean scalar. This control signal indicates when the data from
the u input port is valid. When this value is 1 (true), the block captures the value at the u input port.
When this value is 0 (false), the block ignores the input samples.
Data Types: Boolean

Output

y — Normalized reciprocal
scalar

Normalized reciprocal that satisfies 0.5 < |y| ≤ 1 and 2ey = 1/u, returned as a scalar.

• If the input at port u is a signed fixed-point or scaled-double data type with word length w, then y
is a signed fixed-point or scaled-double data type with word length w and fraction length w – 2.

• If the input at port u is an unsigned fixed-point or scaled-double data type with word length w,
then y is an unsigned fixed-point or scaled-double data type with word length w and fraction
length w – 1.

2 Blocks

2-52

• If the input at port u is a double, then y is a double.
• If the input at port u is a single, the y is a single.

Data Types: single | double | fixed point

e — Exponent
integer scalar

Exponent that satisfies 0.5 < |y| ≤ 1 and 2ey = 1/u, returned as an integer scalar.
Data Types: int32

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. When the value of this control signal is
1 (true), the block has successfully computed the outputs at ports y and e. When this value is 0
(false), the output data is not valid.
Data Types: Boolean

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

 Normalized Reciprocal HDL Optimized

2-53

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
Functions
normalizedReciprocal

Blocks
HDL Reciprocal

Topics
“How to Use HDL Optimized Normalized Reciprocal”

Introduced in R2020a

2 Blocks

2-54

Real Burst Matrix Solve Using Q-less QR
Decomposition
Compute the value of X in the equation A'AX = B for real-valued matrices using Q-less QR
decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Real Burst Matrix Solve Using Q-less QR Decomposition block solves the system of linear
equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

Creation

fixed.getQlessQRMatrixSolveModel(A,B) generates a template model containing a Real Burst
Matrix Solve Using Q-less QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-55

1 (true), the block captures the values at the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

2 Blocks

2-56

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

 Real Burst Matrix Solve Using Q-less QR Decomposition

2-57

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Burst Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Partial-
Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Introduced in R2020a

2 Blocks

2-58

Real Burst Q-less QR Decomposition
Q-less QR decomposition for real-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Real Burst Q-less QR Decomposition block uses QR decomposition to compute the economy size
upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued matrix, without
computing Q. The solution to A'Ax = B is x = R\R'\b.

Creation

fixed.getQlessQRDecompositionModel(A,B) generates a template model containing a Real
Burst Q-less QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.

 Real Burst Q-less QR Decomposition

2-59

Data Types: Boolean

Output

R(i,:) — Rows of upper-triangular matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. The output at R(i,:) has the same data type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R(i,:) is valid. When this value is 1 (true), the block has successfully computed
the matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

2 Blocks

2-60

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
Blocks
Complex Burst Q-less QR Decomposition | Real Burst QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qlessQR

 Real Burst Q-less QR Decomposition

2-61

Introduced in R2020a

2 Blocks

2-62

Real Burst Matrix Solve Using QR Decomposition
Compute the value of x in the equation Ax = B for real-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Real Burst Matrix Solve Using QR Decomposition block solves the system of linear equations Ax
= B using QR decomposition, where A and B are real-valued matrices. To compute x = A-1, set B to be
the identity matrix.

Creation

fixed.getMatrixSolveModel(A,B) generates a template model containing a Real Burst Matrix
Solve Using QR Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

 Real Burst Matrix Solve Using QR Decomposition

2-63

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

2 Blocks

2-64

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of the output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

 Real Burst Matrix Solve Using QR Decomposition

2-65

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Burst Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qrAB

Introduced in R2019b

2 Blocks

2-66

Real Burst QR Decomposition
QR decomposition for real-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Real Burst QR Decomposition block uses QR decomposition to compute R and C = Q'B, where QR
= A, and A and B are real-valued matrices. The least-squares solution to Ax = B is x = R\C. R is an
upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the identity
matrix.

Creation

fixed.getQRDecompositionModel(A,B) generates a template model containing a Real Burst QR
Decomposition block for real-valued input matrices A and B.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is

 Real Burst QR Decomposition

2-67

1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R(i,:) — Rows of matrix R
scalar | vector

Rows of the economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper
triangular matrix. R has the same data type as A.
Data Types: single | double | fixed point

C(i,:) — Rows of matrix C = Q'B
scalar | vector

Rows of the economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the
same number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R(i,:) and C(i,:) is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

2 Blocks

2-68

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 Real Burst QR Decomposition

2-69

General
InputPipeline Number of input pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Burst QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial-Systolic QR
Decomposition

Functions
fixed.qrAB

Introduced in R2019b

2 Blocks

2-70

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition
Compute value of X in A'AX = B for real-valued matrices using Q-less QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition block solves the system of
linear equations A'AX = B using Q-less QR decomposition, where A and B are real-valued matrices.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Matrix B
vector | matrix

Real matrix B, specified as a vector or matrix. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(i, :) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.
Data Types: Boolean

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-71

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
vector | matrix

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A(i, :), returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

2 Blocks

2-72

Parameters
Number of rows in matrix A — Number of rows in matrix A
4 (default) | positive integer-valued scalar

Number of rows in matrix A, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.
Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.
Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-73

table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2 Blocks

2-74

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition | Real Burst Matrix Solve
Using Q-less QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
with Forgetting Factor | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

2-75

Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor
Compute value of X in A'AX = B for real-valued matrices with infinite number of rows using Q-less QR
decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor block
solves the system of linear equations A'AX = B using Q-less QR decomposition, where A and B are
real-valued matrices. A is an infinitely tall matrix representing streaming data.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B — Matrix B
matrix

Real matrix B, specified as a matrix. B is an m-by-p matrix where m ≥ 2. If A is single or double, B
must be the same data type as A. If B is a fixed-point data type, B must be signed, use binary-point
scaling, and have the same word length as A. Slope-bias representation is not supported for fixed-
point data types.
Data Types: single | double | fixed point

validInA — Whether A input is valid
Boolean scalar

Whether A(i, ;) input is valid, specified as a Boolean scalar. This control signal indicates when the
data from the A(i,:) input port is valid. When this value is 1 (true) and the readyA value is 1 (true),
the block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores
the input samples.
Data Types: Boolean

2 Blocks

2-76

validInB — Whether B input is valid
Boolean scalar

Whether B input is valid, specified as a Boolean scalar. This control signal indicates when the data
from the B input port is valid. When this value is 1 (true) and the readyB value is 1 (true), the
block captures the values at the B input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validInA and validInB values are both 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X — Matrix X
vector | matrix

Matrix X, returned as a vector or matrix.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X is valid. When this value is 1 (true), the block has successfully computed a
row of X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

readyA — Whether block is ready for input A
Boolean scalar

Whether the block is ready for input A, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInA value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

readyB — Whether block is ready for input B
Boolean scalar

Whether the block is ready for input B, returned as a Boolean scalar. This control signal indicates
when the block is ready for new input data. When this value is 1 (true) and validInB value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores input data in the next time step.
Data Types: Boolean

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-77

Parameters
Number of columns in matrix A and rows in matrix B — Number of columns in matrix
A and rows in matrix B
4 (default) | positive integer-valued scalar

Number of columns in matrix A and rows in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Forgetting factor — Forgetting factor applied after each row of matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgettingFactor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

2 Blocks

2-78

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

 Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

2-79

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor | Real
Burst Matrix Solve Using QR Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR
Decomposition | Real Partial-Systolic Matrix Solve Using QR Decomposition

Functions
fixed.qlessQRMatrixSolve

Introduced in R2020b

2 Blocks

2-80

Real Partial-Systolic Matrix Solve Using QR
Decomposition
Compute value of x in Ax = B for real-valued matrices using QR decomposition
Library: Fixed-Point Designer / Matrices and Linear Algebra / Linear

System Solvers

Description
The Real Partial-Systolic Matrix Solve Using QR Decomposition block solves the system of linear
equations Ax = B using QR decomposition, where A and B are real-valued matrices. To compute x =
A-1, set B to be the identity matrix.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and m ≥ n. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of real matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-81

Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

X(i,:) — Rows of matrix X
scalar | vector

Rows of the matrix X, returned as a scalar or vector.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at the output port X(i,:) is valid. When this value is 1 (true), the block has successfully
computed a row of matrix X. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the block
accepts input data in the next time step. When this value is 0 (false), the block ignores input data in
the next time step.
Data Types: Boolean

Parameters
Number of rows in matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

2 Blocks

2-82

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: k
Type: character vector
Values: real nonnegative scalar
Default: 0

Output datatype — Data type of output matrix X
fixdt(1,18,14) (default) | double | single | fixdt(1,16,0) | <data type expression>

Data type of the output matrix X, specified as fixdt(1,18,14), double, single, fixdt(1,16,0),
or as a user-specified data type expression. The type can be specified directly, or expressed as a data
type object such as Simulink.NumericType.

Programmatic Use
Block Parameter: OutputType
Type: character vector
Values: 'fixdt(1,18,14)' | 'double' | 'single' | 'fixdt(1,16,0)' | '<data type
expression>'
Default: 'fixdt(1,18,14)'

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-83

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

2 Blocks

2-84

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic Matrix Solve Using QR Decomposition | Real Burst Matrix Solve Using QR
Decomposition | Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition

Functions
fixed.qrMatrixSolve

Introduced in R2020b

 Real Partial-Systolic Matrix Solve Using QR Decomposition

2-85

Real Partial-Systolic Q-less QR Decomposition
Q-less QR decomposition for real-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Real Partial-Systolic Q-less QR Decomposition block uses QR decomposition to compute the
economy size upper-triangular R factor of the QR decomposition A = QR, where A is a real-valued
matrix, without computing Q. The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If A is a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

2 Blocks

2-86

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R, returned as a vector or matrix. R is an upper triangular
matrix. The output at R has the same data type as the input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.
Data Types: Boolean

Parameters
Number of rows in matrix A — Number of rows in input matrix A
4 (default) | positive integer-valued scalar

Number of rows in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

 Real Partial-Systolic Q-less QR Decomposition

2-87

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

2 Blocks

2-88

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

 Real Partial-Systolic Q-less QR Decomposition

2-89

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported for fixed-
point data types.

See Also
Blocks
Complex Partial Systolic Q-less QR Decomposition | Real Burst Q-less QR Decomposition | Real Partial
Systolic QR Decomposition | Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Functions
fixed.qlessQR

Introduced in R2020b

2 Blocks

2-90

Real Partial-Systolic Q-less QR Decomposition with
Forgetting Factor
Q-less QR decomposition for real-valued matrices with infinite number of rows
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor block uses QR
decomposition to compute the economy size upper-triangular R factor of the QR decomposition A =
QR, without computing Q. A is an infinitely tall real-valued matrix representing streaming data.

The solution to A'Ax = B is x = R\R'\b.

Ports
Input

A(i,:) — Rows of real matrix A
vector

Rows of real matrix A, specified as a vector. A is an infinitely tall matrix of streaming data. If A uses a
fixed-point data type, A must be signed and use binary-point scaling. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) input port is valid. When this value is 1 (true) and the value of ready is 1 (true), the
block captures the values at the A(i,:) input port. When this value is 0 (false), the block ignores the
input samples.
Data Types: Boolean

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the value
at validIn is 1 (true), the block begins a new subframe.
Data Types: Boolean

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-91

Output

R — Upper-triangular matrix R
matrix

Economy size QR decomposition matrix R multiplied by the Forgetting factor parameter,
returned as a matrix. R is an upper triangular matrix. The output at R has the same data type as the
input at A(i,:).
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether the output data is valid, specified as a Boolean scalar. This control signal indicates when the
data at output port R is valid. When this value is 1 (true), the block has successfully computed the
matrix R. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether the block is ready, returned as a Boolean scalar. This control signal indicates when the block
is ready for new input data. When this value is 1 (true) and validIn is 1 (true), the block accepts
input data in the next time step. When this value is 0 (false), the block ignores input data in the
next time step.
Data Types: Boolean

Parameters
Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Forgetting factor — Forgetting factor applied after each row of the matrix is factored
0.99 (default) | real positive scalar

Forgetting factor applied after each row of the matrix is factored, specified as a real positive scalar.
The output is updated as each row of A is input indefinitely.

Programmatic Use
Block Parameter: forgetting_factor
Type: character vector
Values: positive integer-valued scalar
Default: 0.99

2 Blocks

2-92

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-93

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

2 Blocks

2-94

General
OutputPipeline Number of output pipeline stages to insert in the

generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A must be signed and use binary-point scaling. Slope-bias representation is not supported.

See Also
Blocks
Complex Partial Systolic Q-less QR Decomposition with Forgetting Factor | Real Burst Q-less QR
Decomposition | Real Partial Systolic QR Decomposition | Real Partial-Systolic Q-less QR
Decomposition

Functions
fixed.qlessQR

Introduced in R2020b

 Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor

2-95

Real Partial-Systolic QR Decomposition
QR decomposition for real-valued matrices
Library: Fixed-Point Designer / Matrices and Linear Algebra / Matrix

Factorizations

Description
The Real Partial-Systolic QR Decomposition block uses QR decomposition to compute R and C = Q'B,
where QR = A, and A and B are real-valued matrices. The least-squares solution to Ax = B is x = R\C.
R is an upper triangular matrix and Q is an orthogonal matrix. To compute C = Q', set B to be the
identity matrix.

Ports
Input

A(i,:) — Rows of matrix A
vector

Rows of real matrix A, specified as a vector. A is an m-by-n matrix where m ≥ 2 and n ≥ 2. If B is
single or double, A must be the same data type as B. If A is a fixed-point data type, A must be signed,
use binary-point scaling, and have the same word length as B. Slope-bias representation is not
supported for fixed-point data types.
Data Types: single | double | fixed point

B(i,:) — Rows of matrix B
vector

Rows of real matrix B, specified as a vector. B is an m-by-p matrix where m ≥ 2. If A is single or
double, B must be the same data type as A. If B is a fixed-point data type, B must be signed, use
binary-point scaling, and have the same word length as A. Slope-bias representation is not supported
for fixed-point data types.
Data Types: single | double | fixed point

validIn — Whether inputs are valid
Boolean scalar

Whether inputs are valid, specified as a Boolean scalar. This control signal indicates when the data
from the A(i,:) and B(i,:) input ports are valid. When this value is 1 (true) and the value at ready is
1 (true), the block captures the values on the A(i,:) and B(i,:) input ports. When this value is 0
(false), the block ignores the input samples.
Data Types: Boolean

2 Blocks

2-96

restart — Whether to clear internal states
Boolean scalar

Whether to clear internal states, specified as a Boolean scalar. When this value is 1 (true), the block
stops the current calculation and clears all internal states. When this value is 0 (false) and the
validIn value is 1 (true), the block begins a new subframe.
Data Types: Boolean

Output

R — Matrix R
scalar | vector

Economy size QR decomposition matrix R, returned as a scalar or vector. R is an upper triangular
matrix. R has the same data type as A.
Data Types: single | double | fixed point

C — Matrix C = Q'B
scalar | vector

Economy size QR decomposition matrix C=Q'B, returned as a scalar or vector. C has the same
number of rows as R. C has the same data type as B.
Data Types: single | double | fixed point

validOut — Whether output data is valid
Boolean scalar

Whether output data is valid, returned as a Boolean scalar. This control signal indicates when the
data at output ports R and C is valid. When this value is 1 (true), the block has successfully
computed the R and C matrices. When this value is 0 (false), the output data is not valid.
Data Types: Boolean

ready — Whether block is ready
Boolean scalar

Whether block is ready, returned as a Boolean scalar. This control signal that indicates when the
block is ready for new input data. When this value is 1 (true) and the validIn value is 1 (true), the
block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.
Data Types: Boolean

Parameters
Number of rows in input matrices A and B — Number of rows in matrices A and B
4 (default) | positive integer-valued scalar

Number of rows in input matrices A and B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: m
Type: character vector

 Real Partial-Systolic QR Decomposition

2-97

Values: positive integer-valued scalar
Default: 4

Number of columns in matrix A — Number of columns in input matrix A
4 (default) | positive integer-valued scalar

Number of columns in input matrix A, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: n
Type: character vector
Values: positive integer-valued scalar
Default: 4

Number of columns in matrix B — Number of columns in input matrix B
1 (default) | positive integer-valued scalar

Number of columns in input matrix B, specified as a positive integer-valued scalar.

Programmatic Use
Block Parameter: p
Type: character vector
Values: positive integer-valued scalar
Default: 1

Regularization parameter — Regularization parameter
0 (default) | real nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.

Programmatic Use
Block Parameter: k
Type: character vector
Values: real nonnegative scalar
Default: 0

Algorithms
Choosing the Implementation Method

Partial-systolic implementations prioritize speed of computations over space constraints, while burst
implementations prioritize space constraints at the expense of speed of the operations. The following
table illustrates the tradeoffs between the implementations available for matrix decompositions and
solving systems of linear equations.

2 Blocks

2-98

Implementation Ready Latency Area Sample block or
example

Systolic C O(n) O(mn2) “Implement
Hardware-Efficient
QR Decomposition
Using CORDIC in a
Systolic Array”

Partial-Systolic C O(m) O(n2) • Real Partial-
Systolic QR
Decomposition

• Real Partial-
Systolic Matrix
Solve Using QR
Decomposition

Partial-Systolic
with Forgetting
Factor

C O(n) O(n2) “Fixed-Point HDL-
Optimized
Minimum-Variance
Distortionless-
Response (MVDR)
Beamformer”

Burst O(n) O(mn2) O(n) • Real Burst QR
Decomposition

• Real Burst
Matrix Solve
Using QR
Decomposition

Where C is a constant proportional to the word length of the data, m is the number of rows in matrix
A, and n is the number of columns in matrix A.

Block Timing

The following table provides details on the timing for the QR decomposition blocks.

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Real Partial-Systolic QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic QR
Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition

c = w + 8 v = c(m + n - 1)

Complex Partial-Systolic Q-less
QR Decomposition

c = 2w + 15 v = c(m + n - 1)

Real Partial-Systolic Q-less QR
Decomposition with Forgetting
Factor

c = w + 8 v = c(2n - 1)

 Real Partial-Systolic QR Decomposition

2-99

Block validIn to ready (c cycles) validIn to validOut (v
cycles)

Complex Partial-Systolic Q-less
QR Decomposition with
Forgetting Factor

c = 2w + 15 v = c(2n - 1)

In the table, m represents the number of rows in matrix A, and n is the number of columns in matrix
A. w represents the word length of A.

• If the data type of A is fixed point, then w is the word length.
• If the data type of A is double, then w is 53.
• If the data type of A is single, then w is 24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

General
ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Restrictions

Supports fixed-point data types only.

2 Blocks

2-100

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

A and B must be signed, use binary-point scaling, and have the same word length. Slope-bias
representation is not supported for fixed-point data types.

See Also
Blocks
Complex Partial-Systolic QR Decomposition | Real Burst QR Decomposition | Real Partial-Systolic Q-
less QR Decomposition

Functions
fixed.qrAB

Introduced in R2020b

 Real Partial-Systolic QR Decomposition

2-101

Properties

• “fi Object Properties” on page 3-2
• “quantizer Object Properties” on page 3-4

3

fi Object Properties
The properties associated with fi objects are described in the following sections in alphabetical
order.

You can set these properties when you create a fi object. For example, to set the stored integer value
of a fi object:

x = fi(0,true,16,15,'int',4);

Note The fimath properties and numerictype properties are also properties of the fi object.
Refer to “fimath Object Properties” and “numerictype Object Properties” for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object.

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB double.

fimath
fimath properties associated with a fi object. fimath properties determine the rules for
performing fixed-point arithmetic operations on fi objects. fi objects get their fimath properties
from a local fimath object or from default values. The factory-default fimath values have the
following settings:

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

To learn more about fimath objects, refer to “fimath Object Construction”. For more information
about each of the fimath object properties, refer to “fimath Object Properties”.

hex
Stored integer value of a fi object in hexadecimal.

3 Properties

3-2

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data type.

NumericType
The numerictype object contains all the data type and scaling attributes of a fixed-point object. The
numerictype object behaves like any MATLAB structure, except that it only lets you set valid values
for defined fields. For a table of the possible settings of each field of the structure, see “Valid Values
for numerictype Object Properties” in the Fixed-Point Designer User's Guide.

Note You cannot change the numerictype properties of a fi object after fi object creation.

oct
Stored integer value of a fi object in octal.

Value
Full-precision real world value of a fi object, stored as a character vector.

 fi Object Properties

3-3

quantizer Object Properties
The properties associated with quantizer objects are described in the following sections in
alphabetical order.

DataMode
Type of arithmetic used in quantization. This property can have the following values:

• fixed — Signed fixed-point calculations
• float — User-specified floating-point calculations
• double — Double-precision floating-point calculations
• single — Single-precision floating-point calculations
• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format property value
becomes read only.

Format
Data format of a quantizer object. The interpretation of this property value depends on the value of
the DataMode property.

For example, whether you specify the DataMode property with fixed- or floating-point arithmetic
affects the interpretation of the data format property. For some DataMode property values, the data
format property is read only.

The following table shows you how to interpret the values for the Format property value when you
specify it, or how it is specified in read-only cases.

DataMode Property Value Interpreting the Format Property Values
fixed or ufixed You specify the Format property value as a vector. The number of bits for the

quantizer object word length is the first entry of this vector, and the number
of bits for the quantizer object fraction length is the second entry.

The word length can range from 2 to the limits of memory on your PC. The
fraction length can range from 0 to one less than the word length.

float You specify the Format property value as a vector. The number of bits you want
for the quantizer object word length is the first entry of this vector, and the
number of bits you want for the quantizer object exponent length is the
second entry.

The word length can range from 2 to the limits of memory on your PC. The
exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only) when you
set the DataMode property to double. The value is [64 11], specifying the
word length and exponent length, respectively.

3 Properties

3-4

DataMode Property Value Interpreting the Format Property Values
single The Format property value is specified automatically (is read only) when you

set the DataMode property to single. The value is [32 8], specifying the word
length and exponent length, respectively.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be one of the following:

• Saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers (as specified by the data format properties), these values are quantized to
the value of either the largest or smallest representable value, depending on which is closest.

• Wrap — Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest and smallest
representable numbers (as specified by the data format properties), these values are wrapped
back into that range using modular arithmetic relative to the smallest representable number.

The default value of this property is Saturate. This property becomes a read-only property when you
set the DataMode property to float, double, or single.

Note Floating-point numbers that extend beyond the dynamic range overflow to ±inf.

RoundingMode
Rounding method. The value of the RoundingMode property can be one of the following:

• Ceiling — Round up to the next allowable quantized value.
• Convergent — Round to the nearest allowable quantized value. Numbers that are exactly

halfway between the two nearest allowable quantized values are rounded up only if the least
significant bit (after rounding) would be set to 0.

• Zero — Round negative numbers up and positive numbers down to the next allowable quantized
value.

• Floor — Round down to the next allowable quantized value.
• Nearest — Round to the nearest allowable quantized value. Numbers that are halfway between

the two nearest allowable quantized values are rounded up.

The default value of this property is Floor.

 quantizer Object Properties

3-5

Functions

4

abs
Absolute value of fi object

Syntax
y = abs(a)
y = abs(a,T)
y = abs(a,F)
y = abs(a,T,F)

Description
y = abs(a) returns the absolute value of fi object a with the same numerictype object as a.
Intermediate quantities are calculated using the fimath associated with a. The output fi object, y,
has the same local fimath as a.

y = abs(a,T) returns a fi object with a value equal to the absolute value of a and numerictype
object T. Intermediate quantities are calculated using the fimath associated with a and the output
fi object y has the same local fimath as a. See “Data Type Propagation Rules” on page 4-8.

y = abs(a,F) returns a fi object with a value equal to the absolute value of a and the same
numerictype object as a. Intermediate quantities are calculated using the fimath object F. The
output fi object, y, has no local fimath.

y = abs(a,T,F) returns a fi object with a value equal to the absolute value of a and the
numerictype object T. Intermediate quantities are calculated using the fimath object F. The output
fi object, y, has no local fimath. See “Data Type Propagation Rules” on page 4-8.

Examples

Absolute Value of Most Negative Representable Value

This example shows the difference between the absolute value results for the most negative value
representable by a signed data type when the 'OverflowAction' property is set to 'Saturate' or
'Wrap'.

Calculate the absolute value when the 'OverflowAction' is set to the default value 'Saturate'.

P = fipref('NumericTypeDisplay','full',...
 'FimathDisplay','full');
a = fi(-128)
y = abs(a)

a =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

4 Functions

4-2

 FractionLength: 8

y =

 127.9961

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

abs returns 127.9961, which is a result of saturation to the maximum positive value.

Calculate the absolute value when the 'OverflowAction' is set to 'Wrap'.

a.OverflowAction = 'Wrap'
y = abs(a)

a =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

y =

 -128

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

abs returns 128, which is a result of wrapping back to the most negative value.

Difference Between Absolute Values for Real and Complex fi Inputs

This example shows the difference between the absolute value results for complex and real fi inputs
that have the most negative value representable by a signed data type when the 'OverflowAction'
property is set to 'Wrap'.

Define a complex fi object.

 abs

4-3

re = fi(-1,1,16,15);
im = fi(0,1,16,15);
a = complex(re,im)

a =

 -1.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

a is complex, but numerically equal to the real part, re.

Calculate the absolute value of the complex fi object.

y = abs(a,re.numerictype,fimath('OverflowAction','Wrap'))

y =

 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Calculate the absolute value of the real fi object.

y = abs(re,re.numerictype,fimath('OverflowAction','Wrap'))

y =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Specify numerictype and fimath Inputs to Control the Result of abs for Real Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for real inputs. When you specify a fimath object as an
argument, that fimath object is used to compute intermediate quantities, and the resulting fi object
has no local fimath.

a = fi(-1,1,6,5,'OverflowAction','Wrap');
y = abs(a)

y =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-4

 WordLength: 6
 FractionLength: 5

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

The returned output is identical to the input. This may be undesirable because the absolute value is
expected to be positive.

F = fimath('OverflowAction','Saturate');
y = abs(a,F)

y =

 0.9688

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 5

The returned fi object is saturated to a value of 0.9688 and has the same numerictype object as
the input.

Because the output of abs is always expected to be positive, an unsigned numerictype may be
specified for the output.

T = numerictype(a.numerictype, 'Signed', false);
y = abs(a,T,F)

y =

 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 5

Specifying an unsigned numerictype enables better precision.

Specify numerictype and fimath Inputs to Control the Result of abs for Complex Inputs

This example shows how to specify numerictype and fimath objects as optional arguments to
control the result of the abs function for complex inputs.

Specify a numerictype input and calculate the absolute value of a.

a = fi(-1-i,1,16,15,'OverflowAction','Wrap');
T = numerictype(a.numerictype,'Signed',false);
y = abs(a,T)

y =

 abs

4-5

 1.4142

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

A fi object is returned with a value of 1.4142 and the specified unsigned numerictype. The
fimath used for intermediate calculation and the fimath of the output are the same as that of the
input.

Now specify a fimath object different from that of a.

F = fimath('OverflowAction','Saturate','SumMode',...
 'KeepLSB','SumWordLength',a.WordLength,...
 'ProductMode','specifyprecision',...
 'ProductWordLength',a.WordLength,...
 'ProductFractionLength',a.FractionLength);
y = abs(a,T,F)

y =

 1.4142

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

The specified fimath object is used for intermediate calculation. The fimath associated with the
output is the default fimath.

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as a scalar, vector, matrix, or multidimensional array.

abs only supports fi objects with trivial [Slope Bias] scaling, that is, when the bias is 0 and the
fractional slope is 1.

abs uses a different algorithm for real and complex inputs. For more information, see “Absolute
Value” on page 4-7.
Data Types: fi
Complex Number Support: Yes

T — numerictype of the output
numerictype object

4 Functions

4-6

numerictype of the output fi object y, specified as a numerictype object. For more information,
see “Data Type Propagation Rules” on page 4-8.
Example: T = numerictype(0,24,12,'DataType','Fixed')

F — Fixed-point math settings to use
fimath object

Fixed-point math settings to use for the calculation of absolute value, specified as a fimath object.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

Algorithms
Absolute Value

The absolute value of a real number is the corresponding nonnegative value that disregards the sign.

For a real input, a, the absolute value, y, is:

y = a if a >= 0 (4-1)

y = -a if a < 0 (4-2)

abs(-0) returns 0.

Note When the fi object a is real and has a signed data type, the absolute value of the most
negative value is problematic since it is not representable. In this case, the absolute value saturates
to the most positive value representable by the data type if the 'OverflowAction' property is set to
'Saturate'. If 'OverflowAction' is 'Wrap', the absolute value of the most negative value has no
effect.

For a complex input, a, the absolute value, y, is related to its real and imaginary parts as follows:

y = sqrt(real(a)*real(a) + imag(a)*imag(a)) (4-3)

The abs function computes the absolute value of a complex input, a, as follows:

1 Calculate the real and imaginary parts of a.

re = real(a) (4-4)

im = imag(a) (4-5)
2 Compute the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath associated with a if F is not specified as an argument.

3 If the input is signed, cast the squares of re and im to unsigned types.
4 Add the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.
• The fimath object associated with a if F is not specified as an argument.

 abs

4-7

5 Compute the square root of the sum computed in Step 4 using the sqrt function with the
following additional arguments:

• The numerictype object T if T is specified, or the numerictype object of a otherwise.
• The fimath object F if F is specified, or the fimath object associated with a otherwise.

Note Step 3 prevents the sum of the squares of the real and imaginary components from being
negative. This is important because if either re or im has the maximum negative value and the
'OverflowAction' property is set to 'Wrap' then an error will occur when taking the square root
in Step 5.

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the abs function follows the data type
propagation rules listed in the following table. In general, these rules can be summarized as “floating-
point data types are propagated.” This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Object
a

Data Type of numerictype
object T

Data Type of Output y

fi Fixed fi Fixed Data type of numerictype
object T

fi ScaledDouble fi Fixed ScaledDouble with properties
of numerictype object T

fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single

Note When the Signedness of the input numerictype object T is Auto, the abs function always
returns an Unsigned fi object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Double and complex data types are not supported.

See Also
fi | fimath | numerictype

Introduced before R2006a

4 Functions

4-8

accumneg
Subtract two fi objects or values

Syntax
c = accumneg(a,b)
c = accumneg(a,b,RoundingMethod)
c = accumneg(a,b,RoundingMethod,OverflowAction)

Description
c = accumneg(a,b) subtracts b from a using the data type of a. b is cast into the data type of a. If
a is a fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used.
The fimath properties of a and b are ignored.

c = accumneg(a,b,RoundingMethod) subtracts b from a using the rounding method specified by
RoundingMethod if a is a fi object.

c = accumneg(a,b,RoundingMethod,OverflowAction) subtracts b from a using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction if a is
a fi object.

Examples

Subtract Two fi Objects or Values

This example shows how to subtract two fi numbers using accumneg.

Subtract two fi numbers

Subtract b from a, where a and b are both fi numbers, using the default rounding method of
'Floor' and overflow action of 'Wrap'.

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
subtr_default = accumneg(a,b)

subtr_default =
 1.6416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Subtract two fi numbers using specified rounding and overflow action

Subtract b from a, where a and b are both fi numbers, using specified rounding method of
'Nearest' and overflow action of 'Saturate'.

 accumneg

4-9

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
subtr_custom = accumneg(a,b,'Nearest','Saturate')

subtr_custom =
 1.6416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Number to subtract from
fi object (default) | double | single | logical | integer

Number from which to subtract. The data type of a is used to compute the output data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

b — Number to subtract
fi object (default) | double | single | logical | integer

Number to subtract.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: c = accumneg(a,b,'Ceiling')
Data Types: string

OverflowAction — Overflow action to take
'Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: c = accumneg(a,b,'Ceiling','Saturate')
Data Types: string

Output Arguments
c — Difference of inputs
fi object | double | single | logical | integer

Result of subtracting input b from input a.

4 Functions

4-10

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumpos

Topics
“Avoid Multiword Operations in Generated Code”

Introduced in R2012a

 accumneg

4-11

accumpos
Add two fi objects or values

Syntax
c = accumpos(a,b)
c = accumpos(a,b,RoundingMethod)
c = accumpos(a,b,RoundingMethod,OverflowAction)

Description
c = accumpos(a,b) adds a and b using the data type of a. b is cast into the data type of a. If a is a
fi object, the default 'Floor' rounding method and default 'Wrap' overflow action are used. The
fimath properties of a and b are ignored.

c = accumpos(a,b,RoundingMethod) adds a and b using the rounding method specified by
RoundingMethod.

c = accumpos(a,b,RoundingMethod,OverflowAction) adds a and b using the rounding
method specified by RoundingMethod and the overflow action specified by OverflowAction.

Examples

Add Two fi Objects or Values

This example shows how to add two fi numbers using accumpos.

Add two fi numbers

Add a and b, where a and b are both fi numbers, using the default rounding method of 'Floor' and
overflow action of 'Wrap'.

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_default = accumpos(a,b)

add_default =
 -3.3584

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Add two fi numbers using specified rounding and overflow action

Add a and b, where a and b are both fi numbers, using specified rounding method of 'Nearest'
and overflow action of 'Saturate'.

4 Functions

4-12

a = fi(pi,1,16,13);
b = fi(1.5,1,16,14);
add_custom = accumpos(a,b,'Nearest','Saturate')

add_custom =
 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Number to add
fi object (default) | double | single | logical | integer

Number to add. The data type of a is used to compute the output data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

b — Number to add
fi object (default) | double | single | logical | integer

Number to add.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

RoundingMethod — Rounding method to use
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method to use if a is a fi object.
Example: c = accumpos(a,b,'Ceiling')
Data Types: string

OverflowAction — Overflow action to take
'Wrap' (default) | 'Saturate'

Overflow action to take if a is a fi object.
Example: c = accumpos(a,b,'Ceiling','Saturate')
Data Types: string

Output Arguments
c — Sum of inputs
fi object | double | single | logical | integer

Result of adding input a and input b.

 accumpos

4-13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
accumneg

Topics
“Avoid Multiword Operations in Generated Code”

Introduced in R2012a

4 Functions

4-14

add
Add two fi objects using fimath object

Syntax
c = add(F,a,b)

Description
c = add(F,a,b) adds fi objects a and b using fimath object F. This is helpful in cases when you
want to override the fimath objects of a and b, or if the fimath properties associated with a and b
are different. The output of fi object c has no local fimath.

Examples

Add Two Fixed-Point Numbers

In this example, c is the 32-bit sum of a and b with a fraction length of 16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',16);
c = add(F,a,b)

c =

 5.8599

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

Input Arguments
F — fimath
fimath object

fimath object to use for addition.

a,b — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays.

a and b must both be fi objects and must have the same dimensions unless one is a scalar. If either a
or b is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

 add

4-15

Complex Number Support: Yes

Algorithms
c = add(F,a,b)

is similar to

a.fimath = F;
b.fimath = F;
c = a + b

but not identical. When you use add, the fimath properties of a and b are not modified, and the
output fi object, c, has no local fimath. When you use the syntax c = a + b, where a and b have
their own fimath objects, the output fi object, c, gets assigned the same fimath object as inputs a
and b.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The syntax F.add(a,b) is not supported. You must use the syntax add(F,a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Topics
“fimath Rules for Fixed-Point Arithmetic”

Introduced before R2006a

4 Functions

4-16

assignmentquantizer
Assignment quantizer object of fi object

Syntax
q = assignmentquantizer(a)

Description
q = assignmentquantizer(a) returns the quantizer object q that is used in assignment
operations for the fi object a.

See Also
quantize | quantizer

Introduced in R2008a

 assignmentquantizer

4-17

atan2
Four-quadrant inverse tangent of fixed-point values

Syntax
z = atan2(y,x)

Description
z = atan2(y,x) returns the four-quadrant arctangent of fi inputs y and x.

Examples

Calculate Arctangent of Fixed-Point Input Values

Use the atan2 function to calculate the arctangent of unsigned and signed fixed-point input values.

Unsigned Input Values

This example uses unsigned, 16-bit word length values.

y = fi(0.125,0,16);
x = fi(0.5,0,16);
z = atan2(y,x)

z =
 0.2450

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 15

Signed Input Values

This example uses signed, 16-bit word length values.

y = fi(-0.1,1,16);
x = fi(-0.9,1,16);
z = atan2(y,x)

z =
 -3.0309

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-18

 WordLength: 16
 FractionLength: 13

Input Arguments
y — y-coordinates
scalar | vector | matrix | multidimensional array

y-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

x — x-coordinates
scalar | vector | matrix | multidimensional array

x-coordinates, specified as a scalar, vector, matrix, or multidimensional array.

y and x can be real-valued, signed or unsigned scalars, vectors, matrices, or N-dimensional arrays
containing fixed-point angle values in radians. The inputs y and x must be the same size. If they are
not the same size, at least one input must be a scalar value. Valid data types of y and x are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

Output Arguments
z — Four-quadrant arctangent
scalar | vector | matrix | multidimensional array

Four-quadrant arctangent, returned as a scalar, vector, matrix, or multidimensional array.

z is the four-quadrant arctangent of y and x. The numerictype of z depends on the signedness of y
and x:

• If either y or x is signed, then z is a signed, fixed-point number in the range [–pi,pi]. It has a 16-bit
word length and 13-bit fraction length (numerictype(1,16,13)).

• If both y and x are unsigned, then z is an unsigned, fixed-point number in the range [0,pi/2]. It has
a 16-bit word length and 15-bit fraction length (numerictype(0,16,15)).

 atan2

4-19

The output, z, is always associated with the default fimath.

More About
Four-Quadrant Arctangent

The four-quadrant arctangent is defined as follows, with respect to the atan function:

atan2(y, x) =

atan y
x x > 0

π + atan y
x y ≥ 0, x < 0

−π + atan y
x y < 0, x < 0

π
2 y > 0, x = 0

−π
2 y < 0, x = 0

0 y = 0, x = 0

Algorithms
The atan2 function computes the four-quadrant arctangent of fixed-point inputs using an 8-bit lookup
table as follows:

1 Divide the input absolute values to get an unsigned, fractional, fixed-point, 16-bit ratio between 0
and 1. The absolute values of y and x determine which value is the divisor.

The signs of the y and x inputs determine in what quadrant their ratio lies. The input with the
larger absolute value is used as the denominator, thus producing a value between 0 and 1.

4 Functions

4-20

2 Compute the table index, based on the 16-bit, unsigned, stored integer value:

a Use the 8 most-significant bits to obtain the first value from the table.
b Use the next-greater table value as the second value.

3 Use the 8 least-significant bits to interpolate between the first and second values using nearest
neighbor linear interpolation. This interpolation produces a value in the range [0, pi/4).

4 Perform octant correction on the resulting angle, based on the values of the original y and x
inputs.

This arctangent calculation is accurate only to within the top 16 most-significant bits of the input.

fimath Propagation Rules

The atan2 function ignores and discards any fimath attached to the inputs. The output, z, is always
associated with the default fimath.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
angle | atan2 | cordicatan2 | cos | sin

Topics
“Calculate Fixed-Point Arctangent”

 atan2

4-21

Introduced in R2012a

4 Functions

4-22

autofixexp
Automatically change scaling of fixed-point data types

Syntax
autofixexp

Description
The autofixexp script automatically changes the scaling for model objects that specify fixed-point
data types. However, if an object's Lock output data type setting against changes by the fixed-
point tools parameter is selected, the script refrains from scaling that object.

This script collects range data for model objects, either from design minimum and maximum values
that objects specify explicitly, or from logged minimum and maximum values that occur during
simulation. Based on these values, the tool changes the scaling of fixed-point data types in a model so
as to maximize precision and cover the range.

You can specify design minimum and maximum values for model objects using parameters typically
titled Output minimum and Output maximum. See “Blocks That Allow Signal Range Specification”
for a list of Simulink blocks that permit you to specify these values. In the autoscaling procedure that
the autofixexp script executes, design minimum and maximum values take precedence over the
simulation range.

If you intend to scale fixed-point data types using simulation minimum and maximum values, the
script yields meaningful results when exercising the full range of values over which your design is
meant to run. Therefore, the simulation you run prior to using autofixexp must simulate your
design over its full intended operating range. It is especially important that you use simulation inputs
with appropriate speed and amplitude profiles for dynamic systems. The response of a linear dynamic
system is frequency dependent. For example, a bandpass filter will show almost no response to very
slow and very fast sinusoid inputs, whereas the signal of a sinusoid input with a frequency in the
passband will be passed or even significantly amplified. The response of nonlinear dynamic systems
can have complicated dependence on both the signal speed and amplitude.

Note If you already know the simulation range you need to cover, you can use an alternate
autoscaling technique described in the fixptbestprec reference page.

To control the parameters associated with automatic scaling, such as safety margins, use the Fixed-
Point Tool.

To learn how to use the Fixed-Point Tool, refer to “Propose Fraction Lengths Using Simulation Range
Data”.

See Also
fxptdlg

Introduced before R2006a

 autofixexp

4-23

bin
Unsigned binary representation of stored integer of fi object

Syntax
b = bin(a)

Description
b = bin(a) returns the stored integer of fi object a in unsigned binary format as a character
vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Unsigned Binary Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a=1×2 object
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the unsigned binary representation of the stored integers of fi object a.

b = bin(a)

b =
'10000000 01111111'

4 Functions

4-24

Input Arguments
a — Stored integer
fi object

Stored integer, specified as a fi object.
Data Types: fi

See Also
dec | hex | oct | storedInteger

Introduced before R2006a

 bin

4-25

bin2num
Convert two's complement binary string to number using quantizer object

Syntax
y = bin2num(q,b)

Description
y = bin2num(q,b) converts the binary character vector b to a numeric array y using the properties
of the quantizer object q.

If b is a cell array containing binary strings, then y will be a cell array of the same dimension
containing numeric arrays.

[y1,y2,…] = bin2num(q,b1,b2,…) converts the binary character vectors b1, b2, … to numeric arrays
y1, y2, ….

Examples

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

q = quantizer([4 3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

x = 1×16

 0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250 -0.2500 -0.3750 -0.5000 -0.6250 -0.7500 -0.8750 -1.0000

4 Functions

4-26

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b = num2bin(q,x)

b = 16x4 char array
 '0111'
 '0110'
 '0101'
 '0100'
 '0011'
 '0010'
 '0001'
 '0000'
 '1111'
 '1110'
 '1101'
 '1100'
 '1011'
 '1010'
 '1001'
 '1000'

Use bin2num to perform the inverse operation.

y = bin2num(q,b)

y = 16×1

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 ⋮

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

q = quantizer([3 2]);
b = ['011 111'
 '010 110'
 '001 101'
 '000 100'];

Use bin2num to view the numeric equivalents of these values.

x = bin2num(q,b)

x = 4×2

 bin2num

4-27

 0.7500 -0.2500
 0.5000 -0.5000
 0.2500 -0.7500
 0 -1.0000

Input Arguments
q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.
Example: q = quantizer([16 15]);

b — Binary string to convert
character vector | character array | cell array

Binary string to convert, specified as a character vector, character array, or cell array containing
binary strings.
Data Types: string | char | cell

Tips
• bin2num and num2bin are inverses of one another. Note that num2bin always returns the binary

representations in a column.

Algorithms
• The fixed-point binary representation is two's complement.
• The floating-point binary representation is in IEEE® Standard 754 style.
• If there are fewer binary digits than are necessary to represent the number, then fixed-point zero-

pads on the left, and floating-point zero-pads on the right.

See Also
hex2num | num2bin | num2hex | num2int | quantizer

Introduced before R2006a

4 Functions

4-28

bitand
Bitwise AND of two fi objects

Syntax
c = bitand(a, b)

Description
c = bitand(a, b) returns the bitwise AND of fi objects a and b.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath object, the fimath objects must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitand only supports fi objects with fixed-point data types.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitcmp | bitget | bitor | bitset | bitxor

Introduced before R2006a

 bitand

4-29

bitandreduce
Reduce consecutive slice of bits to one bit by performing bitwise AND operation

Syntax
c = bitandreduce(a)
c = bitandreduce(a, lidx)
c = bitandreduce(a, lidx, ridx)

Description
c = bitandreduce(a) performs a bitwise AND operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

c = bitandreduce(a, lidx) performs a bitwise AND operation on a consecutive range of bits,
starting at position lidx and ending at the LSB (the bit at position 1).

c = bitandreduce(a, lidx, ridx) performs a bitwise AND operation on a consecutive range of
bits, starting at position lidx and ending at position ridx.

The bitandreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise AND Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise AND operation on the entire set of bits in a.

c = bitandreduce(a)

c =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Because the bits of a do not all have a value of 1, the output has a value of 0.

4 Functions

4-30

Perform Bitwise AND Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12, 4, 8, 15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise AND operation on the bits of each element of a, starting at position fi(4).

c = bitandreduce(a, fi(4))

c=1×4 object
 0 0 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

The only element in output c with a value of 1 is the 4th element. This is because it is the only
element of a that had only 1's between positions fi(4) and 1.

Perform Bitwise AND Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7, 8, 1; 5, 9, 5; 8, 37, 2], 0, 8, 0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise AND operation on the bits of each element of matrix a beginning at position 3 and
ending at position 1.

c = bitandreduce(a, 3, 1)

c=3×3 object
 1 0 0
 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

There is only one element in output c with a value of 1. This condition occurs because the
corresponding element in a is the only element with only 1's between positions 3 and 1.

 bitandreduce

4-31

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

bitandreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitandreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL®, generates the bitwise AND operator operating on a set of individual slices.

For Verilog®, generates the reduce operator:

&a[lidx:ridx]

4 Functions

4-32

See Also
bitconcat | bitorreduce | bitsliceget | bitxorreduce

Introduced in R2007b

 bitandreduce

4-33

bitcmp
Bitwise complement of fi object

Syntax
c = bitcmp(a)

Description
c = bitcmp(a) returns the bitwise complement of fi object a. If a has a signed numerictype, the
bit representation of the stored integer is in two's complement representation.

bitcmp only supports fi objects with fixed-point data types. a can be a scalar fi object or a vector
fi object.

Examples
This example shows how to get the bitwise complement of a fi object. Consider the following
unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010

Complement the values of the bits in a:

c = bitcmp(a);
disp(bin(c))

0101

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitget | bitor | bitset | bitxor

Introduced before R2006a

4 Functions

4-34

bitconcat
Concatenate bits of fi objects

Syntax
y = bitconcat(a)
y = bitconcat (a, b, ...)

Description
y = bitconcat(a) concatenates the bits of the elements of fixed-point fi input array, a.

y = bitconcat (a, b, ...) concatenates the bits of the fixed–point fi inputs.

Examples

Concatenate the Elements of a Vector

Create a fixed-point vector.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

Concatenate the bits of the elements of a.

y = bitconcat(a)

y =
 4695

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

disp(bin(y))

0001001001010111

The word length of the output, y, equals the sum of the word lengths of each element of a.

Concatenate the Bits of Two fi Objects

Create two fixed-point numbers.

a = fi(5,0,4,0);
disp(bin(a))

 bitconcat

4-35

0101

b = fi(10,0,4,0);
disp(bin(b))

1010

Concatenate the bits of the two inputs.

y = bitconcat(a,b)

y =
 90

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

01011010

The output, y, is unsigned with a word length equal to the sum of the word lengths of the two inputs,
and a fraction length of 0.

Perform Element-by-Element Concatenation of Two Vectors

When a and b are both vectors of the same size, bitconcat performs element-wise concatenation of
the two vectors and returns a vector.

Create two fixed-point vectors of the same size.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

b = fi([7,4,3,1],0,4,0);
disp(bin(b))

0111 0100 0011 0001

Concatenate the elements of a and b.

y = bitconcat(a,b)

y=1×4 object
 23 36 83 113

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

4 Functions

4-36

00010111 00100100 01010011 01110001

The output, y, is a vector of the same length as the input vectors, and with a word length equal to the
sum of the word lengths of the two input vectors.

Perform Element-by-Element Concatenation of Two Matrices

When the inputs are both matrices of the same size, bitconcat performs element-wise
concatenation of the two matrices and returns a matrix of the same size.

Create two fixed-point matrices.

a = fi([1,2,5;7,4,5;3,1,12],0,4,0);
disp(bin(a))

0001 0010 0101
0111 0100 0101
0011 0001 1100

b = fi([6,1,7;7,8,1;9,7,8],0,4,0);
disp(bin(b))

0110 0001 0111
0111 1000 0001
1001 0111 1000

Perform element-by-element concatenation of the bits of a and b.

y = bitconcat(a,b)

y=3×3 object
 22 33 87
 119 72 81
 57 23 200

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

disp(bin(y))

00010110 00100001 01010111
01110111 01001000 01010001
00111001 00010111 11001000

The output, y, is a matrix with word length equal to the sum of the word lengths of a and b.

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

 bitconcat

4-37

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
bitconcat accepts varargin number of inputs for concatenation.

Data Types: fixed-point fi

b — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
b is nonscalar, it must have the same dimension as the other inputs.

Data Types: fixed-point fi

Output Arguments
y — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of unsigned fixed-point
fi objects.

The output array has word length equal to the sum of the word lengths of the inputs and a fraction
length of zero. The bit representation of the stored integer is in two's complement representation.
Scaling does not affect the result type and value.

If the inputs are all scalar, then bitconcat concatenates the bits of the inputs and returns a scalar.

If the inputs are all arrays of the same size, then bitconcat performs element-wise concatenation of
the bits and returns an array of the same size.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the concatenation operator: (a & b).

For Verilog, generates the concatenation operator: {a , b}.

See Also
bitand | bitcmp | bitget | bitor | bitreplicate | bitset | bitsliceget | bitxor

Introduced in R2007b

4 Functions

4-38

bitget
Get bits at certain positions

Syntax
c = bitget(a, bit)

Description
c = bitget(a, bit) returns the values of the bits at the positions specified by bit in a as
unsigned integers of word length 1.

Examples

Get Bit When Input and Index Are Both Scalar

Consider the following unsigned fixed-point fi number with a value of 85, word length 8, and fraction
length 0:

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the bit at position 4:

c = bitget(a,4);

bitget returns the bit at position 4 in the binary representation of a.

Get Bit When Input Is a Matrix and the Index Is a fi

Begin with a signed fixed-point 3-by-3 matrix with word length 4 and fraction length 0.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of the bits at a specified position.

c = bitget(a,fi(2))

c=3×3 object
 1 1 0
 1 0 1
 1 0 0

 bitget

4-39

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

MATLAB® returns a matrix of the bits in position fi(2) of a. The output matrix has the same
dimensions as a, and a word length of 1.

Get Bit When Both Input and Index Are Vectors

Begin with a signed fixed-point vector with word length 16, fraction length 4.

a = fi([86 6 53 8 1],0,16,4);
disp(bin(a))

0000010101100000 0000000001100000 0000001101010000 0000000010000000 0000000000010000

Create a vector that specifies the positions of the bits to get.

bit = [1,2,5,7,4]

bit = 1×5

 1 2 5 7 4

Get the binary representation of the bits of a at the positions specified in bit.

c = bitget(a,bit)

c=1×5 object
 0 0 1 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

bitget returns a vector of the bits of a at the positions specified in bit. The output vector has the
same length as inputs, a and bit, and a word length of 1.

Get Bit When Input Is Scalar and Index Is a Vector

Create a default fi object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000

The default object is signed with a word length of 16.

4 Functions

4-40

Create a vector of the positions of the bits you want to get in a, and get the binary representation of
those bits.

bit = fi([15,3,8,2]);
c = bitget(a,bit)

c=1×4 object
 1 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

MATLAB® returns a vector of the bits in a at the positions specified by the index vector, bit.

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a and bit are both nonscalar, they must have the same dimension. If a has a signed numerictype,
the bit representation of the stored integer is in two's complement representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix or multidimensional array of fi objects or built-in data
types. If a and bit are both nonscalar, they must have the same dimension. bit must contain integer
values between 1 and the word length of a, inclusive. The LSB (right-most bit) is specified by bit
index 1 and the MSB (left-most bit) is specified by the word length of a. bit does not need to be a
vector of sequential bit positions; it can also be a variable index value.

a = fi(pi,0,8);
a.bin

11001001

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

 bitget

4-41

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as an unsigned scalar, vector, matrix, or multidimensional array with
WordLength 1.

If a is an array and bit is a scalar, c is an unsigned array with word length 1. This unsigned array
comprises the values of the bits at position bit in each fixed-point element in a.

If a is a scalar and bit is an array, c is an unsigned array with word length 1. This unsigned array
comprises the values of the bits in a at the positions specified in bit.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the slice operator: a(idx).

For Verilog, generates the slice operator: a[idx].

See Also
bitand | bitcmp | bitor | bitset | bitxor

Introduced before R2006a

4 Functions

4-42

bitor
Bitwise OR of two fi objects

Syntax
c = bitor(a,b)

Description
c = bitor(a,b) returns the bitwise OR of fi objects a and b. The output is determined as follows:

• Elements in the output array c are assigned a value of 1 when the corresponding bit in either
input array has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bit in both input
arrays has a value of 0.

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitor only supports fi objects with fixed-point data types.

Examples
The following example finds the bitwise OR of fi objects a and b.

a = fi(-30,1,6,0);
b = fi(12, 1, 6, 0);
c = bitor(a,b)

c =

 -18

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin
binary_b = b.bin
binary_c = c.bin

binary_a =

100010

 bitor

4-43

binary_b =

001100

binary_c =

101110

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitset | bitxor

Introduced before R2006a

4 Functions

4-44

bitorreduce
Reduce consecutive slice of bits to one bit by performing bitwise OR operation

Syntax
c = bitorreduce(a)
c = bitorreduce(a, lidx)
c = bitorreduce(a, lidx, ridx)

Description
c = bitorreduce(a) performs a bitwise OR operation on the entire set of bits in the fixed-point
input, a, and returns the result as an unsigned integer of word length 1.

c = bitorreduce(a, lidx) performs a bitwise OR operation on a consecutive range of bits,
starting at position lidx and ending at the LSB (the bit at position 1).

c = bitorreduce(a, lidx, ridx) performs a bitwise OR operation on a consecutive range of
bits, starting at position lidx and ending at position ridx.

The bitorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise OR operation on the entire set of bits in a.

c = bitorreduce(a)

c =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Because there is at least one bit in a with a value of 1, the output has a value of 1.

 bitorreduce

4-45

Perform Bitwise OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a=fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise OR operation on the bits of each element of a, starting at position fi(4).

c=bitorreduce(a,fi(4))

c=1×4 object
 1 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

All of the entries of output c have a value of 1 because all of the entries of a have at least one bit with
a value of 1 between the positions fi(4) and 1.

Perform Bitwise OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise OR operation on the bits of each element of matrix a beginning at position 5, and
ending at position 2.

c = bitorreduce(a,5,2)

c=3×3 object
 1 1 0
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

There is only one element in output c that does not have a value of 1. This condition occurs because
the corresponding element in a is the only element of a that does not have any bits with a value of 1
between positions 5 and 2.

4 Functions

4-46

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.

bitorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and scaling
properties do not affect the result type and value. bitorreduce performs the operation on a two's
complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the bitwise OR operator operating on a set of individual slices.

For Verilog, generates the reduce operator:

|a[lidx:ridx]

 bitorreduce

4-47

See Also
bitandreduce | bitconcat | bitsliceget | bitxorreduce

Introduced in R2007b

4 Functions

4-48

bitreplicate
Replicate and concatenate bits of fi object

Syntax
c = bitreplicate(a,n)

Description
c = bitreplicate(a,n) concatenates the bits in fi object a n times and returns an unsigned
fixed-point value. The word length of the output fi object c is equal to n times the word length of a
and the fraction length of c is zero. The bit representation of the stored integer is in two's
complement representation.

The input fi object can be signed or unsigned. bitreplicate concatenates signed and unsigned
bits the same way.

bitreplicate only supports fi objects with fixed-point data types.

bitreplicate does not support inputs with complex data types.

Sign and scaling of the input fi object does not affect the result type and value.

Examples
The following example uses bitreplicate to replicate and concatenate the bits of fi object a.

a = fi(14,0,6,0);
a_binary = a.bin
c = bitreplicate(a,2);
c_binary = c.bin

MATLAB returns the following:

a_binary =

001110

c_binary =

001110001110

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

 bitreplicate

4-49

See Also
bitand | bitconcat | bitget | bitor | bitset | bitsliceget | bitxor

Introduced in R2008a

4 Functions

4-50

bitrol
Bitwise rotate left

Syntax
c = bitrol(a, k)

Description
c = bitrol(a, k) returns the value of the fixed-point fi object, a, rotated left by k bits. bitrol
rotates bits from the most significant bit (MSB) side into the least significant bit (LSB) side. It
performs the rotate left operation on the stored integer bits of a.

bitrol does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate the Bits of a fi Object Left

Create an unsigned fixed-point fi object with a value of 10, word length 4, and fraction length 0.

a = fi(10,0,4,0);
disp(bin(a))

1010

Rotate a left 1 bit.

disp(bin(bitrol(a,1)))

0101

Rotate a left 2 bits.

disp(bin(bitrol(a,2)))

1010

Rotate Bits in a Vector Left

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0)

a=1×4 object
 1 2 5 7

 bitrol

4-51

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 4
 FractionLength: 0

disp(bin(a))

0001 0010 0101 0111

Rotate the bits in vector a left 1 bit.

disp(bin(bitrol(a,1)))

0010 0100 1010 1110

Rotate Bits Left Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 10, word length 4, and fraction length 0.

a = fi(10,0,4,0);

disp(bin(a))

1010

Rotate a left 1 bit where k is a fi object.

disp(bin(bitrol(a,fi(1))))

0101

Input Arguments
a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

4 Functions

4-52

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the rol operator.

For Verilog, generates the following expression (where wl is the word length of a:

a << idx || a >> wl - idx

See Also
bitconcat | bitror | bitshift | bitsliceget | bitsll | bitsra | bitsrl

Introduced in R2007b

 bitrol

4-53

bitror
Bitwise rotate right

Syntax
c = bitror(a, k)

Description
c = bitror(a, k) returns the value of the fixed-point fi object, a, rotated right by k bits. bitror
rotates bits from the least significant bit (LSB) side into the most significant bit (MSB) side. It
performs the rotate right operation on the stored integer bits of a.

bitror does not check overflow or underflow. It ignores fimath properties such as RoundingMode
and OverflowAction.

a and c have the same fimath and numerictype properties.

Examples

Rotate Bits of a fi Object Right

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit.

disp(bin(bitror(a,1)))

1010

Rotate a right 2 bits.

disp(bin(bitror(a,2)))

0101

Rotate Bits in a Vector Right

Create a vector of fi objects.

a = fi([1,2,5,7],0,4,0);
disp(bin(a))

0001 0010 0101 0111

4 Functions

4-54

Rotate the bits in vector a right 1 bit.

disp(bin(bitror(a,fi(1))))

1000 0001 1010 1011

Rotate Bits Right Using fi to Specify Number of Bits to Rotate

Create an unsigned fixed-point fi object with a value 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right 1 bit where k is a fi object.

disp(bin(bitror(a,fi(1))))

1010

Input Arguments
a — Data that you want to rotate
scalar | vector | matrix | multidimensional array

Data that you want to rotate, specified as a scalar, vector, matrix, or multidimensional array of fi
objects. a can be signed or unsigned.

Data Types: fixed-point fi

Complex Number Support: Yes

k — Number of bits to rotate
non-negative, integer-valued scalar

Number of bits to rotate, specified as a non-negative integer-valued scalar fi object or built-in
numeric type. k can be greater than the word length of a. This value is always normalized to
mod(a.WordLength,k).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates the ror operator.

 bitror

4-55

For Verilog, generates the following expression (where wl is the word length of a:

a >> idx || a << wl - idx

See Also
bitconcat | bitrol | bitshift | bitsliceget | bitsll | bitsra | bitsrl

Introduced in R2007b

4 Functions

4-56

bitset
Set bits at certain positions

Syntax
c = bitset(a, bit)
c = bitset(a, bit, v)

Description
c = bitset(a, bit) returns the value of a with position bit set to 1 (on).

c = bitset(a, bit, v) returns the value of a with position bit set to v.

Examples

Set the Bit at a Certain Position

Begin with an unsigned fixed-point fi number with a value of 5, word length 4, and fraction length 0.

a = fi(5,0,4,0);
disp(bin(a))

0101

Set the bit at position 4 to 1 (on).

c = bitset(a,4);
disp(bin(c))

1101

Set the Bit at a Certain Position in a Vector

Consider the following fixed-point vector with word length 4 and fraction length 0.

a = fi([0 1 8 2 4],0,4,0);
disp(bin(a))

0000 0001 1000 0010 0100

In each element of vector a, set the bits at position 2 to 1.

c = bitset(a,2,1);
disp(bin(c))

0010 0011 1010 0010 0110

 bitset

4-57

Set the Bit at a Certain Position with Fixed Point Index

Consider the following fixed-point scalar with a value of 5.

a = fi(5,0,4,0);
disp(bin(a))

0101

Set the bit at position fi(2) to 1.

c = bitset(a,fi(2),1);
disp(bin(c))

0111

Set the Bit When Index Is a Vector

Create a fi object with a value of pi.

a = fi(pi);
disp(bin(a))

0110010010001000

In this case, a is signed with a word length of 16.

Create a vector of the bit positions in a that you want to set to on. Then, get the binary
representation of the resulting fi vector.

bit = fi([15,3,8,2]);
c = bitset(a,bit);
disp(bin(c))

0110010010001000 0110010010001100 0110010010001000 0110010010001010

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a has a signed numerictype, the bit representation of the stored integer is in two's complement
representation.

Data Types: fixed-point fi

bit — Bit index
scalar | vector | matrix | multidimensional array

Bit index, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in data
types. bit must be a number between 1 and the word length of a, inclusive. The LSB (right-most bit)
is specified by bit index 1 and the MSB (left-most bit) is specified by the word length of a.

4 Functions

4-58

a = fi(pi,0,8);
a.bin

11001001

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

v — Bit value
scalar | vector | matrix | multidimensional array

Bit value of a at index bit, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in data types. v can have values of 0, or 1. Any value other than 0 is automatically set
to 1. When v is nonscalar, it must have the same dimensions as one of the other inputs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitxor

Introduced before R2006a

 bitset

4-59

bitshift
Shift bits specified number of places

Syntax
c = bitshift(a, k)

Description
c = bitshift(a, k) returns the value of a shifted by k bits. The input fi object a may be a scalar
value or a vector and can be any fixed-point numeric type. The output fi object c has the same
numeric type as a. k must be a scalar value and a MATLAB built-in numeric type.

The OverflowAction property of a is obeyed, but the RoundingMethod is always Floor. If obeying
the RoundingMethod property of a is important, try using the pow2 function.

When the overflow action is Saturate the sign bit is always preserved. The sign bit is also preserved
when the overflow action is Wrap, and k is negative. When the overflow action is Wrap and k is
positive, the sign bit is not preserved.

• When k is positive, 0-valued bits are shifted in on the right.
• When k is negative, and a is unsigned, or a signed and positive fi object, 0-valued bits are shifted

in on the left.
• When k is negative and a is a signed and negative fi object, 1-valued bits are shifted in on the

left.

Examples
This example highlights how changing the OverflowAction property of the fimath object can
change the results returned by the bitshift function. Consider the following signed fixed-point fi
object with a value of 3, word length 16, and fraction length 0:

a = fi(3,1,16,0);

By default, the OverflowAction fimath property is Saturate. When a is shifted such that it
overflows, it is saturated to the maximum possible value:

for k=0:16,b=bitshift(a,k);...
disp([num2str(k,'%02d'),'. ',bin(b)]);end

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000
04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000

4 Functions

4-60

10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 0111111111111111
15. 0111111111111111
16. 0111111111111111

Now change OverflowAction to Wrap. In this case, most significant bits shift off the “top” of a until
the value is zero:

a = fi(3,1,16,0,'OverflowAction','Wrap');
for k=0:16,b=bitshift(a,k);...
disp([num2str(k,'%02d'),'. ',bin(b)]);end

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000
04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 1100000000000000
15. 1000000000000000
16. 0000000000000000

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For efficient HDL code generation, use bitsll, bitsrl, or bitsra instead of bitshift.

See Also
bitand | bitcmp | bitget | bitor | bitset | bitsll | bitsra | bitsrl | bitxor | pow2

Introduced before R2006a

 bitshift

4-61

bitsliceget
Get consecutive slice of bits

Syntax
c = bitsliceget(a)
c = bitsliceget(a, lidx)
c = bitsliceget(a, lidx, ridx)

Description
c = bitsliceget(a) returns the entire set of bits in the fixed-point input a.

c = bitsliceget(a, lidx) returns a consecutive slice of bits from a, starting at position lidx
and ending at the LSB (the bit at position 1).

c = bitsliceget(a, lidx, ridx) returns a consecutive slice of bits from a, starting at position
lidx and ending at position ridx.

The bitsliceget arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Get Entire Set of Bits

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the entire set of bits of a.

c = bitsliceget(a);
disp(bin(c))

01010101

Get a Slice of Consecutive Bits with Unspecified Endpoint

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

4 Functions

4-62

Get the binary representation of the consecutive bits, starting at position 6.

c = bitsliceget(a,6);
disp(bin(c))

010101

Get a Slice of Consecutive Bits with Fixed-Point Indexes

Begin with the following fixed-point number.

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the consecutive bits from fi(6) to fi(2).

c = bitsliceget(a,fi(6),fi(2));
disp(bin(c))

01010

Get a Specified Set of Consecutive Bits from Each Element of a Matrix

Begin with the following unsigned fixed-point 3-by-3 matrix.

a = fi([2 3 4;6 8 2;3 5 1],0,4,0);
disp(bin(a))

0010 0011 0100
0110 1000 0010
0011 0101 0001

Get the binary representation of a consecutive set of bits of matrix a. For each element, start at
position 4 and end at position 2.

c = bitsliceget(a,4,2);
disp(bin(c))

001 001 010
011 100 001
001 010 000

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects. If
a has a signed numerictype, the bit representation of the stored integer is in two’s complement
representation.

 bitsliceget

4-63

Data Types: fixed-point fi

lidx — Start position for slice
scalar

Start position of slice specified as a scalar of built-in type. lidx represents the position in the slice
closest to the MSB.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position for slice
scalar

End position of slice specified as a scalar of built-in type. ridx represents the position in the slice
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Fixed-point fi output, specified as a scalar, vector, matrix, or multidimensional array with no scaling.
The word length is equal to slice length, lidx-ridx+1.

If lidx and ridx are equal, bitsliceget only slices one bit, and bitsliceget(a, lidx, ridx)
is the same as bitget(a, lidx).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset | bitxor

Introduced in R2007b

4 Functions

4-64

bitsll
Bit shift left logical

Syntax
c = bitsll(a, k)

Description
c = bitsll(a, k) returns the result of a logical left shift by k bits on input a for fixed-point
operations. bitsll shifts zeros into the positions of bits that it shifts left. The function does not
check overflow or underflow. For floating-point operations, bitsll performs a multiply by 2k.

bitsll ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift Left a Signed fi Input

Shift a signed fi input left by 1 bit.

Create a fi object, and display its binary value.

a = fi(10,0,4,0);
disp(bin(a))

1010

Shift a left by 1 bit, and display its binary value.

disp(bin(bitsll(a,1)))

0100

Shift a left by 1 more bit.

disp(bin(bitsll(a,2)))

1000

Shift Left Using a fi Shift Value

Shift left a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(16);
bitsll(a,k)

 bitsll

4-65

ans = int8
 64

Shift Left a Built-in int8 Input

Use bitsll to shift an int8 input left by 2 bits.

a = int8(4);
bitsll(a,2)

ans = int8
 16

Shift Left a Floating-Point Input

Scale a floating-point double input by 23.

a = double(16);
bitsll(a,3)

ans = 128

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-66

Usage notes and limitations:

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates sll operator in VHDL code.

Generates << operator in Verilog code.

See Also
bitconcat | bitrol | bitror | bitshift | bitsra | bitsrl | pow2

Introduced in R2007b

 bitsll

4-67

bitsra
Bit shift right arithmetic

Syntax
c=bitsra(a,k)

Description
c=bitsra(a,k) returns the result of an arithmetic right shift by k bits on input a for fixed-point
operations. For floating-point operations, it performs a multiply by 2-k.

If the input is unsigned, bitsra shifts zeros into the positions of bits that it shifts right. If the input is
signed, bitsra shifts the most significant bit (MSB) into the positions of bits that it shifts right.

bitsra ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift Right a Signed fi Input

Create a signed fixed-point fi object with a value of –8, word length 4, and fraction length 0. Then
display the binary value of the object.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit.

disp(bin(bitsra(a,1)))

1100

bitsra shifts the MSB into the position of the bit that it shifts right.

Shift Right a Built-in int8 Input

Use bitsra to shift an int8 input right by 2 bits.

a = int8(64);
bitsra(a,2)

ans = int8
 16

4 Functions

4-68

Shift Right Using a fi Shift Value

Shift right a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(64);
bitsra(a,k)

ans = int8
 16

Shift Right a Floating-Point Input

Scale a floating-point double input by 2−3.

a = double(128);
bitsra(a,3)

ans = 16

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array of fi
objects or built-in numeric types.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar fi object or built-in numeric
type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 bitsra

4-69

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates sra operator in VHDL code.

Generates >>> operator in Verilog code.

See Also
bitshift | bitsll | bitsrl | pow2

Introduced in R2007b

4 Functions

4-70

bitsrl
Bit shift right logical

Syntax
c = bitsrl(a, k)

Description
c = bitsrl(a, k) returns the result of a logical right shift by k bits on input a for fixed-point
operations. bitsrl shifts zeros into the positions of bits that it shifts right. It does not check
overflow or underflow.

bitsrl ignores fimath properties such as RoundingMode and OverflowAction.

When a is a fi object, a and c have the same associated fimath and numerictype objects.

Examples

Shift right a signed fi input

Shift a signed fi input right by 1 bit.

Create a signed fixed-point fi object with a value of -8, word length 4, and fraction length 0 and
display its binary value.

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by 1 bit, and display the binary value.

disp(bin(bitsrl(a,1)))

0100

bitsrl shifts a zero into the position of the bit that it shifts right.

Shift right using a fi shift value

Shift right a built-in int8 input using a fi shift value.

k = fi(2);
a = int8(64);
bitsrl(a,k)

ans = int8
 16

 bitsrl

4-71

Shift right a built-in uint8 input

Use bitsrl to shift a uint8 input right by 2 bits.

a = uint8(64);
bitsrl(a,2)

ans = uint8
 16

Input Arguments
a — Data that you want to shift
scalar | vector | matrix | multidimensional array

Data that you want to shift, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Complex Number Support: Yes

k — Number of bits to shift
non-negative integer-valued scalar

Number of bits to shift, specified as a non-negative integer-valued scalar.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Generated code might not handle out of range shifting.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

4 Functions

4-72

See Also
bitconcat | bitrol | bitror | bitshift | bitsliceget | bitsll | bitsra | pow2

Introduced in R2007b

 bitsrl

4-73

bitxor
Bitwise exclusive OR of two fi objects

Syntax
c = bitxor(a,b)

Description
c = bitxor(a,b) returns the bitwise exclusive OR of fi objects a and b. The output is determined
as follows:

• Elements in the output array c are assigned a value of 1 when exactly one of the corresponding
bits in the input arrays has a value of 1.

• Elements in the output array c are assigned a value of 0 when the corresponding bits in the input
arrays have the same value (e.g. both 1's or both 0's).

The numerictype properties associated with a and b must be identical. If both inputs have a local
fimath, their local fimath properties must be identical. If the numerictype is signed, then the bit
representation of the stored integer is in two's complement representation.

a and b must have the same dimensions unless one is a scalar.

bitxor only supports fi objects with fixed-point data types.

Examples
The following example finds the bitwise exclusive OR of fi objects a and b.

a = fi(-28,1,6,0);
b = fi(12, 1, 6, 0);
c = bitxor(a,b)

c =

 -24

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

You can verify the result by examining the binary representations of a, b and c.

binary_a = a.bin
binary_b = b.bin
binary_c = c.bin

binary_a =

100100

4 Functions

4-74

binary_b =

001100

binary_c =

101000

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Slope-bias scaled fi objects are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitcmp | bitget | bitor | bitset

Introduced before R2006a

 bitxor

4-75

bitxorreduce
Reduce consecutive slice of bits to one bit by performing bitwise exclusive OR operation

Syntax
c = bitxorreduce(a)
c = bitxorreduce(a, lidx)
c = bitxorreduce(a, lidx, ridx)

Description
c = bitxorreduce(a) performs a bitwise exclusive OR operation on the entire set of bits in the
fixed-point input, a. It returns the result as an unsigned integer of word length 1.

c = bitxorreduce(a, lidx) performs a bitwise exclusive OR operation on a consecutive range of
bits. This operation starts at position lidx and ends at the LSB (the bit at position 1).

c = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR operation on a consecutive
range of bits, starting at position lidx and ending at position ridx.

The bitxorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

Examples

Perform Bitwise Exclusive OR Operation on an Entire Set of Bits

Create a fixed-point number.

a = fi(73,0,8,0);
disp(bin(a))

01001001

Perform a bitwise exclusive OR operation on the entire set of bits in a.

c = bitxorreduce(a)

c =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

4 Functions

4-76

Perform Bitwise Exclusive OR Operation on a Range of Bits in a Vector

Create a fixed-point vector.

a = fi([12,4,8,15],0,8,0);
disp(bin(a))

00001100 00000100 00001000 00001111

Perform a bitwise exclusive OR operation on the bits of each element of a, starting at position fi(4).

c = bitxorreduce(a,fi(4))

c=1×4 object
 0 1 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Perform a Bitwise Exclusive OR Operation on a Range of Bits in a Matrix

Create a fixed-point matrix.

a = fi([7,8,1;5,9,5;8,37,2],0,8,0);
disp(bin(a))

00000111 00001000 00000001
00000101 00001001 00000101
00001000 00100101 00000010

Perform a bitwise exclusive OR operation on the bits of each element of matrix a beginning at position
5 and ending at position 2.

c = bitxorreduce(a,5,2)

c=3×3 object
 0 1 0
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.

 bitxorreduce

4-77

bitxorreduce supports both signed and unsigned inputs with arbitrary scaling. The sign and
scaling properties do not affect the result type and value. bitxorreduce performs the operation on
a two's complement bit representation of the stored integer.

Data Types: fixed-point fi

lidx — Start position of range
scalar

Start position of range specified as a scalar of built-in type. lidx represents the position in the range
closest to the MSB.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

ridx — End position of range
scalar

End position of range specified as a scalar of built-in type. ridx represents the position in the range
closest to the LSB (the bit at position 1).

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
c — Output array
scalar | vector | matrix | multidimensional array

Output array, specified as a scalar, vector, matrix, or multidimensional array of fixed-point fi objects.
c is unsigned with word length 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

See Also
bitandreduce | bitconcat | bitorreduce | bitsliceget

Introduced in R2007b

4 Functions

4-78

buildInstrumentedMex
Generate compiled C code function including logging instrumentation

Syntax
buildInstrumentedMex fcn -options
buildInstrumentedMex fcn_1... fcn_n -options -coder

Description
buildInstrumentedMex fcn -options translates the MATLAB file fcn.m to a MEX function and
enables instrumentation for logging minimum and maximum values of all named and intermediate
variables. Optionally, you can enable instrumentation for log2 histograms of all named, intermediate
and expression values. The general syntax and options of buildInstrumentedMex and fiaccel are
the same, except buildIntstrumentedMex has no fi object restrictions and supports the '-
coder' option.

buildInstrumentedMex fcn_1... fcn_n -options -coder translates the MATLAB functions
fcn_1 through fcn_n to a MEX function and enables instrumentation for logging minimum and
maximum values of all named and intermediate variables. Generating a MEX function for multiple
entry-point functions requires the '-coder' option.

Examples

Create an Instrumented MEX Function

Create an instrumented MEX function. Run a test bench, then view logged results.

Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('buildInstrumentedMex')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

Define prototype input arguments.

n = 128;
x = complex(zeros(n,1));
W = coder.Constant(fidemo.fi_radix2twiddles(n));

Generate an instrumented MEX function. Use the -o option to specify the MEX function name. Use
the -histogram option to compute histograms. (If you have a MATLAB Coder license, you may want
to also add the -coder option. In this case, use buildInstrumentedMex testfft -coder -o
testfft_instrumented -args {x,W} instead of the following line of code.)

Note Like fiaccel, buildInstrumentedMex generates a MEX function. To generate C code, see
the MATLAB Coder codegen function.

 buildInstrumentedMex

4-79

buildInstrumentedMex testfft -o testfft_instrumented...
-args {x,W} -histogram

Run a test file to record instrumentation results. Call showInstrumentationResults to open the
report. View the simulation minimum and maximum values and whole number status by pausing over
a variable in the report. You can also see proposed data types for double precision numbers in the
table.

for i=1:20
 y = testfft_instrumented(randn(size(x)));
end

showInstrumentationResults testfft_instrumented

View the histogram for a variable by clicking in the Variables tab.

4 Functions

4-80

For information on the figure, refer to the NumericTypeScope reference page.

Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented;

Clear the MEX function, then delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

Build an Instrumented MEX Function for Multiple Entry Point Functions

In a local writable folder, create the functions ep1.m and ep2.m.

function y1 = ep1(u) %#codegen
y1 = u;
end

function y2 = ep2(u, v) %#codegen
y2 = u + v;
end

 buildInstrumentedMex

4-81

Generate an instrumented MEX function for the two entry-point functions. Use the -o option to
specify the name of the MEX function. Use the -histogram option to compute histograms. Use the -
coder option to enable generating multiple entry points with the buildInstrumentedMex function.

u = 1:100;
v = 5:104;
buildInstrumentedMex -o sharedmex ...
ep1 -args {u} ... % Entry point 1
ep2 -args {u, v} ... % Entry point 2
-histogram -coder

Call the first entry-point function using the generated MEX function.

y1 = sharedmex('ep1', u);

Call the second entry-point function using the generated MEX function.

y2 = sharedmex('ep2', u, v);

Show the instrumentation results.

showInstrumentationResults sharedmex

4 Functions

4-82

Note Generating a MEX function for multiple entry-point functions using the
buildInstrumentedMex function requires a MATLAB Coder license.

Input Arguments
fcn — Entry-point functions to instrument
function name

MATLAB entry-point functions to be instrumented, specified as a function existing in the current
working folder or on the path. The entry-point functions must be suitable for code generation. For
more information, see “Make the MATLAB Code Suitable for Code Generation” (MATLAB Coder).

options — Compiler options
option value | space delimited list of option values

Choice of compiler options. buildInstrumentedMex gives precedence to individual command-line
options over options specified using a configuration object. If command-line options conflict, the
rightmost option prevails.

-args example_inputs Define the size, class, and complexity of all
MATLAB function inputs. Use the values in
example_inputs to define these properties.
example_inputs must be a cell array that
specifies the same number and order of inputs as
the MATLAB function.

-coder Use MATLAB Coder software to compile the MEX
file, instead of the default Fixed-Point Designer
fiaccel function. This option removes fiaccel
restrictions and allows for full code generation
support. You must have a MATLAB Coder license
to use this option.

-config config_object Specify MEX generation parameters, based on
config_object, defined as a MATLAB variable
using coder.mexconfig. For example:

cfg = coder.mexconfig;

 buildInstrumentedMex

4-83

-d out_folder Store generated files in the absolute or relative
path specified by out_folder. If the folder
specified by out_folder does not exist,
buildInstrumentedMex creates it for you.

If you do not specify the folder location,
buildInstrumentedMex generates files in the
default folder:

fiaccel/mex/fcn.

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

-g Compiles the MEX function in debug mode, with
optimization turned off. If not specified,
buildinstrumentedMex generates the MEX
function in optimized mode.

-global global_values Specify initial values for global variables in
MATLAB file. Use the values in cell array
global_values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with buildInstrumentedMex.
If you do not provide initial values for global
variables using the -global option,
buildInstrumentedMex checks for the variable
in the MATLAB global workspace. If you do not
supply an initial value, buildInstrumentedMex
generates an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

-histogram Compute the log2 histogram for all named,
intermediate and expression values. A histogram
column appears in the code generation report
table.

-I include_path Add include_path to the beginning of the code
generation path.

buildInstrumentedMex searches the code
generation path first when converting MATLAB
code to MEX code.

4 Functions

4-84

-launchreport Generate and open a code generation report. If
you do not specify this option,
buildInstrumentedMex generates a report
only if error or warning messages occur or you
specify the -report option.

-o output_file_name Generate the MEX function with the base name
output_file_name plus a platform-specific
extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

-O optimization_option Optimize generated MEX code, based on the
value of optimization_option:

• enable:inline — Enable function inlining
• disable:inline — Disable function inlining

If not specified, buildInstrumentedMex uses
inlining for optimization.

-report Generate a code generation report. If you do not
specify this option, buildInstrumentedMex
generates a report only if error or warning
messages occur or you specify the -
launchreport option.

Tips
• You cannot instrument MATLAB functions provided with the software. If your top-level function is

such a MATLAB function, nothing is logged. You also cannot instrument scripts.
• Instrumentation results are accumulated every time the instrumented MEX function is called. Use

clearInstrumentationResults to clear previous results in the log.
• Some coding patterns pass a significant amount of data, but only use a small portion of that data.

In such cases, you may see degraded performance when using buildInstrumentedMex. In the
following pattern, subfun only uses one element of input array, A. For normal execution, the
amount of time to execute subfun once remains constant regardless of the size of A. The function
topfun calls subfun N times, and thus the total time to execute topfun is proportional to N.
When instrumented, however, the time to execute subfun once becomes proportional to N^2. This
change occurs because the minimum and maximum data are calculated over the entire array.
When A is large, the calculations can lead to significant performance degradation. Therefore,
whenever possible, you should pass only the data that the function actually needs.

function A = topfun(A)
 N = numel(A);
 for i=1:N
 A(i) = subfun(A,i);
 end

 buildInstrumentedMex

4-85

end
function b = subfun(A,i)
 b = 0.5 * A(i);
end

function A = topfun(A)
 N = numel(A);
 for i=1:N
 A(i) = subfun(A(i));
 end
end
function b = subfun(a)
 b = 0.5 * a;
end

See Also
NumericTypeScope | clearInstrumentationResults | codegen | fiaccel | mex |
showInstrumentationResults

Introduced in R2011b

4 Functions

4-86

cast
Cast variable to different data type

Syntax
b = cast(a,'like',p)

Description
b = cast(a,'like',p) converts a to the same numerictype, complexity (real or complex), and
fimath as p. If a and p are both real, then b is also real. Otherwise, b is complex.

Examples

Convert an int8 Value to Fixed Point

Define a scalar 8–bit integer.

a = int8(5);

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Convert a to fixed point with numerictype, complexity (real or complex), and fimath of the
specified fi object, p.

b = cast(a, 'like', p)

b =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Convert an Array to Fixed Point

Define a 2-by-3 matrix of ones.

A = ones(2,3);

Create a signed fi object with word length of 16 and fraction length of 8.

p = fi([],1,16,8);

Convert A to the same data type and complexity (real or complex) as p.

 cast

4-87

B = cast(A,'like',p)

B=2×3 object
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

4 Functions

4-88

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
a — Variable that you want to cast to a different data type
fi object | numeric variable

Variable, specified as a fi object or numeric variable.

Complex Number Support: Yes

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

 cast

4-89

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

See Also
cast | ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2013a

4 Functions

4-90

cast64BitFiToInt
Cast fi object types that can be exactly represented to a 64-bit integer data type

Syntax
y = cast64BitFiToInt(u)

Description
y = cast64BitFiToInt(u) casts the input u to an equivalent 64-bit integer data type when
possible.

If the input u is a fi object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
y1 = castFiToInt(u)

y1 =

 int16

 25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.

y2 = cast64BitFiToInt(u)

y2 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

 cast64BitFiToInt

4-91

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)

y3 =

 int64

 25

When the input is a fi object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

y5 = castFiToInt(u)

y5 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

4 Functions

4-92

If the input u is a fi object that can be represented exactly by an int64 or uint64 data type, then
the output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

See Also
cast64BitIntToFi | castFiToInt | castFiToMATLAB | castIntToFi

Introduced in R2020a

 cast64BitFiToInt

4-93

cast64BitIntToFi
Cast 64-bit integer types to an equivalent fi object type

Syntax
y = cast64BitIntToFi(u)

Description
y = cast64BitIntToFi(u) casts the input variable u to an equivalent 64-bit fi object when the
data type of u is a 64-bit integer type. Otherwise, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = int16(25);
y1 = castIntToFi(u)

y1 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int16.

y2 = cast64BitIntToFi(u)

y2 =

 int16

 25

4 Functions

4-94

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 0

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is a 64-bit integer type, the output is a fi object with a 64-bit word length,
fraction length of zero, and the same signedness as the input. Otherwise, the output has the same
data type as the input.

See Also
cast64BitFiToInt | castFiToInt | castFiToMATLAB | castIntToFi

Introduced in R2020a

 cast64BitIntToFi

4-95

castFiToInt
Cast fi object to equivalent integer data type

Syntax
y = castFiToInt(u)

Description
y = castFiToInt(u) casts the input u to an equivalent MATLAB integer data type when possible.

If the input u is a fi object type that can be represented exactly by an integer data type, then the
output is this integer data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Integer Type

Use the castFiToInt and cast64BitFiToInt functions to cast fi objects to equivalent integer
data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent integer data type using the castFiToInt
function.

u = fi(25,1,16,0);
y1 = castFiToInt(u)

y1 =

 int16

 25

The cast64BitFiToInt function casts only 64-bit word length fi objects with zero fraction length
to an equivalent integer data type. All other input data types retain their original data type.

In this example, because the input is not a 64-bit word length fi, the output is the same as the input.

y2 = cast64BitFiToInt(u)

y2 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

4 Functions

4-96

When you pass a fi object with a 64-bit word length and zero fraction length into the
cast64BitFiToInt function, the output is an int64.

u = fi(25,1,64,0)
y3 = cast64BitFiToInt(u)

y3 =

 int64

 25

When the input is a fi object with a non-zero fraction length, both functions return the original fi
object because the input cannot be represented by an integer data type.

u = fi(pi,1,64,32);
y4 = cast64BitFiToInt(u)

y4 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

y5 = castFiToInt(u)

y5 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

 castFiToInt

4-97

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToMATLAB | castIntToFi

Introduced in R2020a

4 Functions

4-98

castFiToMATLAB
Cast fi object type to an equivalent built-in MATLAB data type

Syntax
y = castFiToMATLAB(u)

Description
y = castFiToMATLAB(u) casts the input u to an equivalent MATLAB built-in data type when
possible.

If the input u is a fi object type that can be represented exactly by a built-in MATLAB data type, then
the output is this built-in data type. If u is a fi object type that cannot be exactly represented by a
built-in data type, or if it is already a built-in data type, then the output is the same as the input.

Examples

Cast a fi Object to an Equivalent Built-In MATLAB Type

Use the castFiToMATLAB function to cast fi objects to equivalent built-in MATLAB data types.

Create a signed fi variable with a 16-bit word length and zero fraction length. This is equivalent to
an int16 data type. Cast the variable to the equivalent MATLAB data type using the
castFiToMATLAB function.

u = fi(25,1,16,0);
y1 = castFiToMATLAB(u)

y1 =

 int16

 25

When the input is a fi object with a non-zero fraction length, the function returns the original fi
object because the input cannot be represented by a built-in data type.

u = fi(pi,1,64,32);
y2 = castFiToMATLAB(u)

y2 =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 32

When the input is a double-precision fi object, the function returns a double with the same value.

 castFiToMATLAB

4-99

T = numerictype('Double');
u = fi(25,T)

u =

 25

 DataTypeMode: Double

y3 = castFiToMATLAB(u)
class(y3)

y3 =

 25

ans =

 'double'

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Numeric output
scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

If the input u is a fi object that can be represented exactly by a built-in MATLAB data type, then the
output is this built-in data type. If u is a fi object that cannot be exactly represented by a built-in
data type, or if it is already a built-in data type, then the output is the same as the input.

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castIntToFi

Introduced in R2020a

4 Functions

4-100

castIntToFi
Cast an integer data type to equivalent fi type

Syntax
y = castIntToFi(u)

Description
y = castIntToFi(u) casts the input variable u to an equivalent fi object when u is one of the
built-in MATLAB integer data types (int8, uint8, int16, uint16, int32, uint32, int64, uint64).

When u is not one of the built-in integer data types, the output has the same data type as the input.

Examples

Cast an Integer to a fi Object

Use the castIntToFi and cast64BitIntToFi functions to cast integer data types in your code to
equivalent fi objects.

Create a variable with a signed 16-bit integer data type. Cast the variable to an equivalent fi object
using the castIntToFi function.

u = int16(25);
y1 = castIntToFi(u)

y1 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

The output fi object has the same word length and signedness as the input, and zero fraction length.

The cast64BitIntToFi function casts only 64-bit integer data types to an equivalent fi object. All
other input data types retain their data type.

In this example, because the input is not an int64 or uint64 data type, the output remains an
int16.

y2 = cast64BitIntToFi(u)

y2 =

 int16

 25

 castIntToFi

4-101

When you pass an int64 into the cast64BitIntToFi function, the output is a fi object with a 64-
bit word length and zero fraction length.

u = int64(25);
y3 = castIntToFi(u)

y3 =

 25

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 64
 FractionLength: 0

Input Arguments
u — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: double | single | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi
Complex Number Support: Yes

Output Arguments
y — Fixed-point output
fi object | scalar | vector | matrix | multidimensional array

Numeric output, returned as a scalar, vector, matrix, or multidimensional array with the same value
and dimensions as the input.

When the data type of u is an integer type, the output is a fi object with the same word length and
signedness as the input, and a fraction length of zero. Otherwise, the output has the same data type
as the input.

See Also
cast64BitFiToInt | cast64BitIntToFi | castFiToInt | castFiToMATLAB

Introduced in R2020a

4 Functions

4-102

ceil
Rounds toward positive infinity

Syntax
y = ceil(a)

Description
y = ceil(a) rounds fi object a to the nearest integer in the direction of positive infinity and
returns the result in fi object y.

Examples

Use ceil on a Signed fi Object

The following example demonstrates how the ceil function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = ceil(a)

y =
 4

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the ceil function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

 ceil

4-103

y = ceil(a)

y =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y=8×4 object
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

4 Functions

4-104

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

ceil does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

 ceil

4-105

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
convergent | fix | floor | nearest | round

Introduced in R2008a

4 Functions

4-106

clearInstrumentationResults
Clear results logged by instrumented, compiled C code function

Syntax
clearInstrumentationResults('mex_fcn')
clearInstrumentationResults mex_fcn
clearInstrumentationResults all

Description
clearInstrumentationResults('mex_fcn') clears the results logged from calling the
instrumented MEX function mex_fcn.

clearInstrumentationResults mex_fcn is alternative syntax for clearing the log.

clearInstrumentationResults all clears the results from all instrumented MEX functions.

Input Arguments
mex_fcn

Instrumented MEX function created using buildInstrumentedMex.

Examples
Run a test bench to log instrumentation, then use clearInstrumentationResults to clear the log.

1 Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

2 Define prototype input arguments.

n = 128;
x = complex(fi(zeros(n,1),'DataType','ScaledDouble'));
W = coder.Constant(fi(fidemo.fi_radix2twiddles(n)));

3 Generate an instrumented MEX function. Use the -o option to specify the MEX function name.

buildInstrumentedMex testfft -o testfft_instrumented -args {x,W}
4 Run a test bench to record instrumentation results. Call showInstrumentationResults to

open a report. View the simulation minimum and maximum values and whole number status by
pausing over a variable in the report.

for i=1:20
 y = testfft_instrumented(cast(2*rand(size(x))-1,'like',x));
end

 clearInstrumentationResults

4-107

showInstrumentationResults testfft_instrumented

1 Clear the results log.

clearInstrumentationResults testfft_instrumented
2 Run a different test bench, then view the new instrumentation results.

for i=1:20
 y = testfft_instrumented(cast(rand(size(x))-0.5,'like',x));
end

showInstrumentationResults testfft_instrumented

4 Functions

4-108

3 Clear the MEX function and delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

See Also
buildInstrumentedMex | codegen | fiaccel | mex | showInstrumentationResults

Introduced in R2011b

 clearInstrumentationResults

4-109

coder.approximation
Create function replacement configuration object

Syntax
q = coder.approximation(function_name)
q = coder.approximation('Function',function_name,Name,Value)

Description
q = coder.approximation(function_name) creates a function replacement configuration
object for use during code generation or fixed-point conversion. The configuration object specifies
how to create a lookup table approximation for the MATLAB function specified by function_name.
To associate this approximation with a coder.FixptConfig object for use with thefiaccel
function, use the coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace automatically. These
functions are listed in the function_name argument description.

q = coder.approximation('Function',function_name,Name,Value) creates a function
replacement configuration object using additional options specified by one or more name-value pair
arguments.

Examples

Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The resulting lookup
table in the generated code uses 1000 points.

logAppx = coder.approximation('log');

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to add to the
replacement function name. The resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...
'FunctionNamePrefix','log_replace_');

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizeLUTSize' option to specify
to replace the log function with an optimized lookup table. The resulting lookup table in the
generated code uses less than the default number of points.

4 Functions

4-110

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,...
'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...
'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom function,
saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.

saturateExp = @(x) 1/(1+exp(-x));

Create a function replacement configuration object that specifies to replace the saturateExp
function with an optimized lookup table. Because the saturateExp function is not listed as a
function for which coder.approximation can generate an approximation automatically, you must
specify the CandidateFunction property.

saturateExp = @(x) 1/(1+exp(-x));
custAppx = coder.approximation('Function','saturateExp',...
'CandidateFunction', saturateExp,...
'NumberOfPoints',50,'InputRange',[0,10]);

Input Arguments
function_name — Name of the function to replace
'acos' | 'acosd' | 'acosh' | 'acoth' | 'asin' | 'asind' | 'asinh' | 'atan' | 'atand' |
'atanh' | 'cos' | 'cosd' | 'cosh' | 'erf ' | 'erfc' | 'exp' | 'log' | 'normcdf' | 'reallog'
| 'realsqrt' | 'reciprocal' | 'rsqrt' | 'sin' | 'sinc' | 'sind' | 'sinh' | 'sqrt' | 'tan' |
'tand'

Name of function to replace, specified as a string. The function must be one of the listed functions.
Example: 'sqrt'
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Function', 'log'

Architecture — Architecture of lookup table approximation
'LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated pair consisting of
'Architecture' and a string. Use this argument when you want to specify the architecture for the
lookup table. The Flat architecture does not use interpolation.
Data Types: char

 coder.approximation

4-111

CandidateFunction — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair consisting of
'CandidateFunction' and a function handle or string referring to a function handle. Use this
argument when the function that you want to replace is not listed under function_name. Specify
the function handle or string referring to a function handle of the function that you want to replace.
You can define the function in a file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using the Function
property is set as the CandidateFunction.
Example: 'CandidateFunction', @(x) (1./(1+x))
Data Types: function_handle | char

ErrorThreshold — Error threshold value used to calculate optimal lookup table size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the comma-separated
pair consisting of 'ErrorThreshold' and a nonnegative scalar. If 'OptimizeLUTSize' is true,
this argument is required.

Function — Name of function to replace with a lookup table approximation
function_name

Name of function to replace with a lookup table approximation, specified as the comma-separated
pair consisting of 'Function' and a string. The function must be continuous and stateless. If you
specify one of the functions that is listed under function_name, the conversion process
automatically provides a replacement function. Otherwise, you must also specify the
'CandidateFunction' argument for the function that you want to replace.
Example: 'Function','log'
Example: 'Function', 'my_log','CandidateFunction',@my_log
Data Types: char

FunctionNamePrefix — Prefix for generated fixed-point function names
'replacement_' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair consisting of
'FunctionNamePrefix' and a string. The name of a generated function consists of this prefix,
followed by the original MATLAB function name.
Example: ‘log_replace_’

InputRange — Range over which to replace the function
[] (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair consisting of
'InputRange' and a 2-by-1 row vector or a 2-by-N matrix.
Example: [-1 1]

InterpolationDegree — Interpolation degree
1 (default) | 0 | 2 | 3

4 Functions

4-112

Interpolation degree, specified as the comma-separated pair consisting of 'InterpolationDegree'
and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

NumberOfPoints — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints' and a positive integer.

OptimizeIterations — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the comma-
separated pair consisting of 'OptimizeIterations' and a positive integer.

OptimizeLUTSize — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizeLUTSize' and a logical value. Setting this property to true generates an area-optimal
lookup table, that is, the lookup table with the minimum possible number of points. This lookup table
is optimized for size, but might not be speed efficient.

PipelinedArchitecture — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

Output Arguments
q — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat configuration
object
coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object that specifies how to create an approximation for a
MATLAB function. Use the coder.FixptConfig configuration object addApproximation method
to associate this configuration object with a coder.FixptConfig object. Then use the fiaccel
function -float2fixed option with coder.FixptConfig to convert floating-point MATLAB code to
fixed-point MATLAB code.

Property Default Value
Auto-replace function ''
InputRange []
FunctionNamePrefix 'replacement_'
Architecture LookupTable (read only)
NumberOfPoints 1000
InterpolationDegree 1

 coder.approximation

4-113

Property Default Value
ErrorThreshold 0.001
OptimizeLUTSize false
OptimizeIterations 25

See Also
Classes
coder.FixptConfig

Functions
fiaccel

Topics
“Replace the exp Function with a Lookup Table”
“Replace a Custom Function with a Lookup Table”
“Replacing Functions Using Lookup Table Approximations”

Introduced in R2014b

4 Functions

4-114

coder.allowpcode
Package: coder

Control code generation from protected MATLAB files

Syntax
coder.allowpcode('plain')

Description
coder.allowpcode('plain') allows you to generate protected MATLAB code (P-code) that you
can then compile into optimized MEX functions or embeddable C/C++ code. This function does not
obfuscate the generated MEX functions or embeddable C/C++ code.

With this capability, you can distribute algorithms as protected P-files that provide code generation
optimizations.

Call this function in the top-level function before control-flow statements, such as if, while,
switch, and function calls.

MATLAB functions can call P-code. When the .m and .p versions of a file exist in the same folder, the
P-file takes precedence.

coder.allowpcode is ignored outside of code generation.

Examples
Generate optimized embeddable code from protected MATLAB code:

1 Write an function p_abs that returns the absolute value of its input:

function out = p_abs(in) %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation
coder.allowpcode('plain');
out = abs(in);

2 Generate protected P-code. At the MATLAB prompt, enter:

pcode p_abs

The P-file, p_abs.p, appears in the current folder.
3 Generate a MEX function for p_abs.p, using the -args option to specify the size, class, and

complexity of the input parameter (requires a MATLAB Coder license). At the MATLAB prompt,
enter:

codegen p_abs -args { int32(0) }

codegen generates a MEX function in the current folder.
4 Generate embeddable C code for p_abs.p (requires a MATLAB Coder license). At the MATLAB

prompt, enter:

 coder.allowpcode

4-115

codegen p_abs -config:lib -args { int32(0) };

codegen generates C library code in the codegen\lib\p_abs folder.

See Also
codegen | pcode

Introduced in R2011a

4 Functions

4-116

coder.ArrayType class
Package: coder
Superclasses: coder.Type

Represent set of MATLAB arrays

Description
Specifies the set of arrays that the generated code accepts. Use only with the fiaccel -args option.
Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

coder.ArrayType is an abstract class. You cannot create instances of it directly. You can create
coder.EnumType, coder.FiType, coder.PrimitiveType, and coder.StructType objects that
derive from this class.

Properties
ClassName

Class of values in this set

SizeVector

The upper-bound size of arrays in this set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
coder.CellType | coder.ClassType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

 coder.ArrayType class

4-117

Introduced in R2011a

4 Functions

4-118

coder.config
Create configuration object for fixed-point or single-precision conversion

Syntax
config_obj = coder.config('fixpt')
config_obj = coder.config('single')

Description
config_obj = coder.config('fixpt') creates a coder.FixptConfig configuration object.
Use this object with the fiaccel function when converting floating-point MATLAB code to fixed-
point MATLAB code.

config_obj = coder.config('single') creates a coder.SingleConfig configuration object
for use with the convertToSingle function when generating single-precision MATLAB code from
double-precision MATLAB code.

Examples

Convert Floating-Point MATLAB Code to Fixed-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert your floating-point MATLAB design to fixed point. In this example, the MATLAB function
name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Double-Precision MATLAB Code to Single-Precision MATLAB Code

Create a coder.SingleConfig object, scfg.

scfg = coder.config('single');

Set the test bench name. In this example, the test bench function name is myfun_test. Enable
numerics testing and data logging for comparison plotting of input and output variables.

scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

 coder.config

4-119

Convert the double-precision MATLAB code to single-precision MATLAB code. In this example, the
MATLAB function name is myfun.

convertToSingle -config scfg myfun

See Also
coder.FixptConfig | coder.SingleConfig | convertToSingle | fiaccel

Introduced in R2014b

4 Functions

4-120

coder.const
Fold expressions into constants in generated code

Syntax
out = coder.const(expression)
[out1,...,outN] = coder.const(handle,arg1,...,argN)

Description
out = coder.const(expression) evaluates expression and replaces out with the result of the
evaluation in generated code.

[out1,...,outN] = coder.const(handle,arg1,...,argN) evaluates the multi-output
function having handle handle. It then replaces out1,...,outN with the results of the evaluation
in the generated code.

Examples

Specify Constants in Generated Code

This example shows how to specify constants in generated code using coder.const.

Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The
vector consists of the square of the first 10 natural numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element of the
vector during vector creation. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the expression (1:10).^2 with coder.const((1:10).^2), and then generate code for
AddShift again using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

 coder.const

4-121

The code generator creates the vector containing the squares of the first 10 natural numbers. In the
generated code, it adds Shift to each element of this vector. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i;
 static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i = 0; i < 10; i++) {
 y[i] = (double)iv[i] + Shift;
 }
}

Create Lookup Table in Generated Code

This example shows how to fold a user-written function into a constant in generated code.

Write a function getsine that takes an input index and returns the element referred to by index
from a lookup table of sines. The function getsine creates the lookup table using another function
gettable.

function y = getsine(index) %#codegen
 assert(isa(index, 'int32'));
 persistent tbl;
 if isempty(tbl)
 tbl = gettable(1024);
 end
 y = tbl(index);

function y = gettable(n)
 y = zeros(1,n);
 for i = 1:n
 y(i) = sin((i-1)/(2*pi*n));
 end

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

codegen -config:lib -launchreport getsine -args int32(0)

The generated code contains instructions for creating the lookup table.

Replace the statement:

tbl = gettable(1024);

with:

tbl = coder.const(gettable(1024));

Generate code for getsine using an argument of type int32. Open the Code Generation Report.

4 Functions

4-122

The generated code contains the lookup table itself. coder.const forces the expression
gettable(1024) to be evaluated during code generation. The generated code does not contain
instructions for the evaluation. The generated code contains the result of the evaluation itself.

Specify Constants in Generated Code Using Multi-Output Function

This example shows how to specify constants in generated code using a multi-output function in a
coder.const statement.

Write a function MultiplyConst that takes an input factor and multiplies every element of two
vectors vec1 and vec2 with factor. The function generates vec1 and vec2 using another function
EvalConsts.

function [y1,y2] = MultiplyConst(factor) %#codegen
 [vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);
 y1=vec1.*factor;
 y2=vec2.*factor;

function [f1,f2]=EvalConsts(z,n)
 f1=z.^(2*n)/factorial(2*n);
 f2=z.^(2*n+1)/factorial(2*n+1);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator produces code for creating the vectors.

Replace the statement

[vec1,vec2]=EvalConsts(pi.*(1./2.^(1:10)),2);

with

[vec1,vec2]=coder.const(@EvalConsts,pi.*(1./2.^(1:10)),2);

Generate code for MultiplyConst using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport MultiplyConst -args 0

The code generator does not generate code for creating the vectors. Instead, it calculates the vectors
and specifies the calculated vectors in generated code.

Read Constants by Processing XML File

This example shows how to call an extrinsic function using coder.const.

Write an XML file MyParams.xml containing the following statements:

<params>
 <param name="hello" value="17"/>
 <param name="world" value="42"/>
</params>

 coder.const

4-123

Save MyParams.xml in the current folder.

Write a MATLAB function xml2struct that reads an XML file. The function identifies the XML tag
param inside another tag params.

After identifying param, the function assigns the value of its attribute name to the field name of a
structure s. The function also assigns the value of attribute value to the value of the field.

function s = xml2struct(file)

s = struct();
doc = xmlread(file);
els = doc.getElementsByTagName('params');
for i = 0:els.getLength-1
 it = els.item(i);
 ps = it.getElementsByTagName('param');
 for j = 0:ps.getLength-1
 param = ps.item(j);
 paramName = char(param.getAttribute('name'));
 paramValue = char(param.getAttribute('value'));
 paramValue = evalin('base', paramValue);
 s.(paramName) = paramValue;
 end
end

Save xml2struct in the current folder.

Write a MATLAB function MyFunc that reads the XML file MyParams.xml into a structure s using the
function xml2struct. Declare xml2struct as extrinsic using coder.extrinsic and call it in a
coder.const statement.

function y = MyFunc(u) %#codegen
 assert(isa(u, 'double'));
 coder.extrinsic('xml2struct');
 s = coder.const(xml2struct('MyParams.xml'));
 y = s.hello + s.world + u;

Generate code for MyFunc using the codegen command. Open the Code Generation Report.

codegen -config:dll -launchreport MyFunc -args 0

The code generator executes the call to xml2struct during code generation. It replaces the
structure fields s.hello and s.world with the values 17 and 42 in generated code.

Input Arguments
expression — MATLAB expression or user-written function
expression with constants | single-output function with constant arguments

MATLAB expression or user-defined single-output function.

The expression must have compile-time constants only. The function must take constant arguments
only. For instance, the following code leads to a code generation error, because x is not a compile-
time constant.

function y=func(x)
 y=coder.const(log10(x));

4 Functions

4-124

To fix the error, assign x to a constant in the MATLAB code. Alternatively, during code generation, you
can use coder.Constant to define input type as follows:

codegen -config:lib func -args coder.Constant(10)

Example: 2*pi, factorial(10)

handle — Function handle
function handle

Handle to built-in or user-written function.
Example: @log, @sin
Data Types: function_handle

arg1,...,argN — Arguments to the function with handle handle
function arguments that are constants

Arguments to the function with handle handle.

The arguments must be compile-time constants. For instance, the following code leads to a code
generation error, because x and y are not compile-time constants.

function y=func(x,y)
 y=coder.const(@nchoosek,x,y);

To fix the error, assign x and y to constants in the MATLAB code. Alternatively, during code
generation, you can use coder.Constant to define input type as follows:

codegen -config:lib func -args {coder.Constant(10),coder.Constant(2)}

Output Arguments
out — Value of expression
value of the evaluated expression

Value of expression. In the generated code, MATLAB Coder replaces occurrences of out with the
value of expression.

out1,...,outN — Outputs of the function with handle handle
values of the outputs of the function with handle handle

Outputs of the function with handle handle. MATLAB Coder evaluates the function and replaces
occurrences of out1,...,outN with constants in the generated code.

Tips
• When possible, the code generator constant-folds expressions automatically. Typically, automatic

constant-folding occurs for expressions with scalars only. Use coder.const when the code
generator does not constant-fold expressions on its own.

• When constant-folding computationally intensive function calls, to reduce code generation time,
make the function call extrinsic. The extrinsic function call causes evaluation of the function call
by MATLAB instead of by the code generator. For example:

 coder.const

4-125

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).
• If coder.const is unable to constant-fold a function call, try to force constant-folding by making

the function call extrinsic. The extrinsic function call causes evaluation of the function call by
MATLAB instead of by the code generator. For example:

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

See “Use coder.const with Extrinsic Function Calls” (MATLAB Coder).

See Also
Topics
“Fold Function Calls into Constants” (MATLAB Coder)
“Use coder.const with Extrinsic Function Calls” (MATLAB Coder)

Introduced in R2013b

4 Functions

4-126

coder.Constant class
Package: coder
Superclasses: coder.Type

Represent set containing one MATLAB value

Description
Use a coder.Constant object to define values that are constant during code generation. Use only
with the fiaccel -args options. Do not pass as an input to a generated MEX function.

Construction
const_type=coder.Constant(v) creates a coder.Constant type from the value v.

const_type=coder.newtype('constant', v) creates a coder.Constant type from the value
v.

Input Arguments

v

Constant value used to construct the type.

Properties
Value

The actual value of the constant.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Create a constant with value 42.

k = coder.Constant(42);

Create a new constant type for use in code generation.

k = coder.newtype('constant', 42);

Limitations
• You cannot use coder.Constant on sparse matrices, or on structures, cell arrays, or classes that

contain sparse matrices.

 coder.Constant class

4-127

See Also
coder.Type | coder.newtype | fiaccel

Introduced in R2011a

4 Functions

4-128

coder.EnumType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB enumerations

Description
Specifies the set of MATLAB enumerations that the generated code should accept. Use only with the
fiaccel -args options. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

enum_type = coder.typeof(enum_value) creates a coder.EnumType object representing a set
of enumeration values of class (enum_value).

enum_type = coder.typeof(enum_value, sz, variable_dims) returns a modified copy of
coder.typeof(enum_value) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded
and the dimension is variable size. When sz is [], the (upper bound) sizes of v do not change. If you
do not specify variable_dims, the bounded dimensions of the type are fixed; the unbounded
dimensions are variable size. When variable_dims is a scalar, it applies to bounded dimensions
that are not 1 or 0 (which are fixed).

enum_type = coder.newtype(enum_name,sz,variable_dims) creates a coder.EnumType
object that has variable size with (upper bound) sizes sz and variable dimensions variable_dims. If
sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is
variable size. If you do not specify variable_dims, the bounded dimensions of the type are fixed.
When variable_dims is a scalar, it applies to bounded dimensions that are not 1 or 0 (which are
fixed).

Input Arguments

enum_value

Enumeration value defined in a file on the MATLAB path.

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

 coder.EnumType class

4-129

Default: false(size(sz)) | sz==Inf for coder.newtype

enum_name

Name of enumeration defined in a file on the MATLAB path.

Properties
ClassName

Class of values in the set.

SizeVector

The upper-bound size of arrays in the set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Create a coder.EnumType object using a value from an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named 'MyColors'
containing:

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2 Create a coder.EnumType object from this enumeration.

t = coder.typeof(MyColors.red);

Create a coder.EnumType object using the name of an existing MATLAB enumeration.

1 Define an enumeration MyColors. On the MATLAB path, create a file named 'MyColors'
containing:

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2 Create a coder.EnumType object from this enumeration.

4 Functions

4-130

t = coder.newtype('MyColors');

See Also
coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Enumerations”
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

 coder.EnumType class

4-131

coder.extrinsic
Declare extrinsic functions

Syntax
coder.extrinsic(function)
coder.extrinsic(function1, ... ,functionN)

coder.extrinsic('-sync:on', function1, ... ,functionN)
coder.extrinsic('-sync:off', function1, ... ,functionN)

Description
coder.extrinsic(function) declares function as an extrinsic function. The code generator
does not produce code for the body of the extrinsic function and instead uses the MATLAB engine to
execute the call. This functionality is available only when the MATLAB engine is available during
execution. Examples of situations during which the MATLAB engine is available include execution of
MEX functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

During standalone code generation, the code generator attempts to determine whether an extrinsic
function affects the output of the function in which it is called — for example by returning mxArrays
to an output variable. Provided that there is no change to the output, the code generator proceeds
with code generation, but excludes the extrinsic function from the generated code. Otherwise, the
code generator produces a compilation error.

You cannot use coder.ceval on functions that you declare as extrinsic by using coder.extrinsic.

coder.extrinsic is ignored outside of code generation.

coder.extrinsic(function1, ... ,functionN) declares function1 through functionN as
extrinsic functions.

coder.extrinsic('-sync:on', function1, ... ,functionN) enables synchronization of
global data between MATLAB and MEX functions before and after calls to the extrinsic functions
function1 through functionN. If only a few extrinsic calls use or modify global data, turn off
synchronization before and after all extrinsic function calls by setting the global synchronization
mode to At MEX-function entry and exit. Use the '-sync:on' option to turn on
synchronization for only the extrinsic calls that do modify global data.

See “Generate Code for Global Data” (MATLAB Coder).

coder.extrinsic('-sync:off', function1, ... ,functionN) disables synchronization of
global data between MATLAB and MEX functions before and after calls to the extrinsic functions
function1 through functionN. If most extrinsic calls use or modify global data, but a few do not,
use the '-sync:off' option to turn off synchronization for the extrinsic calls that do not modify
global data.

See “Generate Code for Global Data” (MATLAB Coder).

4 Functions

4-132

Examples

Declare a MATLAB Function as Extrinsic

The MATLAB function patch is not supported for code generation. This example shows how you can
still use the functionality of patch in your generated MEX function by declaring patch as extrinsic
your MATLAB function.

This MATLAB code declares patch as extrinsic in the local function create_plot. By declaring
patch as extrinsic, you instruct the code generator not to produce code for patch. Instead, the code
generator dispatches patch to MATLAB for execution.

The code generator automatically treats many common MATLAB visualization functions, such as the
function axis as extrinsic.

function c = pythagoras(a,b,color) %#codegen
% Calculate the hypotenuse of a right triangle
% and display the triangle as a patch object.
c = sqrt(a^2 + b^2);
create_plot(a, b, color);
end

function create_plot(a, b, color)
%Declare patch as extrinsic
coder.extrinsic('patch');
x = [0;a;a];
y = [0;0;b];
patch(x,y,color);
axis('equal');
end

Generate a MEX function for pythagoras. Also, generate the code generation report.

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

In the report, view the MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they are treated as extrinsic
functions.

Run the MEX function.

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays the plot of the right triangle as a red patch object.

 coder.extrinsic

4-133

Input Arguments
function — MATLAB function name
character vector

Name of the MATLAB function that is declared as extrinsic.
Example: coder.extrinsic('patch')
Data Types: char

Limitations
• Extrinsic function calls have some overhead that can affect performance. Input data that is passed

in an extrinsic function call must be provided to MATLAB, which requires making a copy of the
data. If the function has any output data, this data must be transferred back into the MEX function
environment, which also requires a copy.

• The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local functions.

Tips
• The code generator automatically treats many common MATLAB visualization functions, such as

plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic.

4 Functions

4-134

• Use the coder.screener function to detect which functions you must declare as extrinsic. This
function runs the Code Generation Readiness Tool that screens the MATLAB code for features and
functions that are not supported for code generation.

See Also
coder.screener

Topics
“Extrinsic Functions”
“Generate Code for Global Data” (MATLAB Coder)
“Resolution of Function Calls for Code Generation”

Introduced in R2011a

 coder.extrinsic

4-135

coder.FiType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB fixed-point arrays

Description
Specifies the set of fixed-point array values that the generated code should accept. Use only with the
fiaccel -args options. Do not pass as an input to the generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(v) creates a coder.FiType object representing a set of fixed-point values whose
properties are based on the fixed-point input v.

t=coder.typeof(v, sz, variable_dims) returns a modified copy of coder.typeof(v) with
(upper bound) size specified by sz and variable dimensions variable_dims. If sz specifies inf for a
dimension, then the size of the dimension is unbounded and the dimension is variable size. When sz
is [], the (upper bound) sizes of v do not change. If you do not specify the variable_dims input
parameter, the bounded dimensions of the type are fixed. When variable_dims is a scalar, it applies
to the bounded dimensions that are not 1 or 0 (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims) creates a
coder.Type object representing a set of fixed-point values with numerictype and (upper bound)
sizes sz and variable dimensions variable_dims. If sz specifies inf for a dimension, then the size
of the dimension is unbounded and the dimension is variable size. When you do not specify
variable_dims, the bounded dimensions of the type are fixed. When variable_dims is a scalar, it
applies to the bounded dimensions that are not 1 or 0 (which are fixed).

t=coder.newtype('embedded.fi', numerictype, sz, variable_dims, Name, Value)
creates a coder.Type object representing a set of fixed-point values with numerictype and
additional options specified by one or more Name, Value pair arguments. Name can also be a property
name and Value is the corresponding value. Specify Name as a character vector or string scalar. You
can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

v

Fixed-point value used to create new coder.FiType object.

sz

Size vector specifying each dimension of type object.

4 Functions

4-136

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

Default: false(size(sz)) | sz ==Inf for coder.newtype

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

complex

Set complex to true to create a coder.Type object that can represent complex values. The type
must support complex data.

Default: false

fimath

Specify local fimath. If not, uses default fimath.

Properties
ClassName

Class of values in the set.

Complex

Indicates whether fixed-point arrays in the set are real (false) or complex (true).

Fimath

Local fimath that the fixed-point arrays in the set use.

NumericType

numerictype that the fixed-point arrays in the set use.

SizeVector

The upper-bound size of arrays in the set.

VariableDims

A vector specifying whether each dimension of the array is fixed or variable size. If a vector element
is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

 coder.FiType class

4-137

Examples
Create a new fixed-point type t.

t = coder.typeof(fi(1));
% Returns
% coder.FiType
% 1x1 embedded.fi
% DataTypeMode:Fixed-point: binary point scaling
% Signedness:Signed
% WordLength:16
% FractionLength:14

Create a new fixed-point type for use in code generation. The fixed-point type uses the default
fimath.

t = coder.newtype('embedded.fi',numerictype(1, 16, 15), [1 2])

t =
% Returns
% coder.FiType
% 1x2 embedded.fi
% DataTypeMode: Fixed-point: binary point scaling
% Signedness: Signed
% WordLength: 16
% FractionLength: 15

This new type uses the default fimath.

See Also
coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4 Functions

4-138

coder.FixptConfig class
Package: coder

Floating-point to fixed-point conversion configuration object

Description
A coder.FixptConfig object contains the configuration parameters that the fiaccel function
requires to convert floating-point MATLAB code to fixed-point MATLAB code. Use the -float2fixed
option to pass this object to the fiaccel function.

Construction
fixptcfg = coder.config('fixpt') creates a coder.FixptConfig object for floating-point to
fixed-point conversion.

Properties
ComputeDerivedRanges

Enable derived range analysis.

Values: true|false (default)

ComputeSimulationRanges

Enable collection and reporting of simulation range data. If you need to run a long simulation to cover
the complete dynamic range of your design, consider disabling simulation range collection and
running derived range analysis instead.

Values: true (default)|false

DefaultFractionLength

Default fixed-point fraction length.

Values: 4 (default) | positive integer

DefaultSignedness

Default signedness of variables in the generated code.

Values: 'Automatic' (default) | 'Signed' | 'Unsigned'

DefaultWordLength

Default fixed-point word length.

Values: 14 (default) | positive integer

 coder.FixptConfig class

4-139

DetectFixptOverflows

Enable detection of overflows using scaled doubles.

Values: true| false (default)

fimath

fimath properties to use for conversion.

Values: fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',
'ProductMode', 'FullPrecision', 'SumMode', 'FullPrecision') (default) | string

FixPtFileNameSuffix

Suffix for fixed-point file names.

Values: '_fixpt' | string

LaunchNumericTypesReport

View the numeric types report after the software has proposed fixed-point types.

Values: true (default) | false

LogIOForComparisonPlotting

Enable simulation data logging to plot the data differences introduced by fixed-point conversion.

Values: true (default) | false

OptimizeWholeNumber

Optimize the word lengths of variables whose simulation min/max logs indicate that they are always
whole numbers.

Values: true (default) | false

PlotFunction

Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This option
takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

Values: '' (default) | string

PlotWithSimulationDataInspector

Use Simulation Data Inspector for comparison plots.

4 Functions

4-140

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

Values: true| false (default)

ProposeFractionLengthsForDefaultWordLength

Propose fixed-point types based on DefaultWordLength.

Values: true (default) | false

ProposeTargetContainerTypes

By default (false), propose data types with the minimum word length needed to represent the value.
When set to true, propose data type with the smallest word length that can represent the range and is
suitable for C code generation (8,16,32, 64 …). For example, for a variable with range [0..7],
propose a word length of 8 rather than 3.

Values: true| false (default)

ProposeWordLengthsForDefaultFractionLength

Propose fixed-point types based on DefaultFractionLength.

Values: false (default) | true

ProposeTypesUsing

Propose data types based on simulation range data, derived ranges, or both.

Values: 'BothSimulationAndDerivedRanges' (default) |
'SimulationRanges'|'DerivedRanges'

SafetyMargin

Safety margin percentage by which to increase the simulation range when proposing fixed-point
types. The specified safety margin must be a real number greater than -100.

Values: 0 (default) | double

StaticAnalysisQuickMode

Perform faster static analysis.

Values: true | false (default)

StaticAnalysisTimeoutMinutes

Abort analysis if timeout is reached.

Values: '' (default) | positive integer

TestBenchName

Test bench function name or names, specified as a string or cell array of strings. You must specify at
least one test bench.

 coder.FixptConfig class

4-141

If you do not explicitly specify input parameter data types, the conversion uses the first test bench
function to infer these data types.

Values: '' (default) | string | cell array of strings

TestNumerics

Enable numerics testing.

Values: true| false (default)

Methods
addApproximation Replace floating-point function with lookup table during fixed-

point conversion
addDesignRangeSpecification Add design range specification to parameter
addFunctionReplacement Replace floating-point function with fixed-point function during

fixed-point conversion
clearDesignRangeSpecifications Clear all design range specifications
getDesignRangeSpecification Get design range specifications for parameter
hasDesignRangeSpecification Determine whether parameter has design range
removeDesignRangeSpecification Remove design range specification from parameter

Examples

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation Ranges

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test. The conversion
process uses the test bench to infer input data types and collect simulation range data.

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on simulation ranges only. By default, proposed types are based
on both simulation and derived ranges.

fixptcfg.ProposeTypesUsing = 'SimulationRanges';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Convert Floating-Point MATLAB Code to Fixed Point Based On Simulation and Derived
Ranges

Create a coder.FixptConfig object, fixptcfg, with default settings.

4 Functions

4-142

fixptcfg = coder.config('fixpt');

Set the name of the test bench to use to infer input data types. In this example, the test bench
function name is dti_test. The conversion process uses the test bench to infer input data types.

fixptcfg.TestBenchName = 'dti_test';

Select to propose data types based on derived ranges.

fixptcfg.ProposeTypesUsing = 'DerivedRanges';
fixptcfg.ComputeDerivedRanges = true;

Add design ranges. In this example, the dti function has one scalar double input, u_in. Set the
design minimum value for u_in to -1 and the design maximum to 1.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

Convert the floating-point MATLAB function, dti, to fixed-point MATLAB code.

fiaccel -float2fixed fixptcfg dti

Enable Overflow Detection

When you select to detect potential overflows, fiaccel generates a scaled double version of the
generated fixed-point MEX function. Scaled doubles store their data in double-precision floating-
point, so they carry out arithmetic in full range. They also retain their fixed-point settings, so they are
able to report when a computation goes out of the range of the fixed-point type.

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Enable numerics testing with overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

Alternatives
You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point Converter app.
Open the app using one of these methods:

• On the Apps tab, in the Code Generation section, click Fixed-Point Converter.
• Use the fixedPointConverter command.

 coder.FixptConfig class

4-143

See Also
coder.MexConfig | coder.mexconfig | fiaccel

Topics
“Propose Data Types Based on Simulation Ranges”
“Propose Data Types Based on Derived Ranges”
“Detect Overflows”
“Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL Coder)

4 Functions

4-144

coder.ignoreConst
Prevent use of constant value of expression for function specializations

Syntax
coder.ignoreConst(expression)

Description
coder.ignoreConst(expression) prevents the code generator from using the constant value of
expression to create function specializations on page 4-147. coder.ignoreConst(expression)
returns the value of expression.

Examples

Prevent Function Specializations Based on Constant Input Values

Use coder.ignoreConst to prevent function specializations for a function that is called with
constant values.

Write the function call_myfn, which calls myfcn.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, 'mode1');
y = myfcn(n, 'mode2');
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate standalone C code. For example, generate a static library. Enable the code generation
report.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you see two function specializations for call_myfcn.

 coder.ignoreConst

4-145

The code generator creates call_myfcn>myfcn>1 for mode with a value of 'mode1'. It creates
call_myfcn>myfcn>2 for mode with a value of 'mode2'.

In the generated C code, you see the specializations my_fcn and b_my_fcn.

static double b_myfcn(double n)
{
 return -n;
}

static double myfcn(double n)
{
 return n;
}

To prevent the function specializations, instruct the code generator to ignore that values of the mode
argument are constant.

function [x, y] = call_myfcn(n)
%#codegen
x = myfcn(n, coder.ignoreConst('mode1'));
y = myfcn(n, coder.ignoreConst('mode2'));
end

function y = myfcn(n,mode)
coder.inline('never');
if strcmp(mode,'mode1')
 y = n;
else
 y = -n;
end
end

Generate the C code.

codegen -config:lib call_myfcn -args {1} -report

In the code generation report, you do not see multiple function specializations.

In the generated C code, you see one function for my_fcn.

Input Arguments
expression — Expression whose value is to be treated as a nonconstant
MATLAB expression

Expression whose value is to be treated as a nonconstant, specified as a MATLAB expression.

4 Functions

4-146

More About
Function Specialization

Version of a function in which an input type, size, complexity, or value is customized for a particular
invocation of the function.

Function specialization produces efficient C code at the expense of code duplication. The code
generation report shows all MATLAB function specializations that the code generator creates.
However, the specializations might not appear in the generated C/C++ code due to later
transformations or optimizations.

Tips
• For some recursive function calls, you can use coder.ignoreConst to force run-time recursion.

See “Force Code Generator to Use Run-Time Recursion”.
• coder.ignoreConst(expression) prevents the code generator from using the constant value

of expression to create function specializations. It does not prevent other uses of the constant
value during code generation.

See Also
coder.inline

Topics
“Force Code Generator to Use Run-Time Recursion”
“Compile-Time Recursion Limit Reached”

Introduced in R2017a

 coder.ignoreConst

4-147

coder.inline
Package: coder

Control inlining in generated code

Syntax
coder.inline('always')
coder.inline('never')
coder.inline('default')

Description
coder.inline('always') forces inlining on page 4-149 of the current function in the generated
code. Place the coder.inline directive inside the function to which it applies. The code generator
does not inline entry-point functions and recursive functions. Also, the code generator does not inline
functions into parfor loops, or inline functions called from parfor loops.

coder.inline('never') prevents inlining of the current function in the generated code. Prevent
inlining when you want to simplify the mapping between the MATLAB source code and the generated
code. You can disable inlining for all functions at the command line by using the -O
disable:inline option of the fiaccel command.

coder.inline('default') uses internal heuristics to determine whether to inline the current
function. Usually, the heuristics produce highly optimized code. Use coder.inline only when you
need to fine-tune these optimizations.

Examples
• “Prevent Function Inlining” on page 4-148
• “Use coder.inline in Control Flow Statements” on page 4-148

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)
 coder.inline('never');
 y = x;
end

Use coder.inline in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and issues a
warning.

Suppose that you want to generate code for a division function used by a system with limited memory.
To optimize memory use in the generated code, the inline_division function manually controls
inlining based on whether it performs scalar division or vector division:

4 Functions

4-148

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)
 coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.
 coder.inline('never');
end

if any(divisor == 0)
 error('Cannot divide by 0');
end

y = dividend / divisor;

More About
Inlining

Technique that replaces a function call with the contents (body) of that function. Inlining eliminates
the overhead of a function call, but can produce larger C/C++ code. Inlining can create opportunities
for further optimization of the generated C/C++ code.

See Also
fiaccel

Introduced in R2011a

 coder.inline

4-149

coder.load
Load compile-time constants from MAT-file or ASCII file into caller workspace

Syntax
S = coder.load(filename)
S = coder.load(filename,var1,...,varN)
S = coder.load(filename,'-regexp',expr1,...,exprN)
S = coder.load(filename,'-ascii')
S = coder.load(filename,'-mat')
S = coder.load(filename,'-mat',var1,...,varN)
S = coder.load(filename,'-mat','-regexp', expr1,...,exprN)

Description
S = coder.load(filename) loads compile-time constants from filename.

• If filename is a MAT-file, then coder.load loads variables from the MAT-file into a structure
array.

• If filename is an ASCII file, then coder.load loads data into a double-precision array.

coder.load loads data at code generation time, also referred to as compile time. If you change the
content of filename after you generate code, the change is not reflected in the behavior of the
generated code.

S = coder.load(filename,var1,...,varN) loads only the specified variables from the MAT-file
filename.

S = coder.load(filename,'-regexp',expr1,...,exprN) loads only the variables that match
the specified regular expressions.

S = coder.load(filename,'-ascii') treats filename as an ASCII file, regardless of the file
extension.

S = coder.load(filename,'-mat') treats filename as a MAT-file, regardless of the file
extension.

S = coder.load(filename,'-mat',var1,...,varN) treats filename as a MAT-file and loads
only the specified variables from the file.

S = coder.load(filename,'-mat','-regexp', expr1,...,exprN) treats filename as a
MAT-file and loads only the variables that match the specified regular expressions.

Examples

4 Functions

4-150

Load compile-time constants from MAT-file

Generate code for a function edgeDetect1 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect1 uses coder.load to load
the edge detection kernel from a MAT-file at compile time.

Save the Sobel edge-detection kernel in a MAT-file.

k = [1 2 1; 0 0 0; -1 -2 -1];

save sobel.mat k

Write the function edgeDetect1.

function edgeImage = edgeDetect1(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

S = coder.load('sobel.mat','k');
H = conv2(double(originalImage),S.k, 'same');
V = conv2(double(originalImage),S.k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect1.

codegen -report -config cfg edgeDetect1

codegen generates C code in the codegen\lib\edgeDetect1 folder.

Load compile-time constants from ASCII file

Generate code for a function edgeDetect2 which given a normalized image, returns an image where
the edges are detected with respect to the threshold value. edgeDetect2 uses coder.load to load
the edge detection kernel from an ASCII file at compile time.

Save the Sobel edge-detection kernel in an ASCII file.

k = [1 2 1; 0 0 0; -1 -2 -1];
save sobel.dat k -ascii

Write the function edgeDetect2.

function edgeImage = edgeDetect2(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = coder.load('sobel.dat');
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');

 coder.load

4-151

E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Create a code generation configuration object for a static library.

cfg = coder.config('lib');

Generate a static library for edgeDetect2.

codegen -report -config cfg edgeDetect2

codegen generates C code in the codegen\lib\edgeDetect2 folder.

Input Arguments
filename — Name of file
character vector | string scalar

Name of file. filename must be a compile-time constant.

filename can include a file extension and a full or partial path. If filename has no extension, load
looks for a file named filename.mat. If filename has an extension other than .mat, load treats
the file as ASCII data.

ASCII files must contain a rectangular table of numbers, with an equal number of elements in each
row. The file delimiter (the character between elements in each row) can be a blank, comma,
semicolon, or tab character. The file can contain MATLAB comments (lines that begin with a percent
sign, %).
Example: 'myFile.mat'

var1,...,varN — Names of variables to load
character vector | string scalar

Names of variables, specified as one or more character vectors or string scalars. Each variable name
must be a compile-time constant. Use the * wildcard to match patterns.
Example: coder.load('myFile.mat','A*') loads all variables in the file whose names start with
A.

expr1,...,exprN — Regular expressions indicating which variables to load
character vector | string scalar

Regular expressions indicating which variables to load specified as one or more character vectors or
string scalars. Each regular expression must be a compile-time constant.
Example: coder.load('myFile.mat', '-regexp', '^A') loads only variables whose names
begin with A.

Output Arguments
S — Loaded variables or data
structure array | m-by-n array

If filename is a MAT-file, S is a structure array.

4 Functions

4-152

If filename is an ASCII file, S is an m-by-n array of type double. m is the number of lines in the file
and n is the number of values on a line.

Limitations
• Arguments to coder.load must be compile-time constants.
• The output S must be the name of a structure or array without any subscripting. For example,

S(i) = coder.load('myFile.mat') is not allowed.
• You cannot use save to save workspace data to a file inside a function intended for code

generation. The code generator does not support the save function. Furthermore, you cannot use
coder.extrinsic with save. Prior to generating code, you can use save to save workspace
data to a file.

Tips
• coder.load loads data at compile time, not at run time. If you are generating MEX code or code

for Simulink simulation, you can use the MATLAB function load to load run-time values.
• If the MAT-file contains unsupported constructs, use coder.load(filename,var1,...,varN)

to load only the supported constructs.
• If you generate code in a MATLAB Coder project, the code generator practices incremental code

generation for the coder.load function. When the MAT-file or ASCII file used by coder.load
changes, the software rebuilds the code.

See Also
matfile | regexp | save

Topics
“Regular Expressions”

Introduced in R2013a

 coder.load

4-153

coder.mexconfig
Package: coder

Code acceleration configuration object

Syntax
config_obj = coder.mexconfig

Description
config_obj = coder.mexconfig creates a coder.MexConfig code generation configuration
object for use with fiaccel, which generates a MEX function.

Output Arguments
config_obj

Code generation configuration object for use when generating MEX functions using fiaccel.

Examples
Create a configuration object to disable run-time checks

cfg = coder.mexconfig
% Turn off Integrity Checks, Extrinsic Calls,
% and Responsiveness Checks
cfg.IntegrityChecks = false;
cfg.ExtrinsicCalls = false;
cfg.ResponsivenessChecks = false;
% Use fiaccel to generate a MEX function for file foo.m
fiaccel -config cfg foo

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType | coder.MexConfig |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Introduced in R2011a

4 Functions

4-154

coder.newtype
Package: coder

Create a coder.Type object to represent the type of an entry-point function input

Syntax
t = coder.newtype(numeric_class,sz,variable_dims)
t = coder.newtype(numeric_class,sz,variable_dims, Name,Value)
t = coder.newtype('constant',value)
t = coder.newtype('struct',struct_fields,sz,variable_dims)
t = coder.newtype('cell',cells,sz,variable_dims)
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims, Name,Value)
t = coder.newtype(enum_value,sz,variable_dims)
t = coder.newtype(class_name)
t = coder.newtype('string')

Description
The coder.newtype function is an advanced function that you can use to control the coder.Type
object. Consider using coder.typeof instead of coder.newtype. The function coder.typeof
creates a type from a MATLAB example.

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.newtype(numeric_class,sz,variable_dims) creates a coder.Type object
representing values of class numeric_class, sizes sz (upper bound), and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is unbounded
and the dimension is variable-size. When variable_dims is not specified, the dimensions of the type
are fixed except for those that are unbounded. When variable_dims is a scalar, it is applied to type
dimensions that are not 1 or 0, which are fixed.

t = coder.newtype(numeric_class,sz,variable_dims, Name,Value) creates a
coder.Type object by using additional options specified as one or more Name, Value pair
arguments.

t = coder.newtype('constant',value) creates a coder.Constant object representing a
single value. Use this type to specify a value that must be treated as a constant in the generated
code.

t = coder.newtype('struct',struct_fields,sz,variable_dims) creates a
coder.StructType object for an array of structures that has the same fields as the scalar structure
struct_fields. The structure array type has the size specified by sz and variable-size dimensions
specified by variable_dims.

t = coder.newtype('cell',cells,sz,variable_dims) creates a coder.CellType object for
a cell array that has the cells and cell types specified by cells. The cell array type has the size

 coder.newtype

4-155

specified by sz and variable-size dimensions specified by variable_dims. You cannot change the
number of cells or specify variable-size dimensions for a heterogeneous cell array.

t = coder.newtype('embedded.fi',numerictype,sz,variable_dims, Name,Value)
creates a coder.FiType object representing a set of fixed-point values that have numerictype and
additional options specified by one or more Name, Value pair arguments.

t = coder.newtype(enum_value,sz,variable_dims) creates a coder.Type object
representing a set of enumeration values of class enum_value.

t = coder.newtype(class_name) creates a coder.ClassType object for an object of the class
class_name.

t = coder.newtype('string') creates a type for a string scalar. A string scalar contains one
piece of text represented as a character vector. To specify the size of the character vector and
whether the second dimension is variable-size, create a type for the character vector and assign it to
the Value property of the string scalar type. For example, t.Properties.Value =
coder.newtype('char',[1 10],[0 1]) specifies that the character vector inside the string
scalar is variable-size with an upper bound of 10.

Examples

Create Type for a Matrix

Create a type for a variable-size matrix of doubles.

t = coder.newtype('double',[2 3 4],[1 1 0])

t =

coder.PrimitiveType
 :2×:3×4 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with fixed
size.

t = coder.newtype('double',[inf,3])

t =

coder.PrimitiveType
 :inf×3 double

t = coder.newtype('double',[inf,3],[1 0])

% also returns
t =

coder.PrimitiveType
 :inf×3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, and second dimension with
variable-size that has an upper bound of 3.

4 Functions

4-156

t = coder.newtype('double',[inf,3],[0 1])

t =

coder.PrimitiveType
 :inf×:3 double

% ':' indicates variable-size dimensions

Create Type for a Structure

Create a type for a structure with a variable-size field.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('struct',struct('a',ta,'b',tb),[1 1],[1 1])

t =

coder.StructType
 :1×:1 struct
 a: 1×1 int8
 b: :1×:2 double
% ':' indicates variable-size dimensions

Create Type for a Cell Array

Create a type for a heterogeneous cell array.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('double',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb})

t =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×1 int8
 f2: :1×:2 double
% ':' indicates variable-size dimensions

Create a type for a homogeneous cell array.

ta = coder.newtype('int8',[1 1]);
tb = coder.newtype('int8',[1 2],[1 1]);
t = coder.newtype('cell',{ta, tb},[1,1],[1,1])

t =

coder.CellType
 :1×:1 homogeneous cell
 base: :1×:2 int8
% ':' indicates variable-size dimensions

 coder.newtype

4-157

Create Type for a Constant

Create a new constant type to use in code generation.

t = coder.newtype('constant',42)

t =

coder.Constant
 42

Create a coder.EnumType Object

Create a coder.EnumType object by using the name of an existing MATLAB enumeration.

1. Define an enumeration MyColors. On the MATLAB path, create a file named MyColors containing:

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2. Create a coder.EnumType object from this enumeration.

t = coder.newtype('MyColors')

t =

coder.EnumType
 1×1 MyColors

Create a Fixed-Point Type

Create a fixed-point type for use in code generation.

The fixed-point type uses default fimath values.

t = coder.newtype('embedded.fi',numerictype(1, 16, 15),[1 2])

t =

coder.FiType
 1×2 embedded.fi
 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Create a Type for an Object

Create a type for an object to use in code generation.

4 Functions

4-158

1. Create this value class:

classdef mySquare
 properties
 side;
 end

 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end

 function a = calcarea(obj)
 a = obj.side * obj.side;
 end

 end
end

2. Create a type for an object that has the same properties as mySquare.

t = coder.newtype('mySquare');

3. Change the type of the property side.

t.Properties.side = coder.typeof(int8(3))

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 int8

Create Type for a String Scalar

Create a type for a string scalar to use in code generation.

1. Create the string scalar type.

t = coder.newtype('string');

2. Specify the size.

t.Properties.Value = coder.newtype('char',[1,10]);

3. Make the string variable-size with an upper bound of 10.

t.Properties.Value = coder.newtype('char',[1,10],[0,1]);

4. Make the string variable-size with no upper bound.

 coder.newtype

4-159

t.Properties.Value = coder.newtype('char',[1,inf]);

Input Arguments
numeric_class — Class of values of type object
numeric (default)

Class of the set of values represented by the type object.
Example: coder.newtype('double',[6,3]);
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char | string | struct | table | cell | function_handle | categorical |
datetime | duration | calendarDuration | fi
Complex Number Support: Yes

struct_fields — Indicates fields in a new structure type
struct (default)

Scalar structure used to specify the fields in a new structure type.
Example: coder.newtype('struct',struct('a',ta,'b',tb));
Data Types: struct

cells — Specify types of cells in a new cell array type
cell array (default)

Cell array of coder.Type objects that specify the types of the cells in a new cell array type.
Example: coder.newtype('cell',{ta,tb});
Data Types: cell

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object. The sz dimension cannot change the number of
cells for a heterogeneous cell array.
Example: coder.newtype('int8',[1 2]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

class_name — Name of the class
character vector | string scalar

Name of the class from which the coder.ClassType is created. Specify as a character vector or
string scalar. class_name must be the name of a value class.
Example: coder.newtype('mySquare')
Data Types: char | string

variable_dims — Variable or fixed dimension
row vector of logical values

4 Functions

4-160

The value of variable_dims is true for dimensions for which sz specifies an upper bound of inf;
false for all other dimensions.

Logical vector that specifies whether each dimension is variable-size (true) or fixed size (false). You
cannot specify variable-size dimensions for a heterogeneous cell array.
Example: coder.newtype('char',[1,10],[0,1]);
Data Types: logical

value — Value of the constant
constant value (default)

Specifies the actual value of the constant.
Example: coder.newtype('constant',41);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell

enum_value — Enumeration values of class
enum (default)

Enumeration values of a class.
Example: coder.newtype('MyColors');
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: coder.newtype('embedded.fi',numerictype(1,16,15),[1 2])

complex — Type representing complex values
true

Set complex to true to create a coder.Type object that can represent complex values. The type
must support complex data.

fimath — Type representing fimath values
numeric (default)

Specify local fimath. If fimath is not specified, the code generator uses default fimath values.

Use only with
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims,Name,Value)

sparse — Type representing sparse data
false (default)

 coder.newtype

4-161

Set sparse to true to create a coder.Type object representing sparse data. The type must support
sparse data.

Not for use with
t = coder.newtype('embedded.fi',numerictype,sz,variable_dims,Name,Value)

gpu — Type representing GPU inputs
false (default)

Set gpu to true to create a coder.Type object that can represent the GPU input type. This option
requires a valid GPU Coder™ license.

Output Arguments
t — New type object
coder.Type object

New coder.Type object.

Limitations
• For sparse matrices, coder.newtype drops upper bounds for variable-size dimensions.
• For GPU input types, only bounded numeric and logical base types are supported. Scalar GPU

arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-point
data types are not supported.

• When using coder.newtype to represent GPU inputs, the memory allocation (malloc) mode
property of the GPU code configuration object must be set to 'discrete'.

Tips
• The coder.newtype function fixes the size of a singleton dimension unless the variable_dims

argument explicitly specifies that the singleton dimension has a variable-size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton
dimension) has a fixed size. The second dimension has a variable-size.

t = coder.newtype('double',[1 10],1)

By contrast, the following code specifies a :1-by-:10 double. Both dimensions have a variable-size.

t = coder.newtype('double',[1 10],[1 1])
• For a MATLAB Function block, singleton dimensions of input or output signals cannot have a

variable-size.

Alternatives
coder.typeof

See Also
coder.ArrayType | coder.CellType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.resize | fiaccel

4 Functions

4-162

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

 coder.newtype

4-163

coder.nullcopy
Package: coder

Declare uninitialized variables in code generation

Syntax
X = coder.nullcopy(A)

Description
X = coder.nullcopy(A) copies type, size, and complexity of A to X, but does not copy element
values. The function preallocates memory for X without incurring the overhead of initializing memory.
In code generation, the coder.nullcopy function declares uninitialized variables. In MATLAB,
coder.nullcopy returns the input such that X is equal to A.

If X is a structure or a class containing variable-sized arrays, then you must assign the size of each
array. coder.nullcopy does not copy sizes of arrays or nested arrays from its argument to its
result.

Note Before you use X in a function or a program, ensure that the data in X is completely initialized.
Declaring a variable through coder.nullcopy without assigning all the elements of the variable
results in nondeterministic program behavior. For more information, see “How to Eliminate
Redundant Copies by Defining Uninitialized Variables”.

Examples

Declare Variables for Optimized Initialization

Declare variable X as a 1-by-5 vector of real doubles without performing an unnecessary initialization:

function X = foo %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 else
 X(i) = 0;
 end
end

4 Functions

4-164

Using coder.nullcopy with zeros lets you specify the size of vector X without initializing each
element to zero.

Input Arguments
A — Variable to copy
scalar | vector | matrix | class | multidimensional array

Variable to copy, specified as a scalar, vector, matrix, or multidimensional array.
Example: coder.nullcopy(A);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | class
Complex Number Support: Yes

Limitations
• You cannot use coder.nullcopy on sparse matrices.
• You cannot use coder.nullcopy with classes that support overloaded parentheses or require

indexing methods to access their data, such as table.

See Also
Topics
“Eliminate Redundant Copies of Variables in Generated Code”

Introduced in R2011a

 coder.nullcopy

4-165

coder.PrimitiveType class
Package: coder
Superclasses: coder.ArrayType

Represent set of logical, numeric, or char arrays

Description
Specifies the set of logical, numeric, or char values that the generated code should accept. Supported
classes are half, double, single, int8, uint8, int16, uint16, int32, uint32, int64, uint64,
char, and logical. Use only with the fiaccel -args option. Do not pass as an input to a
generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(v) creates a coder.PrimitiveType object denoting the smallest non-constant
type that contains v. v must be a MATLAB numeric, logical or char.

t=coder.typeof(v, sz, variable_dims) returns a modified copy of coder.typeof(v) with
(upper bound) size specified by sz and variable dimensions variable_dims. If sz specifies inf for a
dimension, then the size of the dimension is assumed to be unbounded and the dimension is assumed
to be variable sized. When sz is [], the (upper bound) sizes of v remain unchanged. When
variable_dims is not specified, the dimensions of the type are assumed to be fixed except for those
that are unbounded. When variable_dims is a scalar, it is applied to bounded dimensions that are
not 1 or 0 (which are assumed to be fixed).

t=coder.newtype(numeric_class, sz, variable_dims) creates a coder.PrimitiveType
object representing values of class numeric_class with (upper bound) sizes sz and variable
dimensions variable_dims. If sz specifies inf for a dimension, then the size of the dimension is
assumed to be unbounded and the dimension is assumed to be variable sized. When variable_dims
is not specified, the dimensions of the type are assumed to be fixed except for those that are
unbounded. When variable_dims is a scalar, it is applied to the dimensions of the type that are not
1 or 0 (which are assumed to be fixed).

t=coder.newtype(numeric_class, sz, variable_dims, Name, Value) creates a
coder.PrimitiveType object with additional options specified by one or more Name, Value pair
arguments. Name can also be a property name and Value is the corresponding value. Specify Name as
character vector or string scalar. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments

v

Input that is not a coder.Type object

4 Functions

4-166

sz

Size for corresponding dimension of type object. Size must be a valid size vector.

Default: [1 1] for coder.newtype

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

Default: false(size(sz)) | sz==Inf for coder.newtype

numeric_class

Class of type object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

complex

Set complex to true to create a coder.PrimitiveType object that can represent complex values.
The type must support complex data.

Character arrays do not support complex data.

Default: false

sparse

Set sparse to true to create a coder.PrimitiveType object representing sparse data. The type
must support sparse data.

Character and half-precision data types do not support sparse data.

Default: false

gpu

Set gpu to true to create a coder.PrimitiveType object that can represent GPU input type. This
option requires a valid GPU Coder license.

Character and half-precision data types do not support GPU Arrays.

Default: false

Properties
ClassName

Class of values in this set

 coder.PrimitiveType class

4-167

Complex

Indicates whether the values in this set are real (false) or complex (true)

SizeVector

The upper-bound size of arrays in this set.

Sparse

Indicates whether the values in this set are sparse arrays (true)

VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Create a coder.PrimitiveType object.

z = coder.typeof(0,[2 3 4],[1 1 0]) % returns double :2x:3x4
% ':' indicates variable-size dimensions

See Also
coder.ArrayType | coder.ClassType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

4 Functions

4-168

coder.resize
Package: coder

Resize coder.Type object

Syntax
t_out = coder.resize(t,sz)
t_out = coder.resize(t,sz,variable_dims)
t_out = coder.resize(t,[],variable_dims)
t_out = coder.resize(t,sz,variable_dims,Name,Value)
t_out = coder.resize(t,'sizelimits',limits)

Description
t_out = coder.resize(t,sz) resizes t to have size sz.

t_out = coder.resize(t,sz,variable_dims) returns a modified copy of coder.Type t with
(upper-bound) size sz and variable dimensions variable_dims. If variable_dims or sz are
scalars, the function applies the scalars to all dimensions of t. By default, variable_dims does not
apply to dimensions where sz is 0 or 1, which are fixed. Use the 'uniform' option to override this
special case. The coder.resize function ignores variable_dims for dimensions with size inf.
These dimensions are variable size. t can be a cell array of types, in which case, coder.resize
resizes all elements of the cell array.

t_out = coder.resize(t,[],variable_dims) changes t to have variable dimensions
variable_dims while leaving the size unchanged.

t_out = coder.resize(t,sz,variable_dims,Name,Value) resizes t by using additional
options specified by one or more Name, Value pair arguments.

t_out = coder.resize(t,'sizelimits',limits) resizes t with dimensions becoming variable
based on the limits vector. When the size S of a dimension is greater than or equal to the first
threshold defined in limits, the dimension becomes variable size with upper bound S. When the size
S of a dimension is greater than or equal to the second threshold defined in limits, the dimension
becomes an unbounded variable size.

Examples

Change Fixed-Size Array to an Unbounded, Variable-Size Array

Change a fixed-size array to an unbounded, variable-size array.

t = coder.typeof(ones(3,3))

t =

coder.PrimitiveType
 3×3 double

 coder.resize

4-169

coder.resize(t,inf)

ans =

coder.PrimitiveType
 :inf×:inf double
% ':' indicates variable-size dimensions

Change Fixed-Size Array to a Bounded, Variable-Size Array

Change a fixed-size array to a bounded, variable-size array.

t = coder.typeof(ones(3,3))

t =

coder.PrimitiveType
 3×3 double

coder.resize(t,[4 5],1)

ans =

coder.PrimitiveType
 :4×:5 double
% ':' indicates variable-size dimensions

Resize Structure Field

Resize a structure field.

ts = coder.typeof(struct('a',ones(3, 3)))

ts =

coder.StructType
 1×1 struct
 a: 3×3 double

coder.resize(ts,[5, 5],'recursive',1)

ans =

coder.StructType
 5×5 struct
 a: 5×5 double

Resize Cell Array

Resize a cell array.

tc = coder.typeof({1 2 3})

tc =

4 Functions

4-170

coder.CellType
 1×3 homogeneous cell
 base: 1×1 double

coder.resize(tc,[5, 5],'recursive',1)

ans =

coder.CellType
 5×5 homogeneous cell
 base: 1×1 double

Change Fixed-Sized Array to Variable-Size Based on Bounded and Unbounded Thresholds

Change a fixed-sized array to a variable size based on bounded and unbounded thresholds.

t = coder.typeof(ones(100,200))

t =

coder.PrimitiveType
 100×200 double

coder.resize(t,'sizelimits',[99 199])

ans =

coder.PrimitiveType
 :100×:inf double
% ':' indicates variable-size dimensions

Input Arguments
limits — Vector that defines the threshold
row vector of integer values

A row vector of variable-size thresholds. If the value of limits is scalar, the threshold gets scalar-
expanded. If the size sz of a dimension of t is greater than or equal to the first threshold, the
dimension becomes variable size with upper bound sz. If the size sz of a dimension of t is greater
than or equal to the second threshold, the dimension becomes an unbounded variable size.
Example: coder.resize(t,'sizelimits',[99 199]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — New size for object type
row vector of integer values

New size for coder.Type object, t_out
Example: coder.resize(t,[3,4]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

t — coder.Type object that you want to resize
coder.Type object

 coder.resize

4-171

If t is a coder.CellType object, the coder.CellType object must be homogeneous.
Example: coder.resize(t,inf);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

variable_dims — Variable or fixed dimension
row vector of logical values

Specify whether each dimension of t_out is fixed size or variable size.
Example: coder.resize(t,[4 5],1);
Data Types: logical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: coder.resize(t,[5, 5],'recursive', 1);

recursive — Resize t and all types contained within it
false (default) | true

Setting recursive to true resizes t and all types contained within it.
Data Types: logical

uniform — Resize t without applying the heuristic for dimensions of size one
false (default) | true

Setting uniform to true resizes t but does not apply the heuristic for dimensions of size one.
Data Types: logical

Output Arguments
t_out — Resized type object
coder.Type object

Resized coder.Type object
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Limitations
• For sparse matrices, coder.resize drops the upper bounds for variable-size dimensions.

4 Functions

4-172

See Also
coder.newtype | coder.typeof | fiaccel

Introduced in R2011a

 coder.resize

4-173

coder.screener
Package: coder

Determine if function is suitable for code generation

Syntax
coder.screener(fcn)
coder.screener(fcn_1,...,fcn_n)

Description
coder.screener(fcn) analyzes the entry-point MATLAB function fcn to identify unsupported
functions and language features as code generation compliance issues. The code generation
compliance issues are displayed in the readiness report.

If fcn calls other functions directly or indirectly that are not MathWorks® functions (MATLAB built-in
functions and toolbox functions), coder.screener analyzes these functions. It does not analyze the
MathWorks functions.

It is possible that coder.screener does not detect all code generation issues. Under certain
circumstances, it is possible that coder.screener reports false errors.

To avoid undetected code generation issues and false errors, before generating code, verify that your
MATLAB code is suitable for code generation by performing these additional checks:

• Before using coder.screener, fix issues that the Code Analyzer identifies.
• After using coder.screener, and before generating C/C++ code, verify that your MATLAB code

is suitable for code generation by generating and verifying a MEX function.

The coder.screener function does not report functions that the code generator treats as extrinsic.
Examples of such functions are plot, disp, and figure. See “Extrinsic Functions”.

coder.screener(fcn_1,...,fcn_n) analyzes multiple entry-point MATLAB functions.

Examples

Identify Unsupported Functions

The coder.screener function identifies calls to functions that are not supported for code
generation. It checks the entry-point function, foo1, and the function, foo2, that foo1 calls.

Write the function foo2 and save it in the file foo2.m.

function tf = foo2(source,target)
G = digraph(source,target);
tf = isdag(G);
end

Write the function foo1 that calls foo2. Save foo1 in the file foo1.m.

4 Functions

4-174

function tf = foo1(source,target)
assert(numel(source)==numel(target))
tf = foo2(source,target);
end

Analyze foo1.

coder.screener('foo1')

The Code Generation Readiness report displays a summary of the unsupported MATLAB function
calls. The report Summary tab indicates that foo2.m contains one call to the digraph function and
one call to the isdag function, which are not supported for code generation.

In the report, click the Code Structure tab and select the Show MATLAB functions check box.

This tab displays a pie chart showing the relative size of each file and how suitable each file is for
code generation. The report displays:

• Green: Function (foo1.m) suitable for code generation.
• Yellow: Function (foo2.m) requires significant changes.

 coder.screener

4-175

The report also displays a Call Tree with Code Generation Readiness Score. The score is based on
a scale of 1–5. 1 indicates that significant changes are required. 5 indicates that the code generation
readiness tool does not detect issues. In this example, the report assigns foo1.m a code generation
readiness score of 4 and foo2.m a score of 3.

The function foo2 calls two unsupported MATLAB functions. To generate a MEX function, modify the
code to make the calls to digraph and isdag extrinsic by using the coder.extrinsic directive,
and then rerun the code generation readiness tool.

function tf = foo2(source,target)
coder.extrinsic('digraph','isdag');
G = digraph(source,target);
tf = isdag(G);
end

Rerun coder.screener on the entry-point function foo1.

coder.screener('foo1')

4 Functions

4-176

The report no longer flags that code generation does not support the digraph and dag functions.
When you generate a MEX function for foo1, the code generator dispatches these two functions to
MATLAB for execution.

Identify Unsupported Data Types

The coder.screener function identifies MATLAB data types that code generation does not support.

Write the function myfun1 that contains a MATLAB calendar duration array data type.

function out = myfun1(A)
out = calyears(A);
end

Analyze myfun1.

coder.screener('myfun1');

The code generation readiness report indicates that the calyears data type is not supported for
code generation.

The report assigns myfun1 a code generation readiness score of 3. Before generating code, fix the
reported issues.

Input Arguments
fcn — Name of entry-point function
character vector | string scalar

Name of entry-point MATLAB function for analysis. Specify as a character vector or a string scalar.
Example: coder.screener('myfun');

 coder.screener

4-177

Data Types: char | string

fcn_1,...,fcn_n — List of entry-point function names
character vector | string scalar

Comma-separated list of entry-point MATLAB function names for analysis. Specify as character
vectors or string scalars.
Example: coder.screener('myfun1','myfun2');
Data Types: char | string

Alternatives
• “Run the Code Generation Readiness Tool From the Current Folder Browser”

See Also
coder.extrinsic | fiaccel

Topics
“Functions Supported for Code Acceleration or C Code Generation”
“Code Generation Readiness Tool”

Introduced in R2012b

4 Functions

4-178

coder.StructType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB structure arrays

Description
Specifies the set of structure arrays that the generated code should accept. Use only with the
fiaccel -args option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t=coder.typeof(struct_v) creates a coder.StructType object for a structure with the same
fields as the scalar structure struct_v.

t=coder.typeof(struct_v, sz, variable_dims) returns a modified copy of
coder.typeof(struct_v) with (upper bound) size specified by sz and variable dimensions
variable_dims. If sz specifies inf for a dimension, then the size of the dimension is assumed to be
unbounded and the dimension is assumed to be variable sized. When sz is [], the (upper bound) sizes
of struct_v remain unchanged. If the variable_dims input parameter is not specified, the
dimensions of the type are assumed to be fixed except for those that are unbounded. When
variable_dims is a scalar, it is applied to the bounded dimensions that are not 1 or 0 (which are
assumed to be fixed).

t=coder.newtype('struct', struct_v, sz, variable_dims) creates a
coder.StructType object for an array of structures with the same fields as the scalar structure
struct_v and (upper bound) size sz and variable dimensions variable_dims. If sz specifies inf
for a dimension, then the size of the dimension is assumed to be unbounded and the dimension is
assumed to be variable sized. When variable_dims is not specified, the dimensions of the type are
assumed to be fixed except for those that are unbounded. When variable_dims is a scalar, it is
applied to the dimensions of the type, except if the dimension is 1 or 0, which is assumed to be fixed.

Input Arguments

struct_v

Scalar structure used to specify the fields in a new structure type.

sz

Size vector specifying each dimension of type object.

Default: [1 1] for coder.newtype

 coder.StructType class

4-179

variable_dims

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false).

Default: false(size(sz)) | sz==Inf for coder.newtype

Properties
Alignment

The run-time memory alignment of structures of this type in bytes. If you have an Embedded Coder®

license and use Code Replacement Libraries (CRLs), the CRLs provide the ability to align data objects
passed into a replacement function to a specified boundary. This capability allows you to take
advantage of target-specific function implementations that require data to be aligned. By default, the
structure is not aligned on a specific boundary so it will not be matched by CRL functions that require
alignment.

Alignment must be either -1 or a power of 2 that is no more than 128.

ClassName

Class of values in this set.

Extern

Whether the structure type is externally defined.

Fields

A structure giving the coder.Type of each field in the structure.

HeaderFile

If the structure type is externally defined, name of the header file that contains the external definition
of the structure, for example, "mystruct.h".

By default, the generated code contains #include statements for custom header files after the
standard header files. If a standard header file refers to the custom structure type, then the
compilation fails. By specifying the HeaderFile option, MATLAB Coder includes that header file
exactly at the point where it is required.

Must be a non-empty character vector or string scalar.

SizeVector

The upper-bound size of arrays in this set.

VariableDims

A vector used to specify whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

4 Functions

4-180

Examples
Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
coder.typeof(x)
% Returns
% coder.StructType
% 1x1 struct
% a: :3x:5 double
% b: 3x3 double
% ':' indicates variable-size dimensions

See Also
coder.ArrayType | coder.ClassType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.Type | coder.newtype | coder.resize | coder.typeof |
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

 coder.StructType class

4-181

coder.target
Determine if code generation target is specified target

Syntax
tf = coder.target(target)

Description
tf = coder.target(target) returns true (1) if the code generation target is target. Otherwise,
it returns false (0).

If you generate code for MATLAB classes, MATLAB computes class initial values at class loading time
before code generation. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true.

Examples

Use coder.target to Parametrize a MATLAB Function

Parametrize a MATLAB function so that it works in MATLAB or in generated code. When the function
runs in MATLAB, it calls the MATLAB function myabsval. The generated code, however, calls a C
library function myabsval.

Write a MATLAB function myabsval.

function y = myabsval(u)
%#codegen
y = abs(u);

Generate a C static library for myabsval, using the -args option to specify the size, type, and
complexity of the input parameter.

codegen -config:lib myabsval -args {0.0}

The codegen function creates the library file myabsval.lib and header file myabsval.h in the
folder \codegen\lib\myabsval. (The library file extension can change depending on your
platform.) It generates the functions myabsval_initialize and myabsval_terminate in the
same folder.

Write a MATLAB function to call the generated C library function using coder.ceval.

function y = callmyabsval(y)
%#codegen
% Check the target. Do not use coder.ceval if callmyabsval is
% executing in MATLAB
if coder.target('MATLAB')
 % Executing in MATLAB, call function myabsval
 y = myabsval(y);
else

4 Functions

4-182

 % add the required include statements to generated function code
 coder.updateBuildInfo('addIncludePaths','$(START_DIR)\codegen\lib\myabsval');
 coder.cinclude('myabsval_initialize.h');
 coder.cinclude('myabsval.h');
 coder.cinclude('myabsval_terminate.h');

 % Executing in the generated code.
 % Call the initialize function before calling the
 % C function for the first time
 coder.ceval('myabsval_initialize');

 % Call the generated C library function myabsval
 y = coder.ceval('myabsval',y);

 % Call the terminate function after
 % calling the C function for the last time
 coder.ceval('myabsval_terminate');
end

Generate the MEX function callmyabsval_mex. Provide the generated library file at the command
line.

codegen -config:mex callmyabsval codegen\lib\myabsval\myabsval.lib -args {-2.75}

Rather than providing the library at the command line, you can use to specify the library within the
function. Use this option to preconfigure the build. Add this line to the else block:

coder.updateBuildInfo('addLinkObjects','myabsval.lib','$(START_DIR)\codegen\lib\myabsval',100,true,true);

Run the MEX function callmyabsval_mex which calls the library function myabsval.

callmyabsval_mex(-2.75)

ans =

 2.7500

Call the MATLAB function callmyabsval.

callmyabsval(-2.75)

ans =

 2.7500

The callmyabsval function exhibits the desired behavior for execution in MATLAB and in code
generation.

Input Arguments
target — code generation target
'MATLAB' | 'MEX' | 'Sfun' | 'Rtw' | 'HDL ' | 'Custom'

Code generation target, specified as a character vector or a string scalar. Specify one of these
targets.

'MATLAB' Running in MATLAB (not generating code)

 coder.target

4-183

'MEX' Generating a MEX function
'Sfun' Simulating a Simulink model. Also used for running in Accelerator mode.
'Rtw' Generating a LIB, DLL, or EXE target. Also used for running in Simulink

Coder and Rapid Accelerator mode.
'HDL' Generating an HDL target
'Custom' Generating a custom target

Example: tf = coder.target('MATLAB')
Example: tf = coder.target("MATLAB")

See Also

Introduced in R2011a

4 Functions

4-184

coder.Type class
Package: coder

Represent set of MATLAB values

Description
Specifies the set of values that the generated code should accept. Use only with the fiaccel -args
option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

coder.Type is an abstract class, and you cannot create instances of it directly. You can create
coder.Constant, coder.EnumType, coder.FiType, coder.PrimitiveType,
coder.StructType, and coder.CellType objects that are derived from this class.

Properties
ClassName

Class of values in this set

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

See Also
coder.ArrayType | coder.CellType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

 coder.Type class

4-185

coderTypeEditor
Launch the Coder Type Editor dialog

Syntax
coderTypeEditor
coderTypeEditor var1 ... varN
coderTypeEditor -all
coderTypeEditor -close

Description
coderTypeEditor opens an empty Coder Type Editor dialog. If a dialog is already open, this
command brings it to the front of the screen.

You can use the Coder Type Editor to create and edit coder.Type objects interactively. See “Create
and Edit Input Types by Using the Coder Type Editor”.

coderTypeEditor var1 ... varN opens a Coder Type Editor dialog pre-populated with
coder.Type objects corresponding to the workspace variables var1 through varN. For a variable
var, the name of the generated coder.Type object is varType.

coderTypeEditor -all opens a Coder Type Editor dialog pre-populated with coder.Type objects
corresponding to all compatible variables in the current workspace.

coderTypeEditor -close closes an open Coder Type Editor dialog.

Examples

Open Coder Type Editor Populated with Types for Existing Variables

In your MATLAB workspace, define variables var1, var2, and var3.

myArray = magic(4);
myCharVector = 'Hello, World!';
myStruct = struct('a',5,'b','mystring');

Open the type editor pre-populated with types for var1, var2, and var3.

coderTypeEditor myArray myCharVector myStruct

The Coder Type Editor dialog opens. The Type Browser pane displays the name, class (data type),
and size for coder.Type objects myArrayType, myCharVectorType, and myStructType for the
three workspace variables.

Inspect the created types and check that they are consistent with the variables in the workspace.

• myArrayType represents a 4-by-4 array of type double.
• myCharVectorType represents a 1-by-13 character row vector.

4 Functions

4-186

• myStructType represents a scalar of type struct. Expand the tree corresponding to
myStructType in the Type Browser. The field a represents a scalar double. The field b
represents a 1-by-8 character vector.

To save these types in the base workspace, in the Coder Type Editor toolstrip, click Save. The
variables myArrayType, myCharVectorType, and myStructType appear in the base workspace.

Input Arguments
var1 ... varN — Workspace variables whose types you intend to view in the type editor
value belonging to a fundamental MATLAB class that supports code generation | value object | handle
object | coder.Type object

Workspace variables whose types you intend to view in the type editors. They can store any value that
is compatible with code generation.

The value can also be a coder.Type object. In that case, the coder.Type object itself opens in the
type editor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | categorical | datetime | duration |
timetable | fi | value object | coder.Type object
Complex Number Support: Yes

See Also
coder.newtype | coder.typeof

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2020a

 coderTypeEditor

4-187

coder.typeof
Package: coder

Create coder.Type object to represent the type of an entry-point function input

Syntax
type_obj = coder.typeof(v)
type_obj = coder.typeof(v,sz,variable_dims)
type_obj = coder.typeof(v,'Gpu', true)
type_obj = coder.typeof(type_obj)

Description

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

type_obj = coder.typeof(v) creates an object that is derived from coder.Type to represent
the type of v for code generation. Use coder.typeof to specify only input parameter types. For
example, use it with the fiaccel function -args option. Do not use it in MATLAB code from which
you intend to generate a MEX function.

type_obj = coder.typeof(v,sz,variable_dims) returns a modified copy of type_obj =
coder.typeof(v) with upper bound size specified by sz and variable dimensions specified by
variable_dims.

type_obj = coder.typeof(v,'Gpu', true) creates an object that is derived from coder.Type
to represent v as a GPU input type for code generation. This option requires a valid GPU Coder
license.

type_obj = coder.typeof(type_obj) returns type_obj itself.

Examples

Create Type for a Matrix

Create a type for a simple fixed-size 5x6 matrix of doubles.

coder.typeof(ones(5,6))

ans =

coder.PrimitiveType
 5×6 double

coder.typeof(0,[5 6])

ans =

4 Functions

4-188

coder.PrimitiveType
 5×6 double

Create a type for a variable-size matrix of doubles.

coder.typeof(ones(3,3),[],1)

ans =

coder.PrimitiveType
 :3×:3 double
% ':' indicates variable-size dimensions

Create a type for a matrix with fixed-size and variable-size dimensions.

coder.typeof(0,[2,3,4],[1 0 1])

ans =

coder.PrimitiveType
 :2×3×:4 double

coder.typeof(10,[1 5],1)

ans =

coder.PrimitiveType
 1×:5 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with fixed size.

coder.typeof(10,[inf,3])

ans =

coder.PrimitiveType
 :inf×3 double
% ':' indicates variable-size dimensions

Create a type for a matrix of doubles, first dimension unbounded, second dimension with variable size
that has an upper bound of 3.

coder.typeof(10,[inf,3],[0 1])

ans =

coder.PrimitiveType
 :inf×:3 double

Convert a fixed-size matrix to a variable-size matrix.

coder.typeof(ones(5,5),[],1)

 ans =

coder.PrimitiveType

 coder.typeof

4-189

 :5×:5 double
% ':' indicates variable-size dimensions

Create Type for a Structure

Create a type for a structure with a variable-size field.

x.a = coder.typeof(0,[3 5],1);
x.b = magic(3);
coder.typeof(x)

ans =

coder.StructType
 1×1 struct
 a: :3×:5 double
 b: 3×3 double
% ':' indicates variable-size dimensions

Create a nested structure (a structure as a field of another structure).

S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S);
SuperS.y = single(0);
coder.typeof(SuperS)

ans =

coder.StructType
 1×1 struct
 x: 1×1 struct
 a: 1×1 double
 b: 1×1 single
 y: 1×1 single

Create a structure containing a variable-size array of structures as a field.

S = struct('a',double(0),'b',single(0));
SuperS.x = coder.typeof(S,[1 inf],[0 1]);
SuperS.y = single(0);
coder.typeof(SuperS)

ans =

coder.StructType
 1×1 struct
 x: 1×:inf struct
 a: 1×1 double
 b: 1×1 single
 y: 1×1 single
% ':' indicates variable-size dimensions

Create Type for a Cell Array

Create a type for a homogeneous cell array with a variable-size field.

4 Functions

4-190

a = coder.typeof(0,[3 5],1);
b = magic(3);
coder.typeof({a b})

ans =

coder.CellType
 1×2 homogeneous cell
 base: :3×:5 double
% ':' indicates variable-size dimensions

Create a type for a heterogeneous cell array.

a = coder.typeof('a');
b = coder.typeof(1);
coder.typeof({a b})

ans =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×1 char
 f2: 1×1 double

Create a variable-size homogeneous cell array type from a cell array that has the same class but
different sizes.

1. Create a type for a cell array that contains two character vectors with different sizes. The cell
array type is heterogeneous.

coder.typeof({'aa','bbb'})

ans =

coder.CellType
 1×2 heterogeneous cell
 f1: 1×2 char
 f2: 1×3 char

2. Create a type by using the same cell array input. This time, specify that the cell array type has
variable-size dimensions. The cell array type is homogeneous.

coder.typeof({'aa','bbb'},[1,10],[0,1])

ans =

coder.CellType
 1×:10 locked homogeneous cell
 base: 1×:3 char
% ':' indicates variable-size dimensions

Create Type for a Value Class Object

Change a fixed-size array to a bounded, variable-size array.

Create a type for a value class object.

 coder.typeof

4-191

1. Create this value class:

classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end

2. Create an object of mySquare.

sq_obj = coder.typeof(mySquare(4))

sq_obj =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

3. Create a type for an object that has the same properties as sq_obj.

t = coder.typeof(sq_obj)

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

Alternatively, you can create the type from the class definition:

t = coder.typeof(mySquare(4))

t =

coder.ClassType
 1×1 mySquare
 side: 1×1 double

Create Type for a String Scalar

Define a string scalar. For example:

s = "mystring";

Create a type from s.

t = coder.typeof(s);

4 Functions

4-192

To make t variable-size, assign the Value property of t to a type for a variable-size character vector
that has the upper bound that you want. For example, specify that type t is variable-size with an
upper bound of 10.

t.Properties.Value = coder.typeof('a',[1 10],[0 1]);

To specify that t is variable-size and does not have an upper bound:

t.Properties.Value = coder.typeof('a',[1 inf]);

Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Input Arguments
v — Set of values representing input parameter types
numeric array | character vector | string | struct | cell array

v can be a MATLAB numeric, logical, char, enumeration, or fixed-point array. v can also be a cell
array, structure, or value class that contains the previous types.

When v is a cell array whose elements have the same classes but different sizes, if you specify
variable-size dimensions, coder.typeof creates a homogeneous cell array type. If the elements
have different classes, coder.typeof reports an error.
Example: coder.typeof(ones(5,6));
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | char | string | struct | table | cell | function_handle | categorical |
datetime | duration | calendarDuration | fi
Complex Number Support: Yes

sz — Dimension of type object
row vector of integer values

Size vector specifying each dimension of type object.

If sz specifies inf for a dimension, then the size of the dimension is unbounded and the dimension is
variable size. When sz is [], the upper bounds of v do not change.

If size is not specified, sz takes the default dimension of v.
Example: coder.typeof(0,[5,6]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

variable_dims — Variable or fixed dimension
row vector of logical values

Logical vector that specifies whether each dimension is variable size (true) or fixed size (false). For a
cell array, if the elements have different classes, you cannot specify variable-size dimensions.

If you do not specify the variable_dims input parameter, the bounded dimensions of the type are
fixed.

 coder.typeof

4-193

A scalar variable_dims applies to all dimensions. However, if variable_dims is 1, the size of a
singleton dimension remains fixed.
Example: coder.typeof(0,[2,3,4],[1 0 1]);
Data Types: logical

type_obj — Type object
coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type_obj = coder.typeof(ones(5,6));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Output Arguments
type_obj — Type object
coder.Type object

coder.Type object to represent the type of v for code generation.
Example: type_obj = coder.typeof(ones(5,6));
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Limitations
• For sparse matrices, coder.typeof drops upper bounds for variable-size dimensions.
• For representing GPU arrays, only bounded numeric and logical base types are supported. Scalar

GPU arrays, structures, cell-arrays, classes, enumerated types, character, half-precision and fixed-
point data types are not supported.

• When using coder.typeof to represent GPU arrays, the memory allocation (malloc) mode
property of the GPU code configuration object must be set to be 'discrete'.

Tips
• coder.typeof fixes the size of a singleton dimension unless the variable_dims argument

explicitly specifies that the singleton dimension has a variable size.

For example, the following code specifies a 1-by-:10 double. The first dimension (the singleton
dimension) has a fixed size. The second dimension has a variable size.

t = coder.typeof(5,[1 10],1)

By contrast, this code specifies a :1-by-:10 double. Both dimensions have a variable size.

t = coder.typeof(5,[1 10],[1 1])

4 Functions

4-194

Note For a MATLAB Function block, singleton dimensions of input or output signals cannot have
a variable size.

• If you are already specifying the type of an input variable by using a type function, do not use
coder.typeof unless you also want to specify the size. For instance, instead of
coder.typeof(single(0)), use the syntax single(0).

• For cell array types, coder.typeof determines whether the cell array type is homogeneous or
heterogeneous.

If the cell array elements have the same class and size, coder.typeof returns a homogeneous
cell array type.

If the elements have different classes, coder.typeof returns a heterogeneous cell array type.

For some cell arrays, classification as homogeneous or heterogeneous is ambiguous. For example,
the type for {1 [2 3]} can be a 1x2 heterogeneous type where the first element is double and the
second element is 1x2 double. The type can also be a 1x3 homogeneous type in which the
elements have class double and size 1x:2. For these ambiguous cases, coder.typeof uses
heuristics to classify the type as homogeneous or heterogeneous. If you want a different
classification, use the coder.CellType makeHomogeneous or makeHeterogeneous methods to
make a type with the classification that you want. The makeHomogeneous method makes a
homogeneous copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a
type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as heterogeneous and homogeneous. You cannot later use one of these methods to create a copy
that has a different classification.

• During code generation with GPU array types, if one input to the entry-point function is of the
GPU array type, then the output variables are all GPU array types, provided they are supported
for GPU code generation. For example. if the entry-point function returns a struct and because
struct is not supported, the generated code returns a CPU output. However, if a supported
matrix type is returned, then the generated code returns a GPU output.

See Also
coder.ArrayType | coder.CellType | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
fiaccel

Topics
“Define Input Properties by Example at the Command Line”
“Specify Cell Array Inputs at the Command Line”
“Specify Objects as Inputs”
“Define String Scalar Inputs”
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2011a

 coder.typeof

4-195

coder.unroll
Unroll for-loop by making a copy of the loop body for each loop iteration

Syntax
coder.unroll()
coder.unroll(flag)

Description
coder.unroll() unrolls a for-loop. The coder.unroll call must be on a line by itself immediately
preceding the for-loop that it unrolls.

Instead of producing a for-loop in the generated code, loop unrolling produces a copy of the for-
loop body for each loop iteration. In each iteration, the loop index becomes constant. To unroll a loop,
the code generator must be able to determine the bounds of the for-loop.

For small, tight loops, unrolling can improve performance. However, for large loops, unrolling can
increase code generation time significantly and generate inefficient code.

coder.unroll is ignored outside of code generation.

coder.unroll(flag) unrolls a for-loop if flag is true. flag is evaluated at code generation
time. The coder.unroll call must be on a line by itself immediately preceding the for-loop that it
unrolls.

Examples
Unroll a for-loop

To produce copies of a for-loop body in the generated code, use coder.unroll.

In one file, write the entry-point function call_getrand and a local function getrand. getrand
unrolls a for-loop that assigns random numbers to an n-by-1 array. call_getrand calls getrand
with the value 3.

function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)
coder.inline('never');
y = zeros(n, 1);
coder.unroll();
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

4 Functions

4-196

codegen -config:lib call_getrand -report

In the generated code, the code generator produces a copy of the for-loop body for each of the three
loop iterations.

static void getrand(double y[3])
{
 y[0] = b_rand();
 y[1] = b_rand();
 y[2] = b_rand();
}

Control for-loop Unrolling with Flag

Control loop unrolling by using coder.unroll with the flag argument.

In one file, write the entry-point function call_getrand_unrollflag and a local function
getrand_unrollflag. When the number of loop iterations is less than 10, getrand_unrollflag
unrolls the for-loop. call_getrand calls getrand with the value 50.

function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
coder.unroll(unrollflag)
for i = 1:n
 y(i) = rand();
end
end

Generate a static library.

codegen -config:lib call_getrand_unrollflag -report

The number of iterations is not less than 10. Therefore, the code generator does not unroll the for-
loop. It produces a for-loop in the generated code.

static void getrand_unrollflag(double y[50])
{
 int i;
 for (i = 0; i < 50; i++) {
 y[i] = b_rand();
 }
}

Use Legacy Syntax to Unroll for-Loop

function z = call_getrand
%#codegen
z = getrand(3);
end

function y = getrand(n)

 coder.unroll

4-197

coder.inline('never');
y = zeros(n, 1);
for i = coder.unroll(1:n)
 y(i) = rand();
end
end

Use Legacy Syntax to Control for-Loop Unrolling

function z = call_getrand_unrollflag
%#codegen
z = getrand_unrollflag(50);
end

function y = getrand_unrollflag(n)
coder.inline('never');
unrollflag = n < 10;
y = zeros(n, 1);
for i = coder.unroll(1:n, unrollflag)
 y(i) = rand();
end
end

Input Arguments
flag — Indicates whether to unroll the for-loop
true (default) | false

When flag is true, the code generator unrolls the for-loop. When flag is false, the code
generator produces a for-loop in the generated code. flag is evaluated at code generation time.

Tips
• Sometimes, the code generator unrolls a for-loop even though you do not use coder.unroll.

For example, if a for-loop indexes into a heterogeneous cell array or into varargin or
varargout, the code generator unrolls the loop. By unrolling the loop, the code generator can
determine the value of the index for each loop iteration. The code generator uses heuristics to
determine when to unroll a for-loop. If the heuristics fail to identify that unrolling is warranted,
or if the number of loop iterations exceeds a limit, code generation fails. In these cases, you can
force loop unrolling by using coder.unroll. See “Nonconstant Index into varargin or varargout
in a for-Loop”.

See Also
coder.inline

Topics
“Nonconstant Index into varargin or varargout in a for-Loop”

Introduced in R2011a

4 Functions

4-198

coder.varsize
Package: coder

Declare variable-size data

Syntax
coder.varsize(varName1,...,varNameN)
coder.varsize(varName1,...,varNameN,ubounds)
coder.varsize(varName1,...,varNameN,ubounds,dims)

Description
coder.varsize(varName1,...,varNameN) declares that the variables named
varName1,...,varNameN have a variable size. The declaration instructs the code generator to
allow the variables to change size during execution of the generated code. With this syntax, you do
not specify the upper bounds of the dimensions of the variables or which dimensions can change size.
The code generator computes the upper bounds. All dimensions, except singleton dimensions on page
4-204, are allowed to change size.

Use coder.varsize according to these restrictions and guidelines:

• Use coder.varsize inside a MATLAB function intended for code generation.
• The coder.varsize declaration must precede the first use of a variable. For example:

...
x = 1;
coder.varsize('x');
disp(size(x));
...

• Use coder.varsize to declare that an output argument has a variable size or to address size
mismatch errors. Otherwise, to define variable-size data, use the methods described in “Define
Variable-Size Data for Code Generation”.

Note For MATLAB Function blocks, to declare variable-size input or output signals, use the Ports and
Data Manager. See “Declare Variable-Size Inputs and Outputs”. If you provide upper bounds in a
coder.varsize declaration, the upper bounds must match the upper bounds in the Ports and Data
Manager.

For more restrictions and guidelines, see “Limitations” on page 4-202 and “Tips” on page 4-204.

coder.varsize(varName1,...,varNameN,ubounds) also specifies an upper bound for each
dimension of the variables. All variables must have the same number of dimensions. All dimensions,
except singleton dimensions on page 4-204, are allowed to change size.

coder.varsize(varName1,...,varNameN,ubounds,dims) also specifies an upper bound for
each dimension of the variables and whether each dimension has a fixed size or a variable size. If a
dimension has a fixed size, then the corresponding ubound element specifies the fixed size of the
dimension. All variables have the same fixed-size dimensions and the same variable-size dimensions.

 coder.varsize

4-199

Examples

Address Size Mismatch Error by Using coder.varsize

After a variable is used (read), changing the size of the variable can cause a size mismatch error. Use
coder.varsize to specify that the size of the variable can change.

Code generation for the following function produces a size mismatch error because x = 1:10
changes the size of the second dimension of x after the line y = size(x) that uses x.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
y = size(x);
if n > 10
 x = 1:10;
end

To declare that x can change size, use coder.varsize.

function [x,y] = usevarsize(n)
%#codegen
x = 1;
coder.varsize('x');
y = size(x);
if n > 10
 x = 1:10;
end

If you remove the line y = size(x), you no longer need the coder.varsize declaration because x
is not used before its size changes.

Declare Variable-Size Array with Upper Bounds

Specify that A is a row vector whose second dimension has a variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[1 20]);
...
end

When you do not provide dims, all dimensions, except singleton dimensions, have a variable size.

Declare Variable-Size Array with a Mix of Fixed and Variable Dimensions

Specify that A is an array whose first dimension has a fixed size of three and whose second dimension
has a variable size with an upper bound of 20.

function fcn()
...
coder.varsize('A',[3 20], [0 1]);

4 Functions

4-200

...
end

Declare Variable-Size Structure Fields

In this function, the statement coder.varsize('data.values') declares that the field values
inside each element of data has a variable size.

function y = varsize_field()
%#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data.values');

for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end

Declare Variable-Size Cell Array

Specify that cell array C has a fixed-size first dimension and variable-size second dimension with an
upper bound of three. The coder.varsize declaration must precede the first use of C.

...
C = {1 [1 2]};
coder.varsize('C', [1 3], [0 1]);
y = C{1};
...
end

Without the coder.varsize declaration, C is a heterogeneous cell array whose elements have the
same class and different sizes. With the coder.varsize declaration, C is a homogeneous cell array
whose elements have the same class and maximum size. The first dimension of each element is fixed
at 1. The second dimension of each element has a variable size with an upper bound of 3.

Declare That a Cell Array Has Variable-Size Elements

Specify that the elements of cell array C are vectors with a fixed-size first dimension and variable-size
second dimension with an upper bound of 5.

...
C = {1 2 3};
coder.varsize('C{:}', [1 5], [0 1]);

 coder.varsize

4-201

C = {1, 1:5, 2:3};
...

Input Arguments
varName1,...,varNameN — Names of variables to declare as having a variable size
character vectors | string scalars

Names of variables to declare as having a variable size, specified as one or more character vectors or
string scalars.
Example: coder.varsize('x','y')

ubounds — Upper bounds for array dimensions
[] (default) | vector of integer constants

Upper bounds for array dimensions, specified as a vector of integer constants.

When you do not specify ubounds, the code generator computes the upper bound for each variable.
If the ubounds element corresponds to a fixed-size dimension, the value is the fixed size of the
dimension.
Example: coder.varsize('x','y',[1 2])

dims — Indication of whether each dimension has a fixed size or a variable size
logical vector

Indication of whether each dimension has a fixed size or a variable size, specified as a logical vector.
Dimensions that correspond to 0 or false in dims have a fixed size. Dimensions that correspond to 1
or true have a variable size.

When you do not specify dims, the dimensions have a variable size, except for the singleton
dimensions.
Example: coder.varsize('x','y',[1 2], [0 1])

Limitations
• The coder.varsize declaration instructs the code generator to allow the size of a variable to

change. It does not change the size of the variable. Consider this code:

...
x = 7;
coder.varsize('x', [1,5]);
disp(size(x));
...

After the coder.varsize declaration, x is still a 1-by-1 array. You cannot assign a value to an
element beyond the current size of x. For example, this code produces a run-time error because
the index 3 exceeds the dimensions of x.

...
x = 7;
coder.varsize('x', [1,5]);
x(3) = 1;
...

4 Functions

4-202

• coder.varsize is not supported for a function input argument. Instead:

• If the function is an entry-point function, specify that an input argument has a variable size by
using coder.typeof at the command line. Alternatively, specify that an entry-point function
input argument has a variable size by using the Define Input Types step of the app.

• If the function is not an entry-point function, use coder.varsize in the calling function with
the variable that is the input to the called function.

• For sparse matrices, coder.varsize drops upper bounds for variable-size dimensions.
• Limitations for using coder.varsize with cell arrays:

• A cell array can have a variable size only if it is homogeneous. When you use coder.varsize
with a heterogeneous cell array, the code generator tries to make the cell array homogeneous.
The code generator tries to find a class and maximum size that apply to all elements of the cell
array. For example, consider the cell array c = {1, [2 3]}. Both elements can be
represented by a double type whose first dimension has a fixed size of 1 and whose second
dimension has a variable size with an upper bound of 2. If the code generator cannot find a
common class and a maximum size, code generation fails. For example, consider the cell array
c = {'a',[2 3]}. The code generator cannot find a class that can represent both elements
because the first element is char and the second element is double.

• If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize
to specify that the cell array has a variable size. For example, this code causes a code
generation error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

...
x = cell(1,3);
coder.varsize('x',[1 5])
...

You can use coder.varsize with a cell array that you define by using curly braces. For
example:

...
x = {1 2 3};
coder.varsize('x',[1 5])
...

• To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
end

See “Definition of Variable-Size Cell Array by Using cell”.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
coder.varsize('x',[1,20]);

 coder.varsize

4-203

end
end

• coder.varsize is not supported for:

• Global variables
• MATLAB classes or class properties
• String scalars

More About
Singleton Dimension

Dimension for which size(A,dim) = 1.

Tips
• In a code generation report or a MATLAB Function report, a colon (:) indicates that a dimension

has a variable size. For example, a size of 1x:2 indicates that the first dimension has a fixed size
of one and the second dimension has a variable size with an upper bound of two.

• If you use coder.varsize to specify that the upper bound of a dimension is 1, by default, the
dimension has a fixed size of 1. To specify that the dimension can be 0 (empty array) or 1, set the
corresponding element of the dims argument to true. For example, this code specifies that the
first dimension of x has a fixed size of 1 and the other dimensions have a variable size of 5.

coder.varsize('x',[1,5,5])

In contrast, this code specifies that the first dimension of x has an upper bound of 1 and has a
variable size (can be 0 or 1).

coder.varsize('x',[1,5,5],[1,1,1])

Note For a MATLAB Function block, you cannot specify that an input or output signal with size 1
has a variable size.

• If you use input variables or the result of a computation using input variables to specify the size of
an array, it is declared as variable-size in the generated code. Do not re-use coder.varsize on
the array, unless you also want to specify an upper bound for its size.

• If you do not specify upper bounds with a coder.varsize declaration and the code generator is
unable to determine the upper bounds, the generated code uses dynamic memory allocation.
Dynamic memory allocation can reduce the speed of generated code. To avoid dynamic memory
allocation, specify the upper bounds by providing the ubounds argument.

See Also
coder.typeof

Topics
“Code Generation for Variable-Size Arrays”
“Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

Introduced in R2011a

4 Functions

4-204

colon, :
Create vectors, array subscripting

Syntax
y = j:k
y = j:i:k

Description
y = j:k returns a regularly-spaced vector, [j, j+1 ,..., k]. j:k is empty when j > k.

At least one of the colon operands must be a fi object. All colon operands must have integer values.
All the fixed-point operands must be binary-point scaled. Slope-bias scaling is not supported. If any of
the operands is complex, the colon function generates a warning and uses only the real part of the
operands.

y = colon(j,k) is the same as y = j:k.

y = j:i:k returns a regularly-spaced vector, [j,j+i,j+2i, ...,j+m*i], where m = fix((k-
j)/i). y = j:i:k returns an empty matrix wheni == 0, i > 0 and j > k, or i < 0 and j < k.

Examples

Use fi as a Colon Operator

When you use fi as a colon operator, all colon operands must have integer values.

a = fi(1,0,3,0);
b = fi(2,0,8,0);
c = fi(12,0,8,0);
x = a:b:c

x=1×6 object
 1 3 5 7 9 11

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

Because all the input operands are unsigned, x is unsigned and the word length is 8. The fraction
length of the resulting vector is always 0.

Use the colon Operator With Signed and Unsigned Operands
a= fi(int8(-1));
b = uint8(255);

 colon, :

4-205

c = a:b;
len = c.WordLength

len = 9

signedness = c.Signedness

signedness =
'Signed'

The word length of c requires an additional bit to handle the intersection of the ranges of int8 and
uint8. The data type of c is signed because the operand a is signed.

Create a Vector of Decreasing Values

If the beginning and ending operands are unsigned, the increment operand can be negative.

x = fi(4,false):-1:1

x=1×4 object
 4 3 2 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 0

Use the colon Operator With Floating-Point and fi Operands

If any of the operands is floating-point, the output has the same word length and signedness as the fi
operand

x = fi(1):10

x=1×10 object
 1 2 3 4 5 6 7 8 9 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

x = fi(1):10 is equivalent to fi(1:10, true, 16, 0) so x is signed and its word length is 16
bits.

Rewrite Code That Uses Non-Integer Operands

If your code uses non-integer operands, rewrite the colon expression so that the operands are
integers.

4 Functions

4-206

The following code does not work because the colon operands are not integer values.

Fs = fi(100);
n = 1000;
t = (0:1/Fs:(n/Fs - 1/Fs));

Rewrite the colon expression to use integer operands.

Fs = fi(100);
n = 1000;
t = (0:(n-1))/Fs;

All Colon Operands Must Be in the Range of the Data Type

If the value of any of the colon operands is outside the range of the data type used in the colon
expression, MATLAB generates an error.

 y = fi(1,true,8,0):256

MATLAB generates an error because 256 is outside the range of fi(1,true, 8,0). This behavior
matches the behavior for built-in integers. For example, y = int8(1):256 generates the same
error.

Input Arguments
j — Beginning operand
real scalar

Beginning operand, specified as a real scalar integer-valued fi object or built-in numeric type.

If you specify non-scalar arrays, MATLAB interprets j:i:k as j(1):i(1):k(1).

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

i — Increment
1 (default) | real scalar

Increment, specified as a real scalar integer-valued fi object or built-in numeric type. Even if the
beginning and end operands, j and k, are both unsigned, the increment operand i can be negative.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

k — Ending operand
real scalar

Ending operand, specified as a real scalar integer-valued fi object or built-in numeric type.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

 colon, :

4-207

Output Arguments
y — Regularly-spaced vector
real vector

Fixed-Point Designer determines the data type of the y using the following rules:

• The data type covers the union of the ranges of the fixed-point types of the input operands.
• If either the beginning or ending operand is signed, the resulting data type is signed. Otherwise,

the resulting data type is unsigned.
• The word length of y is the smallest value such that the fraction length is 0 and the real-world

value of the least-significant bit is 1.
• If any of the operands is floating-point, the word length and signedness of y is derived from the fi

operand.
• If any of the operands is a scaled double, y is a scaled double.
• The fimath of y is the same as the fimath of the input operands.
• If all the fi objects are of data type double, the data type of y is double. If all the fi objects are

of data type single, the data type of y is single. If there are both double and single inputs,
and no fixed-point inputs, the output data type is single.

See Also
colon | fi

Introduced in R2013b

4 Functions

4-208

complex
Construct complex fi object from real and imaginary parts

Syntax
c = complex(a,b)
c = complex(x)

Description
c = complex(a,b) creates a complex output, c, from two real inputs, such that c = a + bi.

When b is all zero, c is complex with an all-zero imaginary part. This is in contrast to the addition of a
+ 0i, which returns a strictly real result.

c = complex(x) returns the complex equivalent of x, such that isreal(c) returns logical 0
(false).

• If x is real, then c is x + 0i.
• If x is complex, then c is identical to x.

Examples

Complex Scalar from Two Real Scalars

Use the complex function to create the complex scalar, 3 + 4i.

a = fi(3,1,16,12);
b = fi(4,0,8);
c = complex(a,b)

c =

 3.0000 + 4.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

The output, c, has the same numerictype and fimath properties as the input fi object, a.

Complex Vector from One Real Vector

Create a complex fi vector with a zero imaginary part.

x = fi([1;2;3;4]);
c = complex(x)

 complex

4-209

c =

 1.0000 + 0.0000i
 2.0000 + 0.0000i
 3.0000 + 0.0000i
 4.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Verify that c is complex.

isreal(c)

ans =

 logical

 0

Input Arguments
a — Real component
scalar | vector | matrix | multidimensional array

Real component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of a must match the size of b, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.
Data Types: fi

b — Imaginary component
scalar | vector | matrix | multidimensional array

Imaginary component, specified as a fi scalar, vector, matrix, or multidimensional array.

The size of b must match the size of a, unless one is a scalar. If either a or b is a scalar, MATLAB
expands the scalar to match the size of the other input.
Data Types: fi

x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a fi scalar, vector, matrix, or multidimensional array.
Data Types: fi

Output Arguments
c — Complex array
scalar | vector | matrix | multidimensional array

Complex array, returned as a fi scalar, vector, matrix, or multidimensional array.

4 Functions

4-210

The size of c is the same as the input arguments.

The output fi object, c, has the same numerictype and fimath properties as the input fi object,
a.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | numerictype

Introduced before R2006a

 complex

4-211

conj
Complex conjugate of fi object

Syntax
conj(a)

Description
conj(a) is the complex conjugate of fi object a.

When a is complex,

conj(a) = real(a) − i × imag(a)

The numerictype and fimath properties associated with the input a are applied to the output.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
complex

Introduced before R2006a

4 Functions

4-212

conv
Convolution and polynomial multiplication of fi objects

Syntax
c = conv(a,b)
c = conv(a,b,shape)

Description
c = conv(a,b) returns the convolution of input vectors a and b, at least one of which must be a fi
object.

c = conv(a,b,shape) returns a subsection of the convolution, as specified by shape.

Examples

Convolution of 22-Sample Sequence with 16-Tap FIR Filter

Find the convolution of a 22-sample sequence with a 16-tap FIR filter.

x is a 22-sample sequence of signed values with a word length of 16 bits and a fraction length of 15
bits. h is the 16-tap FIR filter.

u = (pi/4)*[1 1 1 -1 -1 -1 1 -1 -1 1 -1];
x = fi(kron(u,[1 1]));
h = firls(15, [0 .1 .2 .5]*2, [1 1 0 0]);

Because x is a fi object, you do not need to cast h into a fi object before performing the convolution
operation. The conv function does this automatically using best-precision scaling.

Use the conv function to convolve the two vectors.

y = conv(x,h);

The operation results in a signed fi object y with a word length of 36 bits and a fraction length of 31
bits. The default fimath properties associated with the inputs determine the numerictype of the
output. The output does not have a local fimath.

Central Part of Convolution of Two fi Vectors

Create two fi vectors. Find the central part of the convolution of a and b that is the same size as a.

a = fi([-1 2 3 -2 0 1 2]);
b = fi([2 4 -1 1]);
c = conv(a,b,'same')

c =

 conv

4-213

 15 5 -9 7 6 7 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 34
 FractionLength: 25

c has a length of 7. The full convolution would be of length length(a)+length(b)-1, which in this
example would be 10.

Input Arguments
a,b — Input vectors
vectors

Input vectors, specified as either row or column vectors.

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

shape — Subset of convolution
'full' (default) | 'same' | 'valid'

Subset of convolution, specified as one of these values:

• 'full' — Returns the full convolution. This option is the default shape.
• 'same' — Returns the central part of the convolution that is the same size as input vector a.
• 'valid' — Returns only those parts of the convolution that the function computes without zero-

padded edges. Using this option, the length of output vector c is max(length(a)-
max(0,length(b)-1),0).

Data Types: char

More About
Convolution

The convolution of two vectors, u and v, represents the area of overlap under the points as v slides
across u. Algebraically, convolution is the same operation as multiplying polynomials whose
coefficients are the elements of u and v.

Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element
is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j
= max(1,k+1-n):1:min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)

4 Functions

4-214

w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithms
The fimath properties associated with the inputs determine the numerictype properties of output
fi object c:

• If either a or b has a local fimath object, conv uses that fimath object to compute intermediate
quantities and determine the numerictype properties of c.

• If neither a nor b have an attached fimath, conv uses the default fimath to compute
intermediate quantities and determine the numerictype properties of c.

If either input is a built-in data type, conv casts it into a fi object using best-precision rules before
the performing the convolution operation.

The output fi object c always uses the default fimath.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.

• For variable-sized signals, you might see different results between generated code and MATLAB.

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

See Also
conv

Introduced in R2009b

 conv

4-215

convergent
Round toward nearest integer with ties rounding to nearest even integer

Syntax
y = convergent(a)
y = convergent(x)

Description
y = convergent(a) rounds fi object a to the nearest integer. In the case of a tie, convergent(a)
rounds to the nearest even integer.

y = convergent(x) rounds the elements of x to the nearest integer. In the case of a tie,
convergent(x) rounds to the nearest even integer.

Examples

Use Convergent Rounding on Signed fi Object

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = convergent(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the convergent function affects the numerictype
properties of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

4 Functions

4-216

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

y = convergent(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y=8×4 object
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

 convergent

4-217

convergent does not support fi objects with nontrivial slope and bias scaling. Slope and bias
scaling is trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

x — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

For complex inputs, the real and imaginary parts are rounded independently.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, or double, the numerictype of y is the same as

that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | fix | floor | nearest | round

Topics
“Precision and Range”

Introduced before R2006a

4 Functions

4-218

convertToSingle
Convert double-precision MATLAB code to single-precision MATLAB code

Syntax
convertTosingle options fcn_1, ..., fcn_n
convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n

Description
convertTosingle options fcn_1, ..., fcn_n generates single-precision MATLAB code from
the specified function or functions. When you use this syntax, you must provide a test file that
convertToSingle can use to determine the properties of the input parameters. To specify the test
file, use coder.config('single') to create a coder.SingleConfig object. Specify the
TestBenchName property.

convertTosingle options fcn_1, -args args_1 ,..., fcn_n -args args_n specifies
the properties of the input arguments.

Examples

Convert to Single Precision and Validate Using a Test File

Generate single-precision code from a double-precision function myfun.m. Specify a test file for
determining the argument properties and for verification of the converted types. Plot the error
between the double-precision and single-precision values.

scfg = coder.config('single');
scfg.TestBenchName = 'myfun_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfun

Convert Multiple Functions to Single Precision with the Default Configuration

Convert myfun1.m and myfun2.m to single precision. Specify that myfun1 has a double scalar
argument and myfun2 has a 2x3 double argument.

convertToSingle -config cfg myfun1 -args {0} myfun2 -args {zeros(2, 3)}

Specify Input Argument Properties

Generate single-precision code from a double-precision function, myfun.m, whose first argument is
double scalar and whose second argument is 2x3 double.

 convertToSingle

4-219

 convertToSingle myfun -args {0, zeros(2, 3)}

Input Arguments
fcn — Function name
character vector

MATLAB function from which to generate single-precision code.

args — Argument properties
cell array of types or example values.

Definition of the size, class, and complexity of the input arguments specified as a cell array of types or
example values. To create a type, use coder.typeof.

options — options for single-precision conversion
-config | -globals

Specify one of the following single-conversion options.

-config config_object Specify the configuration object to use for
conversion of double-precision MATLAB code to
single-precision MATLAB code. To create the
configuration object, use

coder.config('single');

If you do not use this option, the conversion uses
a default configuration. When you omit -config,
to specify the properties of the input arguments,
use -args.

4 Functions

4-220

-globals global_values Specify names and initial values for global
variables in MATLAB files.

global_values is a cell array of global variable
names and initial values. The format of
global_values is:

{g1, init1, g2, init2, ..., gn, initn}

gn is the name of a global variable. initn is the
initial value. For example:

-globals {'g', 5}

Alternatively, use this format:

-globals {global_var, {type, initial_value}}

type is a type object. To create the type object,
use coder.typeof.

If you do not provide initial values for global
variables using the -globals option,
convertToSingle checks for the variable in the
MATLAB global workspace. If you do not supply
an initial value, convertToSingle generates an
error.

See Also
coder.SingleConfig | coder.config

Topics
“Generate Single-Precision MATLAB Code”

Introduced in R2015b

 convertToSingle

4-221

copyobj
Make independent copy of quantizer object

Syntax
q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description
q1 = copyobj(q) makes a copy of quantizer object q and returns it in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb into q2, and so on.

Using copyobj to copy a quantizer object is not the same as using the command syntax q1 = q to
copy a quantizer object. quantizer objects have memory (their read-only properties). When you
use copyobj, the resulting copy is independent of the original item; it does not share the original
object's memory, such as the values of the properties min, max, noverflows, or noperations.
Using q1 = q creates a new object that is an alias for the original and shares the original object's
memory, and thus its property values.

Examples
q = quantizer([8 7]);
q1 = copyobj(q)

See Also
get | quantizer | set

Introduced before R2006a

4 Functions

4-222

cordicabs
CORDIC-based absolute value

Syntax
r = cordicabs(c)
r = cordicabs(c,niters)
r = cordicabs(c,niters,'ScaleOutput',b)
r = cordicabs(c,'ScaleOutput',b)

Description
r = cordicabs(c) returns the magnitude of the complex elements of C.

r = cordicabs(c,niters) performs niters iterations of the algorithm.

r = cordicabs(c,niters,'ScaleOutput',b) specifies both the number of iterations and,
depending on the Boolean value of b, whether to scale the output by the inverse CORDIC gain value.

r = cordicabs(c,'ScaleOutput',b) scales the output depending on the Boolean value of b.

Input Arguments
c

c is a vector of complex values.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

 cordicabs

4-223

Output Arguments
r

r contains the magnitude values of the complex input values. If the inputs are fixed-point values, r is
also fixed point (and is always signed, with binary point scaling). All input values must have the same
data type. If the inputs are signed, then the word length of r is the input word length + 2. If the
inputs are unsigned, then the word length of r is the input word length + 3. The fraction length of r
is always the same as the fraction length of the inputs.

Examples
Compare cordicabs and abs of double values.

 dblValues = complex(rand(5,4),rand(5,4));
 r_dbl_ref = abs(dblValues)
 r_dbl_cdc = cordicabs(dblValues)

Compute absolute values of fixed-point inputs.

 fxpValues = fi(dblValues);
 r_fxp_cdc = cordicabs(fxpValues)

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4 Functions

4-224

Algorithms
Signal Flow Diagrams

 cordicabs

4-225

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

4 Functions

4-226

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
abs | cordicangle | cordiccart2pol

Introduced in R2011b

 cordicabs

4-227

cordicacos
CORDIC-based approximation of inverse cosine

Syntax
theta = cordicacos(x)
theta = cordicacos(x, niters)

Description
theta = cordicacos(x) returns the inverse cosine of x based on a CORDIC approximation.

theta = cordicacos(x, niters) returns the inverse cosine of x performing niters iterations
of the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Cosine

Compute the inverse cosine of a fixed-point fi object using a CORDIC implementation.

a = fi(-1:.1:1,1,16);
b = cordicacos(a);
plot(a,b);
title('Inverse CORDIC Cosine');

4 Functions

4-228

Compare the output of the cordicacos function and the acos function.

c = acos(double(a));
error = double(b)-c;
plot(a,error);
title('Error');

 cordicacos

4-229

Calculate CORDIC Inverse Cosine with Specified Number of Iterations

Find the inverse cosine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse cosine
with varying numbers of iterations.

a = fi(-1:.1:1, 1, 16);
for i = 5:5:20
 b = cordicacos(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

4 Functions

4-230

Input Arguments
x — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 cordicacos

4-231

Output Arguments
theta — Inverse cosine angle values
scalar | vector | matrix | n-dimensional array

Inverse cosine angle values in rad.

See Also
Functions
cordiccos | cordicsin

Introduced in R2018b

4 Functions

4-232

cordicangle
CORDIC-based phase angle

Syntax
theta = cordicangle(c)
theta = cordicangle(c,niters)

Description
theta = cordicangle(c) returns the phase angles, in radians, of matrix c, which contains
complex elements.

theta = cordicangle(c,niters) performs niters iterations of the algorithm.

Input Arguments
c

Matrix of complex numbers

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Output Arguments
theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point
data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

Examples
Phase angle for double-valued input and for fixed-point-valued input.

dblRandomVals = complex(rand(5,4), rand(5,4));
theta_dbl_ref = angle(dblRandomVals);
theta_dbl_cdc = cordicangle(dblRandomVals)
fxpRandomVals = fi(dblRandomVals);
theta_fxp_cdc = cordicangle(fxpRandomVals)

 cordicangle

4-233

theta_dbl_cdc =

 1.0422 1.0987 1.2536 0.6122
 0.5893 0.8874 0.3580 0.2020
 0.5840 0.2113 0.8933 0.6355
 0.7212 0.2074 0.9820 0.8110
 1.3640 0.3288 1.4434 1.1291

theta_fxp_cdc =

 1.0422 1.0989 1.2534 0.6123
 0.5894 0.8872 0.3579 0.2019
 0.5840 0.2112 0.8931 0.6357
 0.7212 0.2075 0.9819 0.8110
 1.3640 0.3289 1.4434 1.1289

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4 Functions

4-234

Algorithms
Signal Flow Diagrams

 cordicangle

4-235

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

4 Functions

4-236

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
angle | cordicabs | cordicatan2 | cordiccart2pol

Introduced in R2011b

 cordicangle

4-237

cordicasin
CORDIC-based approximation of inverse sine

Syntax
theta = cordicasin(x)
theta = cordicasin(x, niters)

Description
theta = cordicasin(x) returns the inverse sine of x based on a CORDIC approximation.

theta = cordicasin(x, niters) returns the inverse sine of x performing niters iterations of
the CORDIC algorithm.

Examples

Calculate CORDIC Inverse Sine

Compute the inverse Sine of a fixed-point fi object using a CORDIC implementation.

a = fi(-1:.1:1,1,16);
b = cordicasin(a);
plot(a, b);
title('Inverse CORDIC Sine');

4 Functions

4-238

Calculate CORDIC Inverse Sine with Specified Number of Iterations

Find the inverse sine of a fi object using a CORDIC implementation and specify the number of
iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the inverse sine
with varying numbers of iterations.

a = fi(-1:.1:1, 1, 16);
for i = 5:5:20
 b = cordicasin(a,i);
 plot(a,b);
 hold on;
end
legend('5 iterations', '10 iterations', '15 iterations', '20 iterations')

 cordicasin

4-239

Input Arguments
x — Numeric input
scalar | vector | matrix | multidimensional array

Numeric input, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 Functions

4-240

Output Arguments
theta — Inverse sine angle values
scalar | vector | matrix | n-dimensional array

Inverse sine angle values in rad.

See Also
Functions
cordiccos | cordicsin

Introduced in R2018b

 cordicasin

4-241

cordicatan2
CORDIC-based four quadrant inverse tangent

Syntax
theta = cordicatan2(y,x)
theta = cordicatan2(y,x,niters)

Description
theta = cordicatan2(y,x) computes the four quadrant arctangent of y and x using a “CORDIC”
on page 4-243 algorithm approximation.

theta = cordicatan2(y,x,niters) performs niters iterations of the algorithm.

Input Arguments
y,x

y,x are Cartesian coordinates. y and x must be the same size. If they are not the same size, at least
one value must be a scalar value. Both y and x must have the same data type.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of y or x. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results but also increases the expense of the computation and adds
latency.

Output Arguments
theta

theta is the arctangent value, which is in the range [-pi, pi] radians. If y and x are floating-point
numbers, then theta has the same data type as y and x. Otherwise, theta is a fixed-point data type
with the same word length as y and x and with a best-precision fraction length for the [-pi, pi] range.

Examples
Floating-point CORDIC arctangent calculation.

theta_cdat2_float = cordicatan2(0.5,-0.5)

theta_cdat2_float =
 2.3562

4 Functions

4-242

Fixed- point CORDIC arctangent calculation.

theta_cdat2_fixpt = cordicatan2(fi(0.5,1,16,15),fi(-0.5,1,16,15));

theta_cdat2_fixpt =
 2.3562

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

 cordicatan2

4-243

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

4 Functions

4-244

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
atan2 | atan2 | cordiccos | cordicsin

Topics
“Calculate Fixed-Point Arctangent”

Introduced in R2011b

 cordicatan2

4-245

cordiccart2pol
CORDIC-based approximation of Cartesian-to-polar conversion

Syntax
[theta,r] = cordiccart2pol(x,y)
[theta,r] = cordiccart2pol(x,y, niters)
[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b)
[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b)

Description
[theta,r] = cordiccart2pol(x,y) using a CORDIC algorithm approximation, returns the polar
coordinates, angle theta and radius r, of the Cartesian coordinates, x and y.

[theta,r] = cordiccart2pol(x,y, niters) performs niters iterations of the algorithm.

[theta,r] = cordiccart2pol(x,y, niters,'ScaleOutput',b) specifies both the number of
iterations and, depending on the Boolean value of b, whether to scale the r output by the inverse
CORDIC gain value.

[theta,r] = cordiccart2pol(x,y, 'ScaleOutput',b) scales the r output by the inverse
CORDIC gain value, depending on the Boolean value of b.

Input Arguments
x,y

x,y are Cartesian coordinates. x and y must be the same size. If they are not the same size, at least
one value must be a scalar value. Both x and y must have the same data type.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are

4 Functions

4-246

multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
theta

theta contains the polar coordinates angle values, which are in the range [–pi, pi] radians. If x and y
are floating-point, then theta has the same data type as x and y. Otherwise, theta is a fixed-point
data type with the same word length as x and y and with a best-precision fraction length for the [-pi,
pi] range.

r

r contains the polar coordinates radius magnitude values. r is real-valued and can be a scalar value
or have the same dimensions as theta If the inputs x,y are fixed-point values, r is also fixed point
(and is always signed, with binary point scaling). Both x,y input values must have the same data
type. If the inputs are signed, then the word length of r is the input word length + 2. If the inputs are
unsigned, then the word length of r is the input word length + 3. The fraction length of r is always
the same as the fraction length of the x,y inputs.

Examples
Convert fixed-point Cartesian coordinates to polar coordinates.

[thPos,r]=cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(0.5,16,15))

thPos =

 0.5881 0.7854 1.1072 1.5708 2.0344 2.3562 2.5535 2.6780

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

r =

 0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15

[thNeg,r]=...
 cordiccart2pol(sfi([0.75:-0.25:-1.0],16,15),sfi(-0.5,16,15))

thNeg =

 -0.5881 -0.7854 -1.1072 -1.5708 -2.0344 -2.3562 -2.5535 -2.6780

 DataTypeMode: Fixed-point: binary point scaling

 cordiccart2pol

4-247

 Signedness: Signed
 WordLength: 16
 FractionLength: 13

r =

 0.9014 0.7071 0.5591 0.5000 0.5591 0.7071 0.9014 1.1180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 15

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

4 Functions

4-248

CORDIC Vectoring Kernel

The accuracy of the CORDIC kernel depends on the choice of initial values for X, Y, and Z. This
algorithm uses the following initial values:

x0 is initialized to the x input value
y0 is initialized to the y input value
z0 is initialized to 0

 cordiccart2pol

4-249

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cart2pol | cordicatan2 | cordicpol2cart

Introduced in R2011b

4 Functions

4-250

cordiccexp
CORDIC-based approximation of complex exponential

Syntax
y = cordiccexp(theta,niters)

Description
y = cordiccexp(theta,niters) computes cos(theta) + j*sin(theta) using a “CORDIC” on
page 4-252 algorithm approximation. y contains the approximated complex result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

y is the approximated complex result of the cordiccexp function. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength – 2.

Examples
The following example illustrates the effect of the number of iterations on the result of the
cordiccexp approximation.

 cordiccexp

4-251

wrdLn = 8;
theta = fi(pi/2, 1, wrdLn);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 cis = cordiccexp(theta, niters);
 fl = cis.FractionLength;
 x = real(cis);
 y = imag(cis);
 x_dbl = double(x);
 x_err = abs(x_dbl - cos(double(theta)));
 y_dbl = double(y);
 y_err = abs(y_dbl - sin(double(theta)));
 fprintf('%d\t\t%1.4f\t%1.4f\t%1.1f\t\t%1.4f\t%1.4f\t%1.1f\n',...
 niters,y_dbl,y_err,(y_err*pow2(fl)),x_dbl,x_err,(x_err*pow2(fl)));
end
fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs
------ ------- ------ ---- ------- ------ ----
1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4 Functions

4-252

Algorithms
Signal Flow Diagrams

 cordiccexp

4-253

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. The accuracy of
the CORDIC rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm
uses the following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

4 Functions

4-254

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccos | cordicsin | cordicsincos

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

 cordiccexp

4-255

cordiccos
CORDIC-based approximation of cosine

Syntax
y = cordiccos(theta, niters)

Description
y = cordiccos(theta, niters) computes the cosine of theta using a “CORDIC” on page 4-258
algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

y is the CORDIC-based approximation of the cosine of theta. When the input to the function is
floating point, the output data type is the same as the input data type. When the input is fixed point,
the output has the same word length as the input, and a fraction length equal to the WordLength – 2.

Examples

Compare Results of cordiccos and cos Functions

Compare the results produced by various iterations of the cordiccos algorithm to the results of the
double-precision cos function.

% Create 1024 points between [0,2*pi)
stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl,12); % signed, 12-bit fixed-point

4 Functions

4-256

cosThRef = cos(double(thRadFxp)); % reference results

% Use 12-bit quantized inputs and vary the number
% of iterations from 2 to 10.
% Compare the fixed-point CORDIC results to the
% double-precision trig function results.
for niters = 2:2:10
 cdcCosTh = cordiccos(thRadFxp,niters);
 errCdcRef = cosThRef - double(cdcCosTh);
end

figure
hold on
axis([0 2*pi -1.25 1.25]);
 plot(thRadFxp,cosThRef,'b');
 plot(thRadFxp,cdcCosTh,'g');
 plot(thRadFxp,errCdcRef,'r');
 ylabel('cos(\Theta)');
 gca.XTick = 0:pi/2:2*pi;
 gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
 gca.YTick = -1:0.5:1;
 gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
 ref_str = 'Reference: cos(double(\Theta))';
 cdc_str = sprintf('12-bit CORDIC cosine; N = %d',niters);
 err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
 legend(ref_str,cdc_str,err_str);

 cordiccos

4-257

After 10 iterations, the CORDIC algorithm has approximated the cosine of theta to within 0.005187
of the double-precision cosine result.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

4 Functions

4-258

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

 cordiccos

4-259

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordicsin | cordicsincos | cos | sin

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

4 Functions

4-260

cordicpol2cart
CORDIC-based approximation of polar-to-Cartesian conversion

Syntax
[x,y] = cordicpol2cart(theta,r)
[x,y] = cordicpol2cart(theta,r,niters)
[x,y] = cordicpol2cart(theta,r,Name,Value)
[x,y] = cordicpol2cart(theta,r,niters,Name,Value)

Description
[x,y] = cordicpol2cart(theta,r) returns the Cartesian xy coordinates of r* e^(j*theta)
using a CORDIC algorithm approximation.

[x,y] = cordicpol2cart(theta,r,niters) performs niters iterations of the algorithm.

[x,y] = cordicpol2cart(theta,r,Name,Value) scales the output depending on the Boolean
value of b.

[x,y] = cordicpol2cart(theta,r,niters,Name,Value) specifies both the number of
iterations and Name,Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [–2π 2π).

r

r contains the input magnitude values and can be a scalar or have the same dimensions as theta. r
must be real valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of r or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results but also increases the
expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

 cordicpol2cart

4-261

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
[x,y]

[x,y] contains the approximated Cartesian coordinates. When the input r is floating point, the
output [x,y] has the same data type as the input.

When the input r is a signed integer or fixed point data type, the outputs [x,y] are signed fi
objects. These fi objects have word lengths that are two bits larger than that of r. Their fraction
lengths are the same as the fraction length of r.

When the input r is an unsigned integer or fixed point, the outputs [x,y] are signed fi objects.
These fi objects have word lengths are three bits larger than that of r. Their fraction lengths are the
same as the fraction length of r.

Examples
Run the following code, and evaluate the accuracy of the CORDIC-based Polar-to-Cartesian
conversion.

4 Functions

4-262

wrdLn = 16;
theta = fi(pi/3, 1, wrdLn);
u = fi(2.0, 1, wrdLn);

fprintf('\n\nNITERS\tX\t\t ERROR\t LSBs\t\tY\t\t ERROR\t LSBs\n');
fprintf('------\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 [x_ref, y_ref] = pol2cart(double(theta),double(u));
 [x_fi, y_fi] = cordicpol2cart(theta, u, niters);
 x_dbl = double(x_fi);
 y_dbl = double(y_fi);
 x_err = abs(x_dbl - x_ref);
 y_err = abs(y_dbl - y_ref);
 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters,x_dbl,x_err,(x_err * pow2(x_fi.FractionLength)),...
 y_dbl,y_err,(y_err * pow2(y_fi.FractionLength)));
end
fprintf('\n');

NITERS X ERROR LSBs Y ERROR LSBs
------ ------- ------ ---- ------- ------ ----
 1 1.4142 0.4142 3392.8 1.4142 0.3178 2603.8
 2 0.6324 0.3676 3011.2 1.8973 0.1653 1354.2
 3 1.0737 0.0737 603.8 1.6873 0.0448 366.8
 4 0.8561 0.1440 1179.2 1.8074 0.0753 617.2
 5 0.9672 0.0329 269.2 1.7505 0.0185 151.2
 6 1.0214 0.0213 174.8 1.7195 0.0126 102.8
 7 0.9944 0.0056 46.2 1.7351 0.0031 25.2
 8 1.0079 0.0079 64.8 1.7274 0.0046 37.8
 9 1.0011 0.0011 8.8 1.7313 0.0007 5.8
 10 0.9978 0.0022 18.2 1.7333 0.0012 10.2
 11 0.9994 0.0006 5.2 1.7323 0.0003 2.2
 12 1.0002 0.0002 1.8 1.7318 0.0002 1.8
 13 0.9999 0.0002 1.2 1.7321 0.0000 0.2
 14 0.9996 0.0004 3.2 1.7321 0.0000 0.2
 15 0.9998 0.0003 2.2 1.7321 0.0000 0.2

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

 cordicpol2cart

4-263

Algorithms
Signal Flow Diagrams

4 Functions

4-264

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, r and theta.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

 cordicpol2cart

4-265

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordicrotate | cordicsincos | pol2cart

Introduced in R2011a

4 Functions

4-266

cordicrotate
Rotate input using CORDIC-based approximation

Syntax
v = cordicrotate(theta,u)
v = cordicrotate(theta,u,niters)
v = cordicrotate(theta,u,Name,Value)
v = cordicrotate(theta,u,niters,Name,Value)

Description
v = cordicrotate(theta,u) rotates the input u by theta using a CORDIC algorithm
approximation. The function returns the result of u .* e^(j*theta).

v = cordicrotate(theta,u,niters) performs niters iterations of the algorithm.

v = cordicrotate(theta,u,Name,Value) scales the output depending on the Boolean value, b.

v = cordicrotate(theta,u,niters,Name,Value) specifies both the number of iterations and
the Name,Value pair for whether to scale the output.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the
angle values in radians. All values of theta must be in the range [–2π 2π).

u

u can be a signed or unsigned scalar value or have the same dimensions as theta. u can be real or
complex valued.

niters

niters is the number of iterations the CORDIC algorithm performs. This argument is optional. When
specified, niters must be a positive, integer-valued scalar. If you do not specify niters, or if you
specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation, the
maximum number of iterations is the word length of u or one less than the word length of theta,
whichever is smaller. For floating-point operation, the maximum value is 52 for double or 23 for
single. Increasing the number of iterations can produce more accurate results, but it also increases
the expense of the computation and adds latency.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes ('').

 cordicrotate

4-267

ScaleOutput

ScaleOutput is a Boolean value that specifies whether to scale the output by the inverse CORDIC
gain factor. This argument is optional. If you set ScaleOutput to true or 1, the output values are
multiplied by a constant, which incurs extra computations. If you set ScaleOutput to false or 0,
the output is not scaled.

Default: true

Output Arguments
v

v contains the approximated result of the CORDIC rotation algorithm. When the input u is floating
point, the output v has the same data type as the input.

When the input u is a signed integer or fixed point data type, the output v is a signed fi object. This
fi object has a word length that is two bits larger than that of u. Its fraction length is the same as the
fraction length of u.

When the input u is an unsigned integer or fixed point, the output v is a signed fi object. This fi
object has a word length that is three bits larger than that of u. Its fraction length is the same as the
fraction length of u.

Examples
Run the following code, and evaluate the accuracy of the CORDIC-based complex rotation.

wrdLn = 16;
theta = fi(-pi/3, 1, wrdLn);
u = fi(0.25 - 7.1i, 1, wrdLn);
uTeTh = double(u) .* exp(1i * double(theta));

fprintf('\n\nNITERS\tReal\t ERROR\t LSBs\t\tImag\tERROR\tLSBs\n');
fprintf('------\t-------\t ------\t ----\t\t-------\t------\t----\n');
for niters = 1:(wrdLn - 1)
 v_fi = cordicrotate(theta, u, niters);
 v_dbl = double(v_fi);
 x_err = abs(real(v_dbl) - real(uTeTh));
 y_err = abs(imag(v_dbl) - imag(uTeTh));
 fprintf('%d\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n',...
 niters, real(v_dbl),x_err,(x_err * pow2(v_fi.FractionLength)), ...
 imag(v_dbl),y_err, (y_err * pow2(v_fi.FractionLength)));
end
fprintf('\n');

The output table appears as follows:

NITERS Real ERROR LSBs Imag ERROR LSBs
------ ------- ------ ---- ------- ------ ------
1 -4.8438 1.1800 4833.5 -5.1973 1.4306 5859.8
2 -6.6567 0.6329 2592.5 -2.4824 1.2842 5260.2
3 -5.8560 0.1678 687.5 -4.0227 0.2560 1048.8
4 -6.3098 0.2860 1171.5 -3.2649 0.5018 2055.2
5 -6.0935 0.0697 285.5 -3.6528 0.1138 466.2

4 Functions

4-268

6 -5.9766 0.0472 193.5 -3.8413 0.0746 305.8
7 -6.0359 0.0121 49.5 -3.7476 0.0191 78.2
8 -6.0061 0.0177 72.5 -3.7947 0.0280 114.8
9 -6.0210 0.0028 11.5 -3.7710 0.0043 17.8
10 -6.0286 0.0048 19.5 -3.7590 0.0076 31.2
11 -6.0247 0.0009 3.5 -3.7651 0.0015 6.2
12 -6.0227 0.0011 4.5 -3.7683 0.0017 6.8
13 -6.0237 0.0001 0.5 -3.7666 0.0001 0.2
14 -6.0242 0.0004 1.5 -3.7656 0.0010 4.2
15 -6.0239 0.0001 0.5 -3.7661 0.0005 2.2

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

 cordicrotate

4-269

CORDIC Rotation Kernel

X represents the real part, Y represents the imaginary part, and Z represents theta. This algorithm
takes its initial values for X, Y, and Z from the inputs, u and theta.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

4 Functions

4-270

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordicpol2cart

Introduced in R2011a

 cordicrotate

4-271

cordicsin
CORDIC-based approximation of sine

Syntax
y = cordicsin(theta,niters)

Description
y = cordicsin(theta,niters) computes the sine of theta using a “CORDIC” on page 4-274
algorithm approximation.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π).

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

y is the CORDIC-based approximation of the sine of theta. When the input to the function is floating
point, the output data type is the same as the input data type. When the input is fixed point, the
output has the same word length as the input, and a fraction length equal to the WordLength – 2.

Examples

Compare Results of cordicsin and sin Functions

Compare the results produced by various iterations of the cordicsin algorithm to the results of the
double-precision sin function.

% Create 1024 points between [0, 2*pi)
stepSize = pi/512;
thRadDbl = 0:stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed point

4 Functions

4-272

sinThRef = sin(double(thRadFxp)); % reference results

% Use 12-bit quantized inputs and vary the number of iterations
% from 2 to 10.
% Compare the fixed-point cordicsin function results to the
% results of the double-precision sin function.

for niters = 2:2:10
 cdcSinTh = cordicsin(thRadFxp, niters);
 errCdcRef = sinThRef - double(cdcSinTh);
end

figure
hold on
axis([0 2*pi -1.25 1.25])
plot(thRadFxp, sinThRef, 'b');
plot(thRadFxp, cdcSinTh, 'g');
plot(thRadFxp, errCdcRef, 'r');
ylabel('sin(\Theta)');
gca.XTick = 0:pi/2:2*pi;
gca.XTickLabel = {'0','pi/2','pi','3*pi/2','2*pi'};
gca.YTick = -1:0.5:1;
gca.YTickLabel = {'-1.0','-0.5','0','0.5','1.0'};
ref_str = 'Reference: sin(double(\Theta))';
cdc_str = sprintf('12-bit CORDIC sine; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str, cdc_str, err_str);

 cordicsin

4-273

After 10 iterations, the CORDIC algorithm has approximated the sine of theta to within 0.005492 of
the double-precision sine result.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

Algorithms
Signal Flow Diagrams

4 Functions

4-274

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

 cordicsin

4-275

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordiccos | cordicsincos | cos | sin

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

4 Functions

4-276

cordicsincos
CORDIC-based approximation of sine and cosine

Syntax
[y, x] = cordicsincos(theta,niters)

Description
[y, x] = cordicsincos(theta,niters) computes the sine and cosine of theta using a
“CORDIC” on page 4-278 algorithm approximation. y contains the approximated sine result, and x
contains the approximated cosine result.

Input Arguments
theta

theta can be a signed or unsigned scalar, vector, matrix, or N-dimensional array containing the angle
values in radians. All values of theta must be real and in the range [–2π 2π). When theta has a
fixed-point data type, it must be signed.

niters

niters is the number of iterations the CORDIC algorithm performs. This is an optional argument.
When specified, niters must be a positive, integer-valued scalar. If you do not specify niters or if
you specify a value that is too large, the algorithm uses a maximum value. For fixed-point operation,
the maximum number of iterations is one less than the word length of theta. For floating-point
operation, the maximum value is 52 for double or 23 for single. Increasing the number of iterations
can produce more accurate results, but it also increases the expense of the computation and adds
latency.

Output Arguments
y

CORDIC-based approximated sine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength – 2.

x

CORDIC-based approximated cosine of theta. When the input to the function is floating point, the
output data type is the same as the input data type. When the input is fixed point, the output has the
same word length as the input, and a fraction length equal to the WordLength – 2.

Examples
The following example illustrates the effect of the number of iterations on the result of the
cordicsincos approximation.

 cordicsincos

4-277

wrdLn = 8;
theta = fi(pi/2, 1, wrdLn);
fprintf('\n\nNITERS\t\tY (SIN)\t ERROR\t LSBs\t\tX (COS)\t ERROR\t LSBs\n');
fprintf('------\t\t-------\t ------\t ----\t\t-------\t ------\t ----\n');
for niters = 1:(wrdLn - 1)
 [y, x] = cordicsincos(theta, niters);
 y_FL = y.FractionLength;
 y_dbl = double(y);
 x_dbl = double(x);
 y_err = abs(y_dbl - sin(double(theta)));
 x_err = abs(x_dbl - cos(double(theta)));
 fprintf(' %d\t\t%1.4f\t %1.4f\t %1.1f\t\t%1.4f\t %1.4f\t %1.1f\n', ...
 niters, y_dbl,y_err, (y_err * pow2(y_FL)), x_dbl,x_err, ...
 (x_err * pow2(y_FL)));
end
fprintf('\n');

The output table appears as follows:

NITERS Y (SIN) ERROR LSBs X (COS) ERROR LSBs
------ ------- ------ ---- ------- ------ ----
1 0.7031 0.2968 19.0 0.7031 0.7105 45.5
2 0.9375 0.0625 4.0 0.3125 0.3198 20.5
3 0.9844 0.0156 1.0 0.0938 0.1011 6.5
4 0.9844 0.0156 1.0 -0.0156 0.0083 0.5
5 1.0000 0.0000 0.0 0.0312 0.0386 2.5
6 1.0000 0.0000 0.0 0.0000 0.0073 0.5
7 1.0000 0.0000 0.0 0.0156 0.0230 1.5

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

4 Functions

4-278

Algorithms
Signal Flow Diagrams

 cordicsincos

4-279

CORDIC Rotation Kernel

X represents the sine, Y represents the cosine, and Z represents theta. The accuracy of the CORDIC
rotation kernel depends on the choice of initial values for X, Y, and Z. This algorithm uses the
following initial values:

z0 is initialized to the θ input argument value

x0 is initialized to 1
AN

y0 is initialized to 0

4 Functions

4-280

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References

[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic
Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
cordiccexp | cordiccos | cordicsin

Topics
“Calculate Fixed-Point Sine and Cosine”
“Calculate Fixed-Point Arctangent”

Introduced in R2010a

 cordicsincos

4-281

cordicsqrt
CORDIC-based approximation of square root

Syntax
y=cordicsqrt(u)
y=cordicsqrt(u, niters)
y=cordicsqrt(___ , 'ScaleOutput', B)

Description
y=cordicsqrt(u) computes the square root of u using a CORDIC algorithm implementation.

y=cordicsqrt(u, niters) computes the square root of u by performing niters iterations of the
CORDIC algorithm.

y=cordicsqrt(___ , 'ScaleOutput', B) scales the output depending on the Boolean value of
B.

Examples

Calculate the CORDIC Square Root

Find the square root of fi object x using a CORDIC implementation.

x = fi(1.6,1,12);
y = cordicsqrt(x)

y =
 1.2646

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

Because you did not specify niters, the function performs the maximum number of iterations,
x.WordLength - 1.

Compute the difference between the results of the cordicsqrt function and the double-precision
sqrt function.

err = abs(sqrt(double(x))-double(y))

err = 1.0821e-04

Calculate the CORDIC Square Root With a Specified Number of Iterations

Compute the square root of x with three iterations of the CORDIC kernel.

4 Functions

4-282

x = fi(1.6,1,12);
y = cordicsqrt(x,3)

y =
 1.2646

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

Compute the difference between the results of the cordicsqrt function and the double-precision
sqrt function.

err = abs(sqrt(double(x))-double(y))

err = 1.0821e-04

Calculate the CORDIC Square Root Without Scaling the Output

x = fi(1.6,1,12);
y = cordicsqrt(x, 'ScaleOutput', 0)

y =
 1.0479

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 10

The output, y, was not scaled by the inverse CORDIC gain factor.

Compare Results of cordicsqrt and sqrt Functions

Compare the results produced by 10 iterations of the cordicsqrt algorithm to the results of the
double-precision sqrt function.

% Create 500 points between [0, 2)
stepSize = 2/500;
XDbl = 0:stepSize:2;
XFxp = fi(XDbl, 1, 12); % signed, 12-bit fixed-point
sqrtXRef = sqrt(double(XFxp)); % reference results

% Use 12-bit quantized inputs and set the number
% of iterations to 10.
% Compare the fixed-point CORDIC results to the
% double-precision sqrt function results.

niters = 10;
cdcSqrtX = cordicsqrt(XFxp, niters);
errCdcRef = sqrtXRef - double(cdcSqrtX);
figure

 cordicsqrt

4-283

hold on
axis([0 2 -.5 1.5])
plot(XFxp, sqrtXRef, 'b')
plot(XFxp, cdcSqrtX, 'g')
plot(XFxp, errCdcRef, 'r')
ylabel('Sqrt(x)')
gca.XTick = 0:0.25:2;
gca.XTickLabel = {'0','0.25','0.5','0.75','1','1.25','1.5','1.75','2'};
gca.YTick = -.5:.25:1.5;
gca.YTickLabel = {'-0.5','-0.25','0','0.25','0.5','0.75','1','1.25','1.5'};
ref_str = 'Reference: sqrt(double(X))';
cdc_str = sprintf('12-bit CORDIC square root; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str, cdc_str, err_str, 'Location', 'southeast')

Input Arguments
u — Data input array
scalar | vector | matrix | multidimensional array

Data input array, specified as a positive scalar, vector, matrix, or multidimensional array of fixed-point
or built-in data types. When the input array contains values between 0.5 and 2, the algorithm is most
accurate. A pre- and post-normalization process is performed on input values outside of this range.
For more information on this process, see “Pre- and Post-Normalization” on page 4-287.

4 Functions

4-284

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is u.WordLength - 1. For floating-point inputs, the default value of
niters is 52 for double precision; 23 for single precision.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: y= cordicsqrt(x,'ScaleOutput', 0)

ScaleOutput — Whether to scale the output
true (default) | false

Boolean value that specifies whether to scale the output by the inverse CORDIC gain factor. If you set
ScaleOutput to true or 1, the output values are multiplied by a constant, which incurs extra
computations. If you set ScaleOutput to false or 0, the output is not scaled.

Data Types: logical

Output Arguments
y — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array.

More About
CORDIC

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm is one of the most hardware-efficient algorithms available because it requires only iterative
shift-add operations (see References). The CORDIC algorithm eliminates the need for explicit
multipliers. Using CORDIC, you can calculate various functions, such as sine, cosine, arc sine, arc
cosine, arc tangent, and vector magnitude. You can also use this algorithm for divide, square root,
hyperbolic, and logarithmic functions.

Increasing the number of CORDIC iterations can produce more accurate results, but doing so also
increases the expense of the computation and adds latency.

 cordicsqrt

4-285

Algorithms
Signal Flow Diagrams

For further details on the pre- and post-normalization process, see “Pre- and Post-Normalization” on
page 4-287.

4 Functions

4-286

CORDIC Hyperbolic Kernel

X is initialized to u'+.25, and Y is initialized to u'-.25, where u' is the normalized function input.

With repeated iterations of the CORDIC hyperbolic kernel, X approaches AN u′, where AN represents
the CORDIC gain. Y approaches 0.

Pre- and Post-Normalization

For input values outside of the range of [0.5, 2) a pre- and post-normalization process occurs. This
process performs bitshifts on the input array before passing it to the CORDIC kernel. The result is
then shifted back into the correct output range during the post-normalization stage. For more details
on this process see “Overcoming Algorithm Input Range Limitations” in “Compute Square Root Using
CORDIC”.

fimath Propagation Rules

CORDIC functions discard any local fimath attached to the input.

 cordicsqrt

4-287

The CORDIC functions use their own internal fimath when performing calculations:

• OverflowAction—Wrap
• RoundingMethod—Floor

The output has no attached fimath.

References
[1] Volder, JE. “The CORDIC Trigonometric Computing Technique.” IRE Transactions on Electronic

Computers. Vol. EC-8, September 1959, pp. 330–334.

[2] Andraka, R. “A survey of CORDIC algorithm for FPGA based computers.” Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays. Feb. 22–24,
1998, pp. 191–200.

[3] Walther, J.S. “A Unified Algorithm for Elementary Functions.” Hewlett-Packard Company, Palo Alto.
Spring Joint Computer Conference, 1971, pp. 379–386. (from the collection of the Computer
History Museum). www.computer.org/csdl/proceedings/afips/1971/5077/00/50770379.pdf

[4] Schelin, Charles W. “Calculator Function Approximation.” The American Mathematical Monthly.
Vol. 90, No. 5, May 1983, pp. 317–325.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size signals are not supported.
• The number of iterations the CORDIC algorithm performs, niters, must be a constant.

See Also
sqrt

Topics
“Compute Square Root Using CORDIC”

Introduced in R2014a

4 Functions

4-288

cordictanh
CORDIC-based hyperbolic tangent

Syntax
T = cordictanh(theta)
T = cordictanh(theta, niters)

Description
T = cordictanh(theta) returns the hyperbolic tangent of theta.

T = cordictanh(theta, niters) returns the hyperbolic tangent of theta by performing niters
iterations of the CORDIC algorithm.

Examples

Compute CORDIC Hyperbolic Tangent

Find the hyperbolic tangent of fi object theta using a CORDIC implementation with the default
number of iterations.

theta = fi(-2*pi:.1:2*pi-.1);
T_cordic = cordictanh(theta);

Plot the hyperbolic tangent of theta using the tanh function and its CORDIC approximation.

T = tanh(double(theta));
plot(theta, T_cordic);
hold on;
plot(theta, T);
legend('CORDIC approximation of tanh', 'tanh');
xlabel('theta');
ylabel('tanh(theta)');

 cordictanh

4-289

Compute the difference between the results of the cordictanh function and the tanh function.

figure;
err = abs(T - double(T_cordic));
plot(theta, err);
xlabel('theta');
ylabel('error');

4 Functions

4-290

Compute CORDIC Hyperbolic Tangent with Specified Number of Iterations

Find the hyperbolic tangent of fi object theta using a CORDIC implementation and specify the
number of iterations the CORDIC kernel should perform. Plot the CORDIC approximation of the
hyperbolic tangent of theta with varying numbers of iterations.

theta = fi(-2*pi:.1:2*pi-.1);
for niters = 5:10:25
T_cordic = cordictanh(theta, niters);
plot(theta, T_cordic);
hold on;
end
xlabel('theta');
ylabel('tanh(theta)');
legend('5 iterations', '15 iterations', '25 iterations','Location','southeast');

 cordictanh

4-291

Input Arguments
theta — angle values
scalar | vector | matrix | n-dimensional array

Angle values in radians specified as a scalar, vector, matrix, or N-dimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

niters — Number of iterations
scalar

The number of iterations that the CORDIC algorithm performs, specified as a positive, integer-valued
scalar. If you do not specify niters, the algorithm uses a default value. For fixed-point inputs, the
default value of niters is one less than the word length of the input array, theta. For double-
precision inputs, the default value of niters is 52. For single-precision inputs, the default value is
23.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

4 Functions

4-292

Output Arguments
T — Output array
scalar | vector | matrix | n-dimensional array

T is the CORDIC-based approximation of the hyperbolic tangent of theta. When the input to the
function is floating point, the output data type is the same as the input data type. When the input is
fixed point, the output has the same word length as the input, and a fraction length equal to the
WordLength – 2.

See Also
cordicatan2 | cordiccos | cordicsin | tanh

Introduced in R2017b

 cordictanh

4-293

cos
Cosine of fi object

Syntax
y = cos(theta)

Description
y = cos(theta) returns the cosine on page 4-295 of fi input theta using a table-lookup
algorithm.

Input Arguments
theta

theta can be a real-valued, signed or unsigned scalar, vector, matrix, or N-dimensional array
containing the fixed-point angle values in radians. Valid data types of theta are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Output Arguments
y

y is the cosine of theta. y is a signed, fixed-point number in the range [-1,1]. It has a 16-bit word
length and 15-bit fraction length (numerictype(1,16,15)).

Examples
Calculate the cosine of fixed-point input values.

theta = fi([0,pi/4,pi/3,pi/2,(2*pi)/3,(3*pi)/4,pi])

theta =

 0 0.7854 1.0472 1.5708 2.0944 2.3562 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

y = cos(theta)

y =

4 Functions

4-294

 1.0000 0.7072 0.4999 0.0001 -0.4999 -0.7070 -1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

More About
Cosine

The cosine of angle Θ is defined as

cos(θ) = eiθ + e−iθ

2

Algorithms
The cos function computes the cosine of fixed-point input using an 8-bit lookup table as follows:

1 Perform a modulo 2π, so the input is in the range [0,2π) radians.
2 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16

range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearest-

neighbor linear interpolation.

fimath Propagation Rules

The cos function ignores and discards any fimath attached to the input, theta. The output, y, is
always associated with the default fimath.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
angle | atan2 | cordiccos | cordicsin | cos | sin

Topics
“Calculate Fixed-Point Sine and Cosine”

Introduced in R2012a

 cos

4-295

ctranspose
Complex conjugate transpose of fi object

Syntax
ctranspose(a)

Description
This function accepts fi objects as inputs.

ctranspose(a) returns the complex conjugate transpose of fi object a. It is also called for the
syntax a'.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also

Introduced before R2006a

4 Functions

4-296

CustomFloat
Numeric object with a custom floating-point data type

Description
Use a CustomFloat object to define a floating-point numeric data type with specified word length
and mantissa length. Floating-point data types defined by a CustomFloat object adhere to the IEEE
754-2008 standard. For more information on floating-point data types, see “Floating-Point Numbers”.

Creation

Syntax
x = CustomFloat(v)
x = CustomFloat(v, type)
x = CustomFloat(v, WordLength, MantissaLength)
x = CustomFloat(v, WordLength, MantissaLength, 'typecast')
x = CustomFloat(cf)

Description

x = CustomFloat(v) returns a CustomFloat object with value v. The output object has the same
word length, mantissa length, and exponent length as input v.

x = CustomFloat(v, type) returns a CustomFloat object with value v and floating-point type
specified by type.

x = CustomFloat(v, WordLength, MantissaLength) returns a CustomFloat object with the
specified word length and mantissa length.

x = CustomFloat(v, WordLength, MantissaLength, 'typecast') returns a CustomFloat
object with the bit pattern of v and the specified mantissa length. The word length must match the
word length of the input v.

x = CustomFloat(cf) returns a CustomFloat object with value and data type properties of
CustomFloat object cf.

Input Arguments

v — Value of object
scalar | vector | matrix | multi-dimensional array

The value of the CustomFloat object, specified as a scalar, vector, matrix, or multi-dimensional
array.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | fi

 CustomFloat

4-297

type — Floating-point type of object
'double' | 'single' | 'half'

Floating-point data type of CustomFloat object, specified as either 'double', 'single', or
'half'.

The properties of these types are summarized in the following table.

Type Word Length Mantissa Length
double 64 52
single 32 23
half 16 10

Data Types: char

cf — Custom floating-point type
CustomFloat object

Custom floating-point type, specified as a CustomFloat object.

Properties
ExponentBias — Offset value for the exponent
scalar integer

Scalar integer representing the offset value for the exponent.

This property cannot be changed directly, however you can change this property by changing the
WordLength and MantissaLength properties, which influence the ExponentLength property. The
ExponentBias for a floating-point data type is computed through the following equation:

ExponentBias = 2e-1-1 (4-6)

where e represents the ExponentLength.
Data Types: double

ExponentLength — Number of bits representing the exponent
scalar integer

Number of bits representing the exponent. You cannot edit this property directly, however you can
change the exponent length by changing the MantissaLength and WordLength properties.

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation:

WordLength = 1+MantissaLength+ExponentLength (4-7)

Data Types: double

MantissaLength — Number of bits representing the mantissa
scalar integer

Number of bits representing the mantissa, specified as a scalar integer.

4 Functions

4-298

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-8)

Example: custfloat.MantissaLength = 14;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

WordLength — Total number of bits in the data type
scalar integer

Total number of bits in the data type, specified as a scalar integer.

The ExponentLength, MantissaLength, and WordLength properties are related through the
following equation.

WordLength = 1+MantissaLength+ExponentLength (4-9)

Example: custfloat.WordLength = 28;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Object Functions

Math and Arithmetic
abs Absolute value and complex magnitude
ceil Round toward positive infinity
complex Create complex array
conj Complex conjugate
cosh Hyperbolic cosine
exp Exponential
fix Round toward zero
floor Round toward negative infinity
fma Multiply and add using fused multiply add approach
hypot Square root of sum of squares (hypotenuse)
ldivide Left array division
log Natural logarithm
log2 Base 2 logarithm and floating-point number dissection
log10 Common logarithm (base 10)
minus Subtraction
mod Remainder after division (modulo operation)
mtimes Matrix multiplication
ndims Number of array dimensions
plus Addition or append strings
pow10 Base 10 power and scale half-precision numbers
pow2 Base 2 power and scale floating-point numbers
power Element-wise power
rdivide Right array division
real Real part of complex number
rem Remainder after division

 CustomFloat

4-299

round Round to nearest decimal or integer
rsqrt Reciprocal square root
sqrt Square root
tanh Hyperbolic tangent
times Multiplication
uminus Unary minus
uplus Unary plus

Data Types
bin Unsigned binary representation of stored integer of fi object
double Double-precision arrays
fi Construct fixed-point numeric object
int8 8-bit signed integer arrays
int16 16-bit signed integer arrays
int32 32-bit signed integer arrays
int64 64-bit signed integer arrays
isnan Determine which array elements are NaN
isreal Determine whether array uses complex storage
single Single-precision arrays
uint8 8-bit unsigned integer arrays
uint16 16-bit unsigned integer arrays
uint32 32-bit unsigned integer arrays
uint64 64-bit unsigned integer arrays

Relational and Logical Operators
eq Determine equality
ge Determine greater than or equal to
gt Determine greater than
le Determine less than or equal to
lt Determine less than
ne Determine inequality

Array and Matrix Operations
cat Concatenate arrays
ctranspose Complex conjugate transpose
horzcat Horizontal concatenation for heterogeneous arrays
isfinite Determine which array elements are finite
isinf Determine which array elements are infinite
norm Vector and matrix norms
numel Number of array elements
reshape Reshape array
size Array size
transpose Transpose vector or matrix
vertcat Vertical concatenation for heterogeneous arrays

Language Fundamentals
disp Display value of variable

Examples

4 Functions

4-300

Create a CustomFloat Object

This example shows how to create a CustomFloat object.

v = pi;
x = CustomFloat(v)

x =
 3.1416

 Data Type: Floating-point: Double-precision
 WordLength: 64
 MantissaLength: 52
 ExponentLength: 11
 ExponentBias: 1023

Because the input to the CustomFloat constructor was a double, the data type of the CustomFloat
object, x, is also a double. If the value passed in to the CustomFloat function is a single, then the
resulting CustomFloat object will also have a single-precision floating-point data type.

v = single(pi);
x = CustomFloat(v)

x =
 3.1416

 Data Type: Floating-point: Single-precision
 WordLength: 32
 MantissaLength: 23
 ExponentLength: 8
 ExponentBias: 127

Create a Half-Precision CustomFloat Object

To create a CustomFloat object with a specified floating-point data type, specify the data type as the
second argument in the CustomFloat function.

v = pi;
x = CustomFloat(v,'half')

x =
 3.1406

 Data Type: Floating-point: Half-precision
 WordLength: 16
 MantissaLength: 10
 ExponentLength: 5
 ExponentBias: 15

 CustomFloat

4-301

Create a CustomFloat Object with Specified Word Length and Mantissa Length

Specify a word length and a mantissa length in the CustomFloat function.

v = pi;
wl = 16;
ml = 4;
x = CustomFloat(v,wl,ml)

x =
 3.1250

 Data Type: Floating-point: Custom-precision
 WordLength: 16
 MantissaLength: 4
 ExponentLength: 11
 ExponentBias: 1023

Compare the difference between the double-precision value and the value of the CustomFloat object
as you change the mantissa length.

err = zeros(1,12);
for ml = 1:12
 x = CustomFloat(v,wl,ml);
 err(ml) = v-double(x);
end

plot(err);
title('Error: v - double(x)');
ylabel('Error');
xlabel('Mantissa Length');

4 Functions

4-302

Typecast a Value to a New CustomFloat Data Type

Using the 'typecast' input argument, the CustomFloat function creates a CustomFloat object
with the bit pattern of the input value, and the specified word length and mantissa length.

Define a single-precision value. Single-precision floating-point data types have a 32-bit word length
and 23-bit mantissa length. View the binary representation of the single-precision value.

v = single(pi);
bit_pattern = bin(CustomFloat(v))

bit_pattern =
'01000000010010010000111111011011'

Define a CustomFloat object that has the same bit pattern as the input value, but has a different
mantissa length.

x = CustomFloat(v, 32, 20, 'typecast')

x =
 50.1239

 Data Type: Floating-point: Custom-precision
 WordLength: 32

 CustomFloat

4-303

 MantissaLength: 20
 ExponentLength: 11
 ExponentBias: 1023

View the binary representation of the CustomFloat object, and compare it to the bit pattern of the
single-precision input value.

bit_pattern2 = bin(x)

bit_pattern2 =
'01000000010010010000111111011011'

same = strcmp(bit_pattern, bit_pattern2)

same = logical
 1

Limitations
The following functions, which support custom floating-point inputs, do not support complex custom
floating-point inputs.

• ceil
• cosh
• exp
• fix
• floor
• ge
• gt
• hypot
• le
• log
• log10
• log2
• lt
• mod
• pow10
• pow2
• power
• rem
• round
• rsqrt
• sqrt
• tanh

4 Functions

4-304

See Also
double | half | single

Topics
“Floating-Point Numbers”

Introduced in R2020a

 CustomFloat

4-305

DataTypeWorkflow.findDecoupledSubsystems
Get a list of subsystems to replace with an approximation

Syntax
systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)

Description
systemsToApproximate = DataTypeWorkflow.findDecoupledSubsystems(system)returns
a table containing all of the subsystems in the system specified by system created by the Fixed-Point
Tool during the preparation stage of conversion.

When converting a model to fixed point using the Fixed-Point Tool, when you click Prepare, the tool
finds any blocks that are not supported for conversion. When the tool finds these blocks, it isolates
the block by placing it in a subsystem surrounded by Data Type Conversion blocks. After converting
the rest of the system to fixed point, use this function to get a list of all the subsystems you must
replace. You can use the Lookup Table Optimizer to generate a lookup table approximation of the
subsystems containing the unsupported blocks.

Examples

Replace Unsupported Blocks with a Lookup Table Approximation

In this example, you replace a block that is not supported for fixed-point conversion, with a lookup
table approximation.

Open the model.

open_system('ex_fixed_point_workflow_lutapprox')

4 Functions

4-306

The Controller Subsystem in the model uses fixed-point data types, except in the Exp subsystem. This
subsystem was created by the Fixed-Point Tool during the preparation stage of the conversion. In this
example, you use the Lookup Table Optimizer to replace this subsystem with a lookup table
approximation.

 DataTypeWorkflow.findDecoupledSubsystems

4-307

Identify the subsystems that you need to replace using the
DataTypeWorkflow.findDecoupledSubsystems function.

decoupled = DataTypeWorkflow.findDecoupledSubsystems(gcs)

decoupled =

 1x2 table

 ID BlockPath
 __ __

 1 {'ex_fixed_point_workflow_lutapprox/Controller Subsystem/Exp'}

To replace the functions, open the Lookup Table Optimizer. In the Simulink Apps tab, select Lookup
Table Optimizer.

On the Objective page of the Lookup Table Optimizer, select Simulink Block. Click Next.

Under Block Information, copy and paste the path to the decoupled subsystem created by the
Fixed-Point Tool.

4 Functions

4-308

Continue through the steps of the Lookup Table Optimizer to generate the lookup table
approximation.

Input Arguments
system — System containing the decoupled subsystems
character vector

System containing the decoupled subsystems, specified as a character vector.

Output Arguments
systemsToApproximate — Subsystems to approximate with a lookup table
table

 DataTypeWorkflow.findDecoupledSubsystems

4-309

A list of the subsystems decoupled from the model by the Fixed-Point Tool to approximate, returned
as a table.

See Also
DataTypeWorkflow.Converter | Lookup Table Optimizer

Topics
“Convert Floating-Point Model to Fixed Point”
“Use the Fixed-Point Tool to Prepare a System for Conversion”

Introduced in R2019a

4 Functions

4-310

dec
Unsigned decimal representation of stored integer of fi object

Syntax
b = dec(a)

Description
b = dec(a) returns the stored integer of fi object a in unsigned decimal format as a character
vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Unsigned Decimal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a=1×2 object
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the unsigned decimal representation of the stored integers of fi object a.

b = dec(a)

b =
'128 127'

 dec

4-311

Input Arguments
a — Stored integer
fi object

Stored integer, specified as a fi object.
Data Types: fi

See Also
bin | hex | oct | sdec | storedInteger

Introduced before R2006a

4 Functions

4-312

denormalmax
Largest denormalized quantized number for quantizer object

Syntax
x = denormalmax(q)

Description
x = denormalmax(q) is the largest positive denormalized quantized number where q is a
quantizer object. Anything larger than x is a normalized number. Denormalized numbers apply only
to floating-point format. When q represents fixed-point numbers, this function returns eps(q).

Examples
q = quantizer('float',[6 3]);
x = denormalmax(q)

x =

 0.1875

Algorithms
When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also
denormalmin | eps | quantizer

Introduced before R2006a

 denormalmax

4-313

denormalmin
Smallest denormalized quantized number for quantizer object

Syntax
x = denormalmin(q)

Description
x = denormalmin(q) is the smallest positive denormalized quantized number where q is a
quantizer object. Anything smaller than x underflows to zero with respect to the quantizer object
q. Denormalized numbers apply only to floating-point format. When q represents a fixed-point
number, denormalmin returns eps(q).

Examples
q = quantizer('float',[6 3]);
x = denormalmin(q)

x =

 0.0625

Algorithms
When q is a floating-point quantizer object,

x = 2Emin− f

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

x = eps(q) = 2− f

where f is equal to fractionlength(q).

See Also
denormalmax | eps | quantizer

Introduced before R2006a

4 Functions

4-314

divide
Package: embedded

Divide two fi objects

Syntax
c = divide(T,a,b)

Description
c = divide(T,a,b) performs division on the elements of a by the elements of b. The result c has
the numeric type specified by numerictype object T.

Examples

Divide Two fi Objects

This example shows how to control the precision of the divide function.

Create an unsigned fi object with an 80-bit word length and 2^-83 scaling, which puts the leading 1
of the representation into the most significant bit. Initialize the object with value 0.1, and examine
the binary representation.

P = fipref('NumberDisplay', 'bin',...
 'NumericTypeDisplay', 'short',...
 'FimathDisplay', 'none');
a = fi(0.1, 0, 80, 83)

a =
11001100110011001100110011001100110011001100110011010000000000000000000000000000
 numerictype(0,80,83)

Notice that the infinite repeating representation is truncated after 52 bits, because the mantissa of an
IEEE® standard double-precision floating-point number has 52 bits.

Contrast the above to calculating 1/10 in fixed-point arithmetic with the quotient set to the same
numeric type as before.

T = numerictype('Signed', false,...
 'WordLength', 80,...
 'FractionLength', 83);
a = fi(1);
b = fi(10);
c = divide(T, a, b);
c.bin

ans =
'11001100110011001100110011001100110011001100110011001100110011001100110011001101'

 divide

4-315

Notice that when you use the divide function, the quotient is calculated to the full 80 bits,
regardless of the precision of a and b. Thus, the fi object c represents 1/10 more precisely than a
IEEE® standard double-precision floating-point number can.

Input Arguments
T — Numeric type of the output
numerictype object

Numeric type of the output, specified as a numerictype object.

a — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array.

a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the
dimensions of the nonscalar object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a real scalar, vector, matrix, or multidimensional array.

a and b must have the same dimensions unless one is a scalar. If either a or b is scalar, then c has the
dimensions of the nonscalar object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Output Arguments
c — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as a scalar, vector, matrix, or multidimensional array. When a and b are the same
size, c is the same dimensions as a and b. If either a or b is scalar, then c has the dimensions of the
nonscalar object.

Algorithms
If a and b are both fi objects, c has the same fimath object as a. If c has a fi Fixed data type, and
any one of the inputs have fi floating point data types, then the fi floating point is converted into a
fixed-point value. Intermediate quantities are calculated using the fimath object of a.

If either a or b is a fi object, and the other is a MATLAB built-in numeric type, then the built-in
object is cast to the word length of the fi object, preserving best-precision fraction length.
Intermediate quantities are calculated using the fimath object of the input fi object.

4 Functions

4-316

If a and b are both MATLAB built-in doubles, then c is the floating-point quotient a./b, and
numerictype T is ignored.

Data Type Propagation Rules

For syntaxes for which Fixed-Point Designer software uses the numerictype object T, the divide
function follows the data type propagation rules listed in the following table. In most cases, floating-
point data types are propagated. This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Objects a and b Data Type of
numerictype Object T

Data Type of Output c

Built-in double Built-in double Any Built-in double
fi Fixed fi Fixed fi Fixed Data type of

numerictype object T
fi Fixed fi Fixed fi double fi double
fi Fixed fi Fixed fi single fi single
fi Fixed fi Fixed fi ScaledDouble fi ScaledDouble with

properties of
numerictype object T

fi double fi double fi Fixed fi double
fi double fi double fi double fi double
fi double fi double fi single fi single
fi double fi double fi ScaledDouble fi double
fi single fi single fi Fixed fi single
fi single fi single fi double fi double
fi single fi single fi single fi single
fi single fi single fi ScaledDouble fi single
fi ScaledDouble fi ScaledDouble fi Fixed If either input a or b is

of type fi
ScaledDouble, then
output cis of type fi
ScaledDouble with
properties of
numerictype object T.

fi ScaledDouble fi ScaledDouble fi double fi double
fi ScaledDouble fi ScaledDouble fi single fi single
fi ScaledDouble fi ScaledDouble fi ScaledDouble If either input a or b is

of type fi
ScaledDouble, then
output c is of type fi
ScaledDouble with
properties of
numerictype object T.

 divide

4-317

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not supported.
• Code generation does not support the syntax T.divide(a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

• For HDL Code generation, the divisor must be a constant and a power of two.
• Non-fi inputs must be constant; that is, their values must be known at compile time so that they

can be cast to fi objects.
• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax T.divide(a,b).

See Also
add | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Introduced before R2006a

4 Functions

4-318

double
Double-precision floating-point real-world value of fi object

Syntax
b = double(a)

Description
b = double(a) returns the real-world value of a fi object in double-precision floating point format.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

Examples

View Stored Integer of fi Object in Double-Precision Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a=1×2 object
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the double-precision floating-point real-world value of the stored integers of fi object a.

b = double(a)

b = 1×2

 -1.0000 0.9922

Input Arguments
a — Stored integer
fi object

 double

4-319

Stored integer, specified as a fi object.
Data Types: fi

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm
to insulate functions that do not support fixed-point data types. The automated conversion tool
does not support these casts. Instead of using casts, supply a replacement function. For more
information, see “Function Replacements”.

See Also
single

Introduced before R2006a

4 Functions

4-320

embedded.fi class
Fixed-point numeric object

Description
Use the fi function to create an embedded.fi object.

See Also
embedded.fimath | embedded.numerictype | fi

Topics
Class Attributes
Property Attributes

 embedded.fi class

4-321

embedded.fimath class
fimath object

Description
Use the fimath function to create an embedded.fimath object.

See Also
embedded.fi | embedded.numerictype | fimath

Topics
Class Attributes
Property Attributes

4 Functions

4-322

embedded.numerictype class
numerictype object

Description
Use the numerictype function to create an embedded.numerictype object.

See Also
embedded.fi | embedded.fimath | numerictype

Topics
Class Attributes
Property Attributes

 embedded.numerictype class

4-323

eps
Quantized relative accuracy for fi or quantizer objects

Syntax
d = eps(a)
d = eps(q)

Description
d = eps(a) returns the value of the least significant bit value of the fi object a. The result of this
function is equivalent to that given by the Fixed-Point Designer function lsb.

d = eps(q) returns the value of the least significant bit of the value of the quantizer object q.

Examples

Quantized Relative Accuracy of fi Object

a = fi(pi, 1, 8)
eps(a)

ans =

 0.1250

Quantization Level of quantizer Object

q = quantizer('fixed',[6 3]);
eps(q)

ans =

 0.1250

Input Arguments
a — Input fi object
fi object

Input fi object.
Data Types: fi

q — Input quantizer object
quantizer object

Input quantizer object.

4 Functions

4-324

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation supports scalar fixed-point signals only.
• Code generation supports scalar, vector, and matrix, fi single and fi double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi single and fi double signals.

See Also
fi | intmax | intmin | lowerbound | lsb | quantizer | range | realmax | realmin |
upperbound

Introduced before R2006a

 eps

4-325

eq
Determine whether real-world values of two fi objects are equal

Syntax
c = eq(a,b)
a == b

Description
c = eq(a,b) is called for the syntax a == b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a == b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

a = fi(pi);
b = fi(pi, 1, 32);
a == b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The eq function returns 0
because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a == b

ans = logical
 1

4 Functions

4-326

The eq function casts b to the same word length as a, and returns 1. This behavior allows relational
operations to work between fi objects and floating-point constants without introducing floating-point
values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ge | gt | isequal | le | lt | ne

Introduced before R2006a

 eq

4-327

errmean
Mean of quantization error

Syntax
m = errmean(q)

Description
m = errmean(q) returns the mean of a uniformly distributed random quantization error that arises
from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples
Find m, the mean of the quantization error for quantizer q:

q = quantizer;
m = errmean(q)

m =

 -1.525878906250000e-05

Now compare m to m_est, the sample mean from a Monte Carlo experiment:

r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
m_est = mean(e) % Estimate of the error mean

m_est =

 -1.526738835715480e-05

See Also
errpdf | errvar | quantize

Introduced in R2008a

4 Functions

4-328

errpdf
Probability density function of quantization error

Syntax
[f,x] = errpdf(q)
f = errpdf(q,x)

Description
[f,x] = errpdf(q) returns the probability density function f evaluated at the values in x. The
vector x contains the uniformly distributed random quantization errors that arise from quantizing a
signal by quantizer object q.

f = errpdf(q,x) returns the probability density function f evaluated at the values in vector x.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples

Compute the PDF of the quantization error

q = quantizer('nearest',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')

 errpdf

4-329

The output plot shows the probability density function of the quantization error. Compare this result
to a plot of the sample probability density function from a Monte Carlo experiment:

 r = realmax(q);
 u = 2*r*rand(10000,1)-r; % Original signal
 y = quantize(q,u); % Quantized signal
 e = y - u; % Error
 subplot(212)
 hist(e,20)
 gca.xlim = [min(x) max(x)];
 title('Estimate of the PDF of the quantization error.')

4 Functions

4-330

See Also
errmean | errvar | quantize

Introduced in R2008a

 errpdf

4-331

errvar
Variance of quantization error

Syntax
v = errvar(q)

Description
v = errvar(q) returns the variance of a uniformly distributed random quantization error that
arises from quantizing a signal by quantizer object q.

Note The results are not exact when the signal precision is close to the precision of the quantizer.

Examples
Find v, the variance of the quantization error for quantizer object q:

q = quantizer;
v = errvar(q)

v =

 7.761021455128987e-11

Now compare v to v_est, the sample variance from a Monte Carlo experiment:

r = realmax(q);
 u = 2*r*rand(1000,1)-r; % Original signal
 y = quantize(q,u); % Quantized signal
 e = y - u; % Error
 v_est = var(e) % Estimate of the error variance

v_est =

 7.686538499583834e-11

See Also
errmean | errpdf | quantize

Introduced in R2008a

4 Functions

4-332

exponentbias
Exponent bias for quantizer object

Syntax
b = exponentbias(q)

Description
b = exponentbias(q) returns the exponent bias of the quantizer object q. For fixed-point
quantizer objects, exponentbias(q) returns 0.

Examples
q = quantizer('double');
b = exponentbias(q)

b =

 1023

Algorithms
For floating-point quantizer objects,

b = 2e− 1− 1

where e = eps(q), and exponentbias is the same as the exponent maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also
eps | exponentlength | exponentmax | exponentmin

Introduced before R2006a

 exponentbias

4-333

exponentlength
Exponent length of quantizer object

Syntax
e = exponentlength(q)

Description
e = exponentlength(q) returns the exponent length of quantizer object q. When q is a fixed-
point quantizer object, exponentlength(q) returns 0. This is useful because exponent length is
valid whether the quantizer object mode is floating point or fixed point.

Examples
q = quantizer('double');
e = exponentlength(q)

e =

 11

Algorithms
The exponent length is part of the format of a floating-point quantizer object [w e]. For fixed-point
quantizer objects, e = 0 by definition.

See Also
eps | exponentbias | exponentmax | exponentmin

Introduced before R2006a

4 Functions

4-334

exponentmax
Maximum exponent for quantizer object

Syntax
exponentmax(q)

Description
exponentmax(q) returns the maximum exponent for quantizer object q. When q is a fixed-point
quantizer object, it returns 0.

Examples
q = quantizer('double');
exponentmax(q)

ans =

 1023

Algorithms
For floating-point quantizer objects,

Emax = 2e− 1− 1

For fixed-point quantizer objects, Emax = 0 by definition.

See Also
eps | exponentbias | exponentlength | exponentmin

Introduced before R2006a

 exponentmax

4-335

exponentmin
Minimum exponent for quantizer object

Syntax
emin = exponentmin(q)

Description
emin = exponentmin(q) returns the minimum exponent for quantizer object q. If q is a fixed-
point quantizer object, exponentmin returns 0.

Examples
q = quantizer('double');
emin = exponentmin(q)

emin =

 -1022

Algorithms
For floating-point quantizer objects,

Emin = − 2e− 1 + 2

For fixed-point quantizer objects, Emin = 0.

See Also
eps | exponentbias | exponentlength | exponentmax

Introduced before R2006a

4 Functions

4-336

eye
Create identity matrix with fixed-point properties

Syntax
I = eye('like',p)
I = eye(n,'like',p)
I = eye(n,m,'like',p)
I = eye(sz,'like',p)

Description
I = eye('like',p) returns the scalar 1 with the same fixed-point properties and complexity (real
or complex) as the prototype argument, p. The output, I, contains the same numerictype and
fimath properties as p.

I = eye(n,'like',p) returns an n-by-n identity matrix like p, with ones on the main diagonal and
zeros elsewhere.

I = eye(n,m,'like',p) returns an n-by-m identity matrix like p.

I = eye(sz,'like',p) returns an array like p, where the size vector, sz, defines size(I).

Examples

Create Identity Matrix with Fixed-Point Properties

Create a prototype fi object, p.

p = fi([],1,16,14);

Create a 3-by-4 identity matrix with the same fixed-point properties as p.

I = eye(3,4,'like',p)

I=3×4 object
 1 0 0 0
 0 1 0 0
 0 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

 eye

4-337

Create Identity Matrix with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and OverflowAction set to
Wrap.

format long
p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 identity matrix with the same numerictype properties as p.

X = eye(2,'like',p)

X=2×2 object
 0.999969482421875 0
 0 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the
same numerictype and fimath properties as p.

Input Arguments
n — Size of first dimension of I
integer value

Size of first dimension of I, specified as an integer value.

• If n is the only integer input argument, then I is a square n-by-n identity matrix.
• If n is 0, then I is an empty matrix.
• If n is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m — Size of second dimension of I
integer value

Size of second dimension of I, specified as an integer value.

• If m is 0, then I is an empty matrix.
• If m is negative, then it is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size of I
row vector of no more than two integer values

4 Functions

4-338

Size of I, specified as a row vector of no more than two integer values.

• If an element of sz is 0, then I is an empty matrix.
• If an element of sz is negative, then the element is treated as 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified
OverflowAction property of the attached fimath. All subsequent operations performed on the
output obey the rules of the attached fimath.

Data Types: fi | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

See Also
ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2015a

 eye

4-339

fi
Construct fixed-point numeric object

Description
To assign a fixed-point data type to a number or variable, create a fi object using the fi constructor.
You can specify numeric attributes and math rules in the constructor or using the numerictype and
fimath objects.

Creation

Syntax
a = fi
a = fi(v)
a = fi(v,s)
a = fi(v,s,w)
a = fi(v,s,w,f)
a = fi(v,s, w,slope,bias)
a = fi(v,s, w,slopeadjustmentfactor,fixedexponent,bias)
a = fi(v,T)
a = fi(___ ,F)
a = fi(___ ,Name,Value)

Description

a = fi returns a fi object with no value, 16-bit word length, and 15-bit fraction length.

a = fi(v) returns a fixed-point object with value v and default property values.

a = fi(v,s) returns a fixed-point object with signedness (signed or unsigned) s.

a = fi(v,s,w) creates a fixed-point object with word length specified by w.

a = fi(v,s,w,f) creates a fixed-point object with fraction length specified by f.

a = fi(v,s, w,slope,bias) creates a fixed-point object using slope and bias scaling.

a = fi(v,s, w,slopeadjustmentfactor,fixedexponent,bias) creates a fixed-point object
using slope and bias scaling.

a = fi(v,T) creates a fixed-point object with value v, and numeric type properties, T.

a = fi(___ ,F) creates a fixed-point object with math settings specified by fimath object F.

a = fi(___ ,Name,Value) creates a fixed-point object with property values specified by one or
more Name,Value pair arguments. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

4 Functions

4-340

Input Arguments

v — Value
scalar | vector | matrix | multi-dimensional array

Value of the fi object, specified as a scalar, vector, matrix, or multidimensional array.

The value of the output fi object is the value of the input quantized to the data type specified in the
fi constructor.

You can specify the non-finite values -Inf, Inf, and NaN as the value only if you fully specify the
numeric type of the fi object. When fi is specified as a fixed-point numeric type,

• NaN maps to 0.
• When the 'OverflowAction' property of the fi object is set to 'Wrap', -Inf, and Inf map to

0.
• When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the

largest representable value, and -Inf maps to the smallest representable value.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

s — Signedness
1 (default) | 0

Signedness of the fi object, specified as a boolean. A value of 1, or true, indicates a signed data
type. A value of 0, or false, indicates an unsigned data type.
Data Types: logical

w — Word length
16 (default) | scalar integer

Word length, in bits, of the fi object, specified as a scalar integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

f — Fraction length
15 (default) | scalar integer

Fraction length, in bits, of the fi object, specified as a scalar integer. If you do not specify a fraction
length, the fi object automatically uses the fraction length that gives the best precision while
avoiding overflow for the specified value, word length, and signedness.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

slope — Slope
scalar integer

Slope of the scaling, specified as a scalar integer. The following equation represents the real-world
value of a slope bias scaled number.

real−worldvalue = (slope × integer) + bias

 fi

4-341

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

bias — Bias
scalar

Bias of the scaling, specified as a scalar. The following equation represents the real-world value of a
slope bias scaled number.

real−worldvalue = (slope × integer) + bias

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

slopeadjustmentfactor — Slope adjustment factor
scalar integer

The slope adjustment factor of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

fixedexponent — Fixed exponent
scalar integer

The fixed exponent of a slope bias scaled number. The following equation demonstrates the
relationship between the slope, fixed exponent, and slope adjustment factor.

slope = slopead justmentfactor × 2f ixedexponent

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

T — Numeric type properties
numerictype object

Numeric type properties of the fi object, specified as a numerictype object. For more information,
see numerictype.

F — Fixed-point math properties
fimath object

Fixed-point math properties of the fi object, specified as a fimath object. For more information, see
fimath.

Properties
“fi Object Properties”

Examples

4 Functions

4-342

Create a fi object

Create a signed fi object with a value of pi, a word length of eight bits, and a fraction length of 3
bits.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

Create an Array of fi Objects

Create an array of fi objects with 16-bit word length and 12-bit fraction length.

a = fi((magic(3)/10), 1, 16, 12)

a=3×3 object
 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Create a fi object with Default Word Length and Fraction Length

When you specify only the value and the signedness of the fi object, the word length defaults to 16
bits, and the fraction length is set to achieve the best precision possible without overflow.

a = fi(pi, 1)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Create a fi Object with Default Precision

If you do not specify a fraction length, input argument f, the fraction length of the fi object defaults
to the fraction length that offers the best precision.

 fi

4-343

a = fi(pi,1,8)

a =
 3.1563

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 5

The fraction length of fi object a is five because three bits are required to represent the integer
portion of the value when the data type is signed. If the fi object uses an unsigned data type, only
two bits are needed to represent the integer portion, leaving six fractional bits.

b = fi(pi,0,8)

b =
 3.1406

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6

Create a fi Object with Slope and Bias Scaling

The real-world value of a slope bias scaled number is represented by:

real world value = slope × integer + bias

To create a fi object that uses slope and bias scaling, include the slope and bias arguments after
the word length in the constructor.

a = fi(pi, 1, 16, 3, 2)

a =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

The DataTypeMode property of the fi object, a, is slope and bias scaling.

Create a fi Object From a Non-Double Value

When the value input argument, v, of a fi object is a non-double, and you do not specify the word
length or fraction length properties, the resulting fi object retains the numeric type of the input, v.

4 Functions

4-344

Create a fi object from a built-in integer

When the input is a built-in integer, the fixed-point attributes match the attributes of the integer type.

v1 = uint32(5);
a1 = fi(v1)

a1 =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 32
 FractionLength: 0

v2 = int8(5);
a2 = fi(v2)

a2 =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

Create a fi object from a fi object

When the input value is a fi object, the output uses the same word length, fraction length, and
signedness of the input fi object.

v = fi(pi, 1, 24, 12);
a = fi(v)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Create a fi object from a logical

When the input v is logical, the DataTypeMode property of the output fi object is Boolean.

v = true;
a = fi(v)

a =
 1

 DataTypeMode: Boolean

Create a fi object from a single

When the input is single, the DataTypeMode property of the output is Single.

v = single(pi);
a = fi(v)

 fi

4-345

a =
 3.1416

 DataTypeMode: Single

Create a fi Object With an Associated fimath Object

The arithmetic attributes of a fi object are defined by a fimath object which is attached to that fi
object.

Create a fimath object and specify the OverflowAction, RoundingMethod, and ProductMode
properties.

F = fimath('OverflowAction', 'Wrap', 'RoundingMethod','Floor', 'ProductMode','KeepMSB')

F =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: KeepMSB
 ProductWordLength: 32
 SumMode: FullPrecision

Create a fi object and specify the fimath object, F, in the constructor.

a = fi(pi, F)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: KeepMSB
 ProductWordLength: 32
 SumMode: FullPrecision

Use the removefimath function to remove the associated fimath object and restore the math
settings to their default values.

a = removefimath(a)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

4 Functions

4-346

Create a fi Object From a numerictype Object

A numerictype object contains all of the data type information of a fi object. By transitivity,
numerictype properties are also properties of fi objects.

You can create a fi object that uses all of the properties of an existing numerictype object by
specifying the numerictype object in the fi constructor.

T = numerictype(0,24,16)

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16

a = fi(pi, T)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 16

Create a fi Object With Fraction Length Greater Than Word Length

When you use binary-point representation for a fixed-point number, the fraction length can be greater
than the word length. In this case, there are implicit leading zeros (for positive numbers) or ones (for
negative numbers) between the binary point and the first significant binary digit.

Consider a signed value with a word length of 8, fraction length of 10, and a stored integer value of 5.
Calculate the real-world value using the following equation.

real world value = stored integer × 2−fraction length

realWorldValue = 5*2^(-10)

realWorldValue = 0.0049

Create a signed fi object with value realWorldValue, a word length of 8 bits, and a fraction length
of 10 bits.

a = fi(realWorldValue, 1, 8, 10)

a =
 0.0049

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 10

 fi

4-347

Get the stored integer value of a using the int function.

int(a)

ans = int8
 5

Use the bin function to view the stored integer value in binary.

bin(a)

ans =
'00000101'

Because the fraction length is two bits longer than the word length, the binary value of the stored
integer is X.XX00000101, where X is a placeholder for implicit zeroes. 0.0000000101 (binary) is
equivalent to 0.0049 (decimal).

Create a fi Object With Negative Fraction Length

When you use binary-point representation for a fixed-point number, the fraction length can be
negative. In this case, there are implicit trailing zeros (for positive numbers) or ones (for negative
numbers) between the binary point and the first significant binary digit.

Consider a signed data type with a word length of 8, fraction length of -2 and a stored integer value
of 5. Calculate the stored integer value using the following equation.

real world value = stored integer × 2−fraction length

realWorldValue = 5*2^(2)

realWorldValue = 20

Create a signed fi object with value realWorldValue, a word length of 8 bits, and a fraction length
of -2 bits.

a = fi(realWorldValue, 1, 8, -2)

a =
 20

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: -2

Get the stored integer value of a using the int function.

int(a)

ans = int8
 5

Get the binary value of a using the bin function.

bin(a)

4 Functions

4-348

ans =
'00000101'

Because the fraction length is negative, the binary value of the stored integer is 00000101XX, where
X is a placeholder for implicit zeros. 0000010100 (binary) is equivalent to 20 (decimal).

Create a fi Object Specifying Rounding and Overflow Modes

You can set math properties, such as rounding and overflow modes during the creation of the fi
object.

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

The RoundingMethod and OverflowAction properties are properties of the fimath object.
Specifying these properties in the fi constructor associates a local fimath object with the fi object.

Use the removefimath function to remove the local fimath and set the math properties back to
their default values.

a = removefimath(a)

a =
 3.1415

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use fi as an Indexing Argument

When using a fi object as an index, the value of the fi object must be an integer.

Set up an array to index into.

x = 10:-1:1;

Create an integer valued fi object and use it to index into x.

 fi

4-349

a = fi(3);
y = x(a)

y = 8

Use fi as the index in a for loop

Create fi objects to use as the index of a for loop. The values of the indices must be integers.

a = fi(1, 0, 8, 0);
b = fi(2, 0, 8, 0);
c = fi(10, 0, 8, 0);

for x = a:b:c
 x
end

x =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 7

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

x =
 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

4 Functions

4-350

Set Data Type Override on a fi Object

The fipref object defines the display and logging attributes for all fi objects. Use the
DataTypeOverride setting of the fipref object to override fi objects with doubles, singles, or
scaled doubles.

Save the current fipref settings to restore later.

fp = fipref;
initialDTO = fp.DataTypeOverride;

Create a fi object with the default settings and original fipref settings.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Turn on data type override to doubles and create a new fi object without specifying its
DataTypeOverride property so that it uses the data type override settings specified using fipref.

fipref('DataTypeOVerride', 'TrueDoubles')

ans =
 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
 DataTypeOverride: 'TrueDoubles'
 DataTypeOverrideAppliesTo: 'AllNumericTypes'

a = fi(pi)

a =
 3.1416

 DataTypeMode: Double

Now create a fi object and set its DataTypeOverride setting to off so that it ignores the data type
override settings of the fipref object.

b = fi(pi, 'DataTypeOverride', 'Off')

b =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Restore the fipref settings saved at the start of the example.

 fi

4-351

fp.DataTypeOverride = initialDTO;

fi Behavior for -Inf, Inf, and NaN

To use the non-numeric values -Inf, Inf, and NaN as fixed-point values with fi, you must fully
specify the numeric type of the fixed-point object. Automatic best-precision scaling is not supported
for these values.

Saturate on Overflow

When the numeric type of the fi object is specified to saturate on overflow, then Inf maps to the
largest representable value of the specified numeric type, and -Inf maps to the smallest
representable value. NaN maps to zero.

x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Saturate')
b = fi(x,0,8,0,'OverflowAction','Saturate')

a =

 -128 0 127

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

b =

 0 0 255

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Wrap on Overflow

When the numeric type of the fi object is specified to wrap on overflow, then -Inf, Inf, and NaN
map to zero.

x = [-inf nan inf];
a = fi(x,1,8,0,'OverflowAction','Wrap')
b = fi(x,0,8,0,'OverflowAction','Wrap')

4 Functions

4-352

a =

 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

b =

 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 0

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

Compatibility Considerations
Change in default behavior of fi for -Inf, Inf, and NaN
Behavior changed in R2020b

In previous releases, fi would return an error when passed the non-finite input values -Inf, Inf, or
NaN. fi now treats these inputs in the same way that MATLAB and Simulink handle -Inf, Inf, and
NaN for integer data types.

When fi is specified as a fixed-point numeric type,

• NaN maps to 0.
• When the 'OverflowAction' property of the fi object is set to 'Wrap', -Inf, and Inf map to

0.
• When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the

largest representable value, and -Inf maps to the smallest representable value.

For an example of this behavior, see “fi Behavior for -Inf, Inf, and NaN” on page 4-352.

Note Best-precision scaling is not supported for input values of -Inf, Inf, or NaN.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fi

4-353

Usage notes and limitations:

• The default constructor syntax without any input arguments is not supported.
• If the numerictype is not fully specified, the input to fi must be a constant, a fi, a single, or a

built-in integer value. If the input is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data type of the input.

• All properties related to data type must be constant for code generation.
• numerictype object information must be available for nonfixed-point Simulink inputs.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | fipref | isfimathlocal | numerictype | quantizer | sfi | ufi

Topics
“Create Fixed-Point Data”
“Perform Fixed-Point Arithmetic”
“Perform Binary-Point Scaling”
“fi Object Functions”
“Binary Point Interpretation”

Introduced in R2006a

4 Functions

4-354

fiaccel
Accelerate fixed-point code and convert floating-point MATLAB code to fixed-point MATLAB code

Syntax
fiaccel -options fcn
fiaccel -float2fixed fcn

Description
fiaccel -options fcn translates the MATLAB file fcn.m to a MEX function, which accelerates
fixed-point code. To use fiaccel, your code must meet one of these requirements:

• The top-level function has no inputs or outputs, and the code uses fi
• The top-level function has an output or a non-constant input, and at least one output or input is a

fi.
• The top-level function has at least one input or output containing a built-in integer class (int8,

uint8, int16, uint16, int32, uint32, int64, or uint64), and the code uses fi.

Note If your top-level file is on a path that contains Unicode characters, code generation might not
be able to find the file.

fiaccel -float2fixed fcn converts the floating-point MATLAB function, fcn to fixed-point
MATLAB code.

Input Arguments
fcn

MATLAB function from which to generate a MEX function. fcn must be suitable for code generation.
For information on code generation, see “Code Acceleration and Code Generation from MATLAB”

options

Choice of compiler options. fiaccel gives precedence to individual command-line options over
options specified using a configuration object. If command-line options conflict, the rightmost option
prevails.

 fiaccel

4-355

-args example_inputs Define the size, class, and complexity of MATLAB
function inputs by providing a cell array of
example input values. The position of the example
input in the cell array must correspond to the
position of the input argument in the MATLAB
function definition. To generate a function that
has fewer input arguments than the function
definition has, omit the example values for the
arguments that you do not want.

Specify the example inputs immediately after the
function to which they apply.

Instead of an example value, you can provide a
coder.Type object. To create a coder.Type
object, use coder.typeof.

-config config_object Specify MEX generation parameters, based on
config_object, defined as a MATLAB variable
using coder.mexconfig. For example:

cfg = coder.mexconfig;
-d out_folder Store generated files in the absolute or relative

path specified by out_folder. If the folder
specified by out_folder does not exist,
fiaccel creates it for you.

If you do not specify the folder location, fiaccel
generates files in the default folder:

fiaccel/mex/fcn.

fcn is the name of the MATLAB function
specified at the command line.

The function does not support the following
characters in folder names: asterisk (*), question-
mark (?), dollar ($), and pound (#).

4 Functions

4-356

-float2fixed float2fixed_cfg_name Generates fixed-point MATLAB code using the
settings specified by the floating-point to fixed-
point conversion configuration object named
float2fixed_cfg_name.

For this option, fiaccel generates files in the
folder codegen/fcn_name/fixpt.

You must set the TestBenchName property of
float2fixed_cfg_name. For example:

fixptcfg.TestBenchName = 'myadd_test';

specifies that myadd_test is the test file for the
floating-point to fixed-point configuration object
fixptcfg.

You cannot use this option with the -global
option.

-g Compiles the MEX function in debug mode, with
optimization turned off. If not specified, fiaccel
generates the MEX function in optimized mode.

-global global_values Specify initial values for global variables in
MATLAB file. Use the values in cell array
global_values to initialize global variables in
the function you compile. The cell array should
provide the name and initial value of each global
variable. You must initialize global variables
before compiling with fiaccel. If you do not
provide initial values for global variables using
the -global option, fiaccel checks for the
variable in the MATLAB global workspace. If you
do not supply an initial value, fiaccel generates
an error.

The generated MEX code and MATLAB each have
their own copies of global data. To ensure
consistency, you must synchronize their global
data whenever the two interact. If you do not
synchronize the data, their global variables might
differ.

You cannot use this option with the -
float2fixed option.

-I include_path Add include_path to the beginning of the code
generation path.

fiaccel searches the code generation path first
when converting MATLAB code to MEX code.

 fiaccel

4-357

-launchreport Generate and open a code generation report. If
you do not specify this option, fiaccel
generates a report only if error or warning
messages occur or you specify the -report
option.

-nargout Specify the number of output arguments in the
generated entry-point function. The code
generator produces the specified number of
output arguments in the order in which they
occur in the MATLAB function definition.

-o output_file_name Generate the MEX function with the base name
output_file_name plus a platform-specific
extension.

output_file_name can be a file name or
include an existing path.

If you do not specify an output file name, the base
name is fcn_mex, which allows you to run the
original MATLAB function and the MEX function
and compare the results.

-O optimization_option Optimize generated MEX code, based on the
value of optimization_option:

• enable:inline — Enable function inlining
• disable:inline — Disable function inlining

If not specified, fiaccel uses inlining for
optimization.

-report Generate a code generation report. If you do not
specify this option, fiaccel generates a report
only if error or warning messages occur or you
specify the -launchreport option.

-? Display help for fiaccel command.

Examples
Create a test file and compute the moving average. Then, use fiaccel to accelerate the code and
compare.

function avg = test_moving_average(x)
%#codegen
if nargin < 1,
 x = fi(rand(100,1),1,16,15);
end
z = fi(zeros(10,1),1,16,15);
avg = x;
for k = 1:length(x)
 [avg(k),z] = moving_average(x(k),z);
end

function [avg,z] = moving_average(x,z)

4 Functions

4-358

%#codegen
if nargin < 2,
 z = fi(zeros(10,1),1,16,15);
end
z(2:end) = z(1:end-1); % Update buffer
z(1) = x; % Add new value
avg = mean(z); % Compute moving average

% Use fiaccel to create a MEX function and
% accelerate the code
x = fi(rand(100,1),1,16,15);
fiaccel test_moving_average -args {x} -report

% Compare the non-accelerated and accelerated code.
x = fi(rand(100,1),1,16,15);

% Non-compiled version
tic,avg = test_moving_average(x);toc
% Compiled version
tic,avg = test_moving_average_mex(x);toc

Convert Floating-Point MATLAB Code to Fixed Point

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is dti_test.

fixptcfg.TestBenchName = 'dti_test';

Convert a floating-point MATLAB function to fixed-point MATLAB code. In this example, the MATLAB
function name is dti.

fiaccel -float2fixed fixptcfg dti

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.FixptConfig | coder.MexConfig | coder.PrimitiveType | coder.StructType |
coder.Type | coder.config | coder.mexconfig | coder.newtype | coder.resize |
coder.typeof

Introduced in R2011a

 fiaccel

4-359

filter
One-dimensional digital filter of fi objects

Syntax
y = filter(b,1,x)
[y,zf] = filter(b,1,x,zi)
y = filter(b,1,x,zi,dim)

Description
y = filter(b,1,x) filters the data in the fixed-point vector x using the filter described by the
fixed-point vector b. The function returns the filtered data in the output fi object y. Inputs b and x
must be fi objects. filter always operates along the first non-singleton dimension. Thus, the filter
operates along the first dimension for column vectors and nontrivial matrices, and along the second
dimension for row vectors.

[y,zf] = filter(b,1,x,zi) gives access to initial and final conditions of the delays, zi, and zf.
zi is a vector of length length(b)-1, or an array with the leading dimension of size length(b)-1
and with remaining dimensions matching those of x. zi must be a fi object with the same data type
as y and zf. If you do not specify a value for zi, it defaults to a fixed-point array with a value of 0 and
the appropriate numerictype and size.

y = filter(b,1,x,zi,dim) performs the filtering operation along the specified dimension. If you
do not want to specify the vector of initial conditions, use [] for the input argument zi.

Input Arguments
b

Fixed-point vector of the filter coefficients.

x

Fixed-point vector containing the data for the function to filter.

zi

Fixed-point vector containing the initial conditions of the delays. If the initial conditions of the delays
are zero, you can specify zero, or, if you do not know the appropriate size and numerictype for zi,
use [].

If you do not specify a value for zi, the parameter defaults to a fixed-point vector with a value of zero
and the same numerictype and size as the output zf (default).

dim

Dimension along which to perform the filtering operation.

4 Functions

4-360

Output Arguments
y

Output vector containing the filtered fixed-point data.

zf

Fixed-point output vector containing the final conditions of the delays.

Examples

Filter a high-frequency fixed-point sinusoid from a signal

The following example filters a high-frequency fixed-point sinusoid from a signal that contains both a
low- and high-frequency fixed-point sinusoid.

w1 = .1*pi;
w2 = .6*pi;
n = 0:999;
xd = sin(w1*n) + sin(w2*n);
x = sfi(xd,12);
b = ufi([.1:.1:1,1-.1:-.1:.1]/4,10);
gd = (length(b)-1)/2;
y = filter(b,1,x);

% Plot results, accommodate for group-delay of filter
plot(n(1:end-gd),x(1:end-gd))
hold on
plot(n(1:end-gd),y(gd+1:end),'r--')
axis([0 50 -2 2])
legend('Unfiltered signal','Filtered signal')
xlabel('Sample index (n)')
ylabel('Signal value')

 filter

4-361

The resulting plot shows both the unfiltered and filtered signals.

More About
Filter length (L)

The filter length is length(b), or the number of filter coefficients specified in the fixed-point vector
b.

Filter order (N)

The filter order is the number of states (delays) of the filter, and is equal to L-1.

Tips
• The filter function only supports FIR filters. In the general filter representation, b/a, the

denominator, a, of an FIR filter is the scalar 1, which is the second input of this function.
• The numerictype of b can be different than the numerictype of x.
• If you want to specify initial conditions, but do not know what numerictype to use, first try
filtering your data without initial conditions. You can do so by specifying [] for the input zi. After
performing the filtering operation, you have the numerictype of y and zf (if requested). Because
the numerictype of zi must match that of y and zf, you now know the numerictype to use for
the initial conditions.

4 Functions

4-362

Algorithms
The filter function uses a Direct-Form Transposed FIR implementation of the following difference
equation:

y(n) = b1 * xn + b2 * xn− 1 + ... + bL * xn− N

where L is the filter length on page 4-362 and N is the filter order on page 4-362.

The following diagram shows the direct-form transposed FIR filter structure used by the filter
function:

fimath Propagation Rules

The filter function uses the following rules regarding fimath behavior:

• globalfimath is obeyed.
• If any of the inputs has an attached fimath, then it is used for intermediate calculations.
• If more than one input has an attached fimath, then the fimaths must be equal.
• The output, y, is always associated with the default fimath.
• If the input vector, zi, has an attached fimath, then the output vector, zf, retains this fimath.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to Specify precision or Keep LSB.

 filter

4-363

See Also
conv | filter

Introduced in R2010a

4 Functions

4-364

fimath
Set fixed-point math settings

Syntax
F = fimath
F = fimath(Name,Value)

Description
F = fimath creates a fimath object with the default fimath property settings.

F = fimath(Name,Value) specifies the properties of a fimath object by using one or more name-
value pair arguments. All properties not specified in the constructor use default values.

Examples

Create a Default fimath Object

This example shows how to create a fimath object with the default property settings.

F = fimath

F =
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Set Properties of a fimath Object

Set the properties of a fimath object at the time of object creation by using name-value pairs. For
example, set the overflow action to saturate and the rounding method to convergent.

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F =
 RoundingMethod: Convergent
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

 fimath

4-365

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: F = fimath('OverflowAction','Saturate','RoundingMethod','Floor')

CastBeforeSum — Whether both operands are cast to the sum data type before addition
false or 0 (default) | true or 1

Whether both operands are cast to the sum data type before addition, specified as a numeric or
logical 1 (true) or 0 (false).

Note This property is hidden when the SumMode is set to FullPrecision.

Example: F = fimath('CastBeforeSum',true)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

MaxProductWordLength — Maximum allowable word length for the product data type
65535 (default) | positive integer

Maximum allowable word length for the product data type, specified as a positive integer.
Example: F = fimath('MaxProductWordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxSumWordLength — Maximum allowable word length for sum data type
65535 (default) | positive integer

Maximum allowable word length for the sum data type, specified as a positive integer.
Example: F = fimath('MaxSumWordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverflowAction — Action to take on overflow
'Saturate' (default) | 'Wrap'

Action to take on overflow, specified as one of these values:

• 'Saturate' – Saturate to the maximum or minimum value of the fixed-point range on overflow.
• 'Wrap' – Wrap on overflow. This mode is also known as two's complement overflow.

Example: F = fimath('OverflowAction','Wrap')
Data Types: char

ProductBias — Bias of product data type
0 (default) | floating-point number

Bias of the product data type, specified as a floating-point number.

4 Functions

4-366

Example: F = fimath('ProductBias',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductFixedExponent — Fixed exponent of product data type
-30 (default) | nonzero integer

Fixed exponent of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFixedExponent',-20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductFractionLength — Fraction length of product data type
30 (default) | nonzero integer

Fraction length, in bits, of the product data type, specified as a nonzero integer.

Note The ProductFractionLength is the negative of the ProductFixedExponent. Changing one
property changes the other.

Example: F = fimath('ProductFractionLength',20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductMode — How product data type is determined
'FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the product data type is determined, specified as one of these values:

• 'FullPrecision' – The full precision of the result is kept.
• 'KeepLSB' – Keep the least significant bits. Specify the product word length. The fraction length

is set to maintain the least significant bits of the product.
• 'KeepMSB' – Keep the most significant bits. Specify the product word length. The fraction length

is set to maintain the most significant bits of the product.
• 'SpecifyPrecision' – Specify the word and fraction lengths or slope and bias of the product.

Example: F = fimath('ProductMode','KeepLSB')
Data Types: char

ProductSlope — Slope of product data type
9.3132e-10 (default) | finite, positive floating-point number

Slope of the product data type, specified as a finite, positive floating-point number.

Note

ProductSlope = ProductSlopeAd justmentFactor × 2ProductFixedExponent

 fimath

4-367

Changing one of these properties affects the others.

Example: F = fimath('ProductSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the product data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

ProductSlope = ProductSlopeAd justmentFactor × 2ProductFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('ProductSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ProductWordLength — Word length of product data type
32 (default) | positive integer

Word length, in bits, of the product data type, specified as a positive integer.
Example: F = fimath('ProductWordLength',64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RoundingMethod — Rounding method to use
'Nearest' (default) | 'Ceiling' | 'Convergent' | 'Zero' | 'Floor' | 'Round'

Rounding method to use, specified as one of these values:

• 'Nearest' – Round toward nearest. Ties round toward positive infinity.
• 'Ceiling' – Round toward positive infinity.
• 'Convergent' – Round toward nearest. Ties round to the nearest even stored integer (least

biased).
• 'Zero' – Round toward zero.
• 'Floor' – Round toward negative infinity.
• 'Round' – Round toward nearest. Ties round toward negative infinity for negative numbers, and

toward positive infinity for positive numbers.

Example: F = fimath('RoundingMethod','Convergent')
Data Types: char

SumBias — Bias of sum data type
0 (default) | floating-point number

Bias of the sum data type, specified as a floating-point number.

4 Functions

4-368

Example: F = fimath('SumBias',0)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumFixedExponent — Fixed exponent of sum data type
-30 (default) | nonzero integer

Fixed exponent of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFixedExponent',-20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumFractionLength — Fraction length of sum data type
30 (default) | nonzero integer

Fraction length, in bits, of the sum data type, specified as a nonzero integer.

Note The SumFractionLength is the negative of the SumFixedExponent. Changing one property
changes the other.

Example: F = fimath('SumFractionLength',20)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumMode — How the sum data type is determined
'FullPrecision' (default) | 'KeepLSB' | 'KeepMSB' | 'SpecifyPrecision'

How the sum data type is determined, specified as one of these values:

• 'FullPrecision' – The full precision of the result is kept.
• 'KeepLSB' – Keep least significant bits. Specify the sum data type word length. The fraction

length is set to maintain the least significant bits of the sum.
• 'KeepMSB' – Keep most significant bits. Specify the sum data type word length. The fraction

length is set to maintain the most significant bits of the sum and no more fractional bits than
necessary.

• 'SpecifyPrecision' – Specify the word and fraction lengths or slope and bias of the sum data
type.

Example: F = fimath('SumMode','KeepLSB')
Data Types: char

SumSlope — Slope of sum data type
9.3132e-10 (default) | floating-point number

Slope of the sum data type, specified as a floating-point number.

Note

 fimath

4-369

SumSlope = SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlope',9.3132e-10)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
1 (default) | floating-point number greater than or equal to 1 and less than 2

Slope adjustment factor of the sum data type, specified as a floating-point number greater than or
equal to 1 and less than 2.

Note

SumSlope = SumSlopeAd justmentFactor × 2SumFixedExponent

Changing one of these properties affects the others.

Example: F = fimath('SumSlopeAdjustmentFactor',1)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SumWordLength — Word length of sum data type
32 (default) | positive integer

Word length, in bits, of the sum data type, specified as a positive integer.
Example: F = fimath('SumWordLength',64)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a fimath
object. You define this object in the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to anything other than FullPrecision,

the ProductWordLength and ProductFractionLength properties must be constant.
• If the SumMode property of the fimath object is set to anything other than FullPrecision, the

SumWordLength and SumFractionLength properties must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-370

See Also
fi | fipref | globalfimath | numerictype | quantizer | removefimath | setfimath

Topics
“fimath Object Construction”
“fimath Object Properties”
How Functions Use fimath
“fimath Properties Usage for Fixed-Point Arithmetic”

Introduced before R2006a

 fimath

4-371

fipref
Set fixed-point preferences

Syntax
P = fipref
P = fipref(Name,Value)

Description
P = fipref creates a default fipref object. The fipref object defines the display and logging
attributes for all fi objects.

P = fipref(Name,Value) creates a fipref object with properties specified by Name,Value
pairs.

Your fipref settings persist throughout your MATLAB session. Use reset(fipref) to return to the
default settings during your session. Use savefipref to save your display preferences for
subsequent MATLAB sessions.

Examples

Create a Default fipref Object

P = fipref

P =
 NumberDisplay: 'RealWorldValue'
 NumericTypeDisplay: 'full'
 FimathDisplay: 'full'
 LoggingMode: 'Off'
 DataTypeOverride: 'ForceOff'

Set fipref Properties at Object Creation

You can set properties of fipref objects at the time of object creation by including properties after
the arguments of the fipref constructor function. For example, to set NumberDisplay to bin and
NumericTypeDisplay to short,

P = fipref('NumberDisplay','bin','NumericTypeDisplay','short')

P =
 NumberDisplay: 'bin'
 NumericTypeDisplay: 'short'
 FimathDisplay: 'full'
 LoggingMode: 'Off'

4 Functions

4-372

 DataTypeOverride: 'ForceOff'

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: P =
fipref('NumberDisplay','RealWorldValue','NumericTypeDisplay','short');

Data Type Override Properties

DataTypeOverride — Data type override options
'ForceOff' (default) | 'ScaledDoubles' | 'TrueDoubles' | 'TrueSingles'

Data type override options for fi objects, specified as the comma-separated pair consisting of
'DataTypeOverride' and one of these values:

• 'ForceOff' — No data type override
• 'ScaledDoubles' — Override with scaled doubles
• 'TrueDoubles' — Override with doubles
• 'TrueSingles' — Override with singles

Data type override only occurs when the fi constructor function is called.
Data Types: char

DataTypeOverrideAppliesTo — Data type override setting applicability
'AllNumericTypes' (default) | 'Fixed-Point' | 'Floating-Point'

Data type override setting applicability to fi objects, specified as the comma-separated pair
consisting of 'DataTypeOverrideAppliesTo' and one of these values:

• 'AllNumericTypes' — Apply data type override to all fi data types. This setting does not
override built-in integer types.

• 'Fixed-Point' — Apply data type override only to fixed-point data types
• 'Floating-Point' — Apply data type override only to floating-point fi data types

DataTypeOverrideAppliesTo displays only if DataTypeOverride is not set to ForceOff.
Data Types: char

Display Properties

FimathDisplay — Display options for local fimath attributes of fi objects
'full' (default) | 'none'

Display options for the local fimath attributes of a fi object, specified as the comma-separated pair
consisting of 'FimathDisplay' and one of these values:

 fipref

4-373

• 'full' — Displays all of the fimath attributes of a fixed-point object
• 'none' — None of the fimath attributes are displayed

Data Types: char

NumberDisplay — Display options for the value of a fi object
'RealWorldValue' (default) | 'bin' | 'dec' | 'hex' | 'int' | 'none'

Display options for the values of a fi object, specified as the comma-separated pair consisting of
'NumberDisplay' and one of these values:

• 'bin' — Displays the stored integer value in binary format
• 'dec' — Displays the stored integer value in unsigned decimal format
• 'RealWorldValue' — Displays the stored integer value in the format specified by the MATLAB

format function

fi objects in rat format are displayed according to

1
2f ixed− pointexponent × storedinteger

• 'hex' — Displays the stored integer value in hexadecimal format
• 'int' — Displays the stored integer value in signed decimal format
• 'none' — No value is displayed

The stored integer value does not change when you change the fipref object. The fipref object
only affects the display.
Data Types: char

NumericTypeDisplay — Display options for the numerictype attributes of a fi object
'full' (default) | 'none' | 'short'

Display options for the numerictype attributes of a fi object, specified as the comma-separated
pair consisting of 'NumericTypeDisplay' and one of these values:

• 'full' — Displays all of the numerictype attributes of a fixed-point object
• 'none' — None of the numerictype attributes are displayed
• 'short' — Displays an abbreviated notation of the fixed-point data type and scaling of a fixed-
point object in the format xWL,FL where

• x is s for signed and u for unsigned
• WL is the word length
• FL is the fraction length

Data Types: char

Logging Properties

LoggingMode — Logging options for operations performed on fi objects
'off' (default) | 'on'

4 Functions

4-374

Logging options for operations performed on fi objects, specified as the comma-separated pair
consisting of 'LoggingMode' and one of these values:

• 'off' — No logging
• 'on' — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication operations are logged as
warnings when LoggingMode is set to on.

When LoggingMode is on, you can also use the following functions to return logged information
about assignment and creation operations to the MATLAB command line:

• maxlog — Returns the maximum real-world value
• minlog — Returns the minimum value
• noverflows — Returns the number of overflows
• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log information about
it. To clear the log, use the function resetlog.
Data Types: char

See Also
fi | fimath | numerictype | quantizer | savefipref

Introduced before R2006a

 fipref

4-375

fix
Round toward zero

Syntax
y = fix(a)

Description
y = fix(a) rounds fi object a to the nearest integer in the direction of zero and returns the result
in fi object y.

Examples

Use fix on a Signed fi Object

The following example demonstrates how the fix function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = fix(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 5
 FractionLength: 0

The following example demonstrates how the fix function affects the numerictype properties of a
signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

4 Functions

4-376

y = fix(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y=8×4 object
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

 fix

4-377

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

fix does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

4 Functions

4-378

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | floor | nearest | round

Introduced in R2008a

 fix

4-379

fixed.aggregateType
Compute aggregate numerictype

Syntax
aggNT = fixed.aggregateType(A,B)

Description
aggNT = fixed.aggregateType(A,B) computes the smallest binary point scaled numerictype
that is able to represent both the full range and precision of inputs A and B.

Input Arguments
A

An integer, binary point scaled fixed-point fi object, or numerictype object.

B

An integer, binary point scaled fixed-point fi object, or numerictype object.

Output Arguments
aggNT

A numerictype object.

Examples
Compute the aggregate numerictype of two numerictype objects.

% can represent range [-4,4) and precision 2^-13
a_nt = numerictype(1,16,13);
% can represent range [-2,2) and precision 2^-16
b_nt = numerictype(1,18,16);

% can represent range [-4,4) and precision 2^-16
aggNT = fixed.aggregateType(a_nt,b_nt)
aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 19
 FractionLength: 16

Compute the aggregate numerictype of two fi objects.

% Unsigned, WordLength: 16, FractionLength: 14
a_fi = ufi(pi,16);

4 Functions

4-380

% Signed, WordLength: 24, FractionLength: 21
b_fi = sfi(-pi,24);

% Signed, WordLength: 24, FractionLength: 21
aggNT = fixed.aggregateType(a_fi,b_fi)
aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 21

Compute the aggregate numerictype of a fi object and an integer.

% Unsigned, WordLength: 16, FractionLength: 14
% can represent range [0,3] and precision 2^-14
a_fi = ufi(pi,16);
% Unsigned, WordLength: 8, FractionLength: 0
% can represent range [0,255] and precision 2^0
cInt = uint8(0);

% Unsigned with WordLength: 14+8, FractionLength: 14
% can represent range [0,255] and precision 2^-14
aggNT = fixed.aggregateType(a_fi,cInt)
aggNT =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 22
 FractionLength: 14

See Also
fi | numerictype

Introduced in R2011b

 fixed.aggregateType

4-381

fixed.backwardSubstitute
Solve upper-triangular system of equations through backward substitution

Syntax
x = fixed.backwardSubstitute(R, C)
x = fixed.backwardSubstitute(R, C, outputType)

Description
x = fixed.backwardSubstitute(R, C) performs backward substitution on upper-triangular
matrix R to compute x = R\C.

x = fixed.backwardSubstitute(R, C, outputType) returns x = R\C, where the data type of
output variable, x, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

4 Functions

4-382

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

C — Linear system factor
matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments
x — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R\C.

See Also
fixed.forwardSubstitute | fixed.qlessQR | fixed.qlessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

 fixed.backwardSubstitute

4-383

fixed.forwardSubstitute
Solve lower-triangular system of equations through forward substitution

Syntax
x = fixed.forwardSubstitute(R, B)
x = fixed.forwardSubstitute(R, B, outputType)

Description
x = fixed.forwardSubstitute(R, B) performs forward substitution on upper-triangular matrix
R to compute x = R'\B.

x = fixed.forwardSubstitute(R, B, outputType) returns x = R'\B, where the data type of
output variable, x, is specified by outputType.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

x = fixed.qlessQRMatrixSolve(A,b)

4 Functions

4-384

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

B — Linear system factor
matrix

Linear system factor, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

Output Arguments
x — Solution
matrix

Solution, returned as a matrix satisfying the equation x = R'\B.

See Also
fixed.backwardSubstitute | fixed.qlessQR | fixed.qlessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

 fixed.forwardSubstitute

4-385

fixed.qlessQR
Q-less QR decomposition

Syntax
R = fixed.qlessQR(A)
R = fixed.qlessQR(A, forgettingFactor)

Description
R = fixed.qlessQR(A) returns the upper-triangular R factor of the QR decomposition A = Q*R.

This is equivalent to computing

[~,R] = qr(A)

R = fixed.qlessQR(A, forgettingFactor) returns the upper-triangular R factor of the QR
decomposition and multiplies R by the forgettingFactor after each row of A is processed.

Examples

Solve a System of Equations Using Forward and Backward Substitution

This example shows how to solve the system of equations A′A x = B using forward and backward
substitution.

Specify the input variables, A and B.

rng default;
A = gallery('randsvd', [5,3], 1000);
b = [1; 1; 1; 1; 1];

Compute the upper-triangular factor, R, of A, where A = QR.

R = fixed.qlessQR(A);

Use forward and backward substitution to compute the value of X.

X = fixed.forwardSubstitute(R,b);
X(:) = fixed.backwardSubstitute(R,X)

X = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

This solution is equivalent to using the fixed.qlessQRMatrixSolve function.

4 Functions

4-386

x = fixed.qlessQRMatrixSolve(A,b)

x = 5×1
105 ×

 -0.9088
 2.7123
 -0.8958
 0
 0

Compute Upper-Triangular Matrix Factor Using Forgetting Factor

Using a forgetting factor with the fixed.qlessQR function is roughly equivalent to the Complex-
and Real Partial-Systolic Q-less QR with Forgetting Factor blocks. These blocks process one row of
the input matrix at a time and apply the forgetting factor after each row is processed. The
fixed.qlessQR function takes in all rows of A at once, but carries out the computation in the same
way as the blocks. The forgetting factor is applied after each row is processed.

Specifying a forgetting factor is useful when you want to stream an indefinite number of rows
continuously, such as reading values from a sensor array continuously, without accumulating the data
without bound.

Without using a forgetting factor, the accumulation is the square root of the number of rows, so
10000 rows would accumulate to 10000 = 100.

A = ones(10000,3);
R = fixed.qlessQR(A)

R = 3×3

 100.0000 100.0000 100.0000
 0 0.0000 0.0000
 0 0 0.0000

To accrue with the effective height of m=16 rows, set the forgetting factor to the following.

m=16;
forgettingFactor = exp(-1/(2*m))

forgettingFactor = 0.9692

Using the forgetting factor, fixed.qlessQR would accumulate to about square root of 16.

R = fixed.qlessQR(A,forgettingFactor)

R = 3×3

 3.9377 3.9377 3.9377
 0 0.0000 0.0000
 0 0 0.0000

 fixed.qlessQR

4-387

Input Arguments
A — Input matrix
matrix

Input matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
after each row of A is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = Q*R.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQRMatrixSolve |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

4 Functions

4-388

fixed.qlessQRMatrixSolve
Solve system of linear equations (A'A)x = B for x using Q-less QR decomposition

Syntax
x = fixed.qlessQRMatrixSolve(A, B)
x = fixed.qlessQRMatrixSolve(A, B, outputType)
x = fixed.qlessQRMatrixSolve(A, B, outputType, forgettingFactor)

Description
x = fixed.qlessQRMatrixSolve(A, B) solves the system of linear equations (A'A)x = B using
QR decomposition, without computing the Q value.

The result of this code is equivalent to computing

[~,R] = qr(A,0);
x = R\(R'\B)

or

x = (A'*A)\B

x = fixed.qlessQRMatrixSolve(A, B, outputType) returns the solution to the system of
linear equations (A'A)x = B as a variable with the output type specified by outputType.

x = fixed.qlessQRMatrixSolve(A, B, outputType, forgettingFactor) returns the
solution to the system of linear equations, with the forgettingFactor multiplied by R after each
row of A is processed.

Examples

Solve a System of Equations Using Q-Less QR Decomposition

This example shows how to solve the system of linear equations A′A x = b using QR decomposition,
without explicitly calculating the Q factor of the QR decomposition.

rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n);
b = randn(n,p);
x = fixed.qlessQRMatrixSolve(A,b)

x = 3×1

 0.2991
 0.0523
 0.4182

 fixed.qlessQRMatrixSolve

4-389

The fixed.qlessQRMatrixSolve function is equivalent to the following code, hoerver the
fixed.qlessQRMatrixSolve function is more efficient and supports fixed-point data types.

x = (A'*A)\b

x = 3×1

 0.2991
 0.0523
 0.4182

Solve System of Equations Specifying an Output Data Type

This example shows how to specify an output data type to solve a system of equations with fixed-point
data.

Define the data representing the system of equations. Define the matrix A as a zero-mean, normally
distributed random matrix with a standard deviation of 1.

rng('default');
m = 6;
n = 3;
p = 1;
A0 = randn(m,n);
b0 = randn(n,p);

Specify fixed-point data types for A and b as to avoid overflow during the computation of QR.

T.A = fi([],1,22,16);
T.b = fi([],1,22,16);
A = cast(A0, 'like', T.A)

A=6×3 object
 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0630
 -2.2589 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 22
 FractionLength: 16

b = cast(b0, 'like', T.b)

b=3×1 object
 1.4090
 1.4172
 0.6715

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-390

 WordLength: 22
 FractionLength: 16

Specify an output data type to avoid overflow in the back-substitution.

T.x = fi([],1,29,12);

Use the fixed.qlessQRMatrixSolve function to compute the solution, x.

x = fixed.qlessQRMatrixSolve(A,b,T.x)

x=3×1 object
 0.2988
 0.0522
 0.4180

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 29
 FractionLength: 12

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: SpecifyPrecision
 ProductWordLength: 29
 ProductFractionLength: 12
 SumMode: SpecifyPrecision
 SumWordLength: 29
 SumFractionLength: 12
 CastBeforeSum: true

Compare this result to the result of the built-in MATLAB® operations in double-precision floating-
point.

x0 = (A0'*A0)\b0

x0 = 3×1

 0.2991
 0.0523
 0.4182

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix in the linear system of equations (A'A)x = B.
Data Types: single | double | fi
Complex Number Support: Yes

B — Input array
vector | matrix

 fixed.qlessQRMatrixSolve

4-391

Input vector or matrix representing B in the linear system of equations (A'A)x = B.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi | numerictype

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by the
output of the QR decomposition, R after each row of A is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
x — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then x is
an n-by-p matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRUpdate | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

4 Functions

4-392

fixed.qlessQRUpdate
Update QR factorization

Syntax
R = fixed.qlessQRUpdate(R, y)
R = fixed.qlessQRUpdate(R, y, forgettingFactor)

Description
R = fixed.qlessQRUpdate(R, y) updates upper-triangular R with vector y.

This syntax is equivalent to

[~,R] = qr([R;y],0);

R = fixed.qlessQRUpdate(R, y, forgettingFactor) updates upper-triangular R with vector
y and multiplies the result by the value specified by forgettingFactor.

This syntax is equivalent to

[~,R] = qr([R;y],0);
R(:) = forgettingFactor * R;

Examples

Update the Upper-Triangular Factor of a Matrix

This example shows how to update the upper-triangular factor of a matrix as new data streams in.

Define a matrix and compute the upper-triangular factor, R, using the fixed.qlessQR function.

rng('default');
m = 20;
n = 4;
A = randn(m,n)

A = 20×4

 0.5377 0.6715 -0.1022 -1.0891
 1.8339 -1.2075 -0.2414 0.0326
 -2.2588 0.7172 0.3192 0.5525
 0.8622 1.6302 0.3129 1.1006
 0.3188 0.4889 -0.8649 1.5442
 -1.3077 1.0347 -0.0301 0.0859
 -0.4336 0.7269 -0.1649 -1.4916
 0.3426 -0.3034 0.6277 -0.7423
 3.5784 0.2939 1.0933 -1.0616
 2.7694 -0.7873 1.1093 2.3505
 ⋮

 fixed.qlessQRUpdate

4-393

R = fixed.qlessQR(A)

R = 4×4

 7.1017 -2.0103 1.1646 0.7999
 0 4.8784 0.5745 -0.3222
 0 0 3.1658 -0.4570
 0 0 0 4.4965

As new data arrives, for example new values from a sensor array, you can use the
fixed.qlessQRUpdate function to update the upper-triangular factor with the new data.

y1 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y1)

R = 4×4

 7.1718 -1.8513 1.2927 0.9315
 0 5.0412 0.7646 -0.0904
 0 0 3.2332 -0.2584
 0 0 0 4.6074

y2 = [1,1,1,1];
R = fixed.qlessQRUpdate(R,y2)

R = 4×4

 7.2411 -1.6954 1.4184 1.0607
 0 5.1929 0.9371 0.1191
 0 0 3.2892 -0.0962
 0 0 0 4.6928

The result of updating the upper-triangular factor as new data arrives is equivalent to computing the
upper-triangular factor with all of the data.

R = fixed.qlessQR([A;y1;y2])

R = 4×4

 7.2411 -1.6954 1.4184 1.0607
 0 5.1929 0.9371 0.1191
 0 0 3.2892 -0.0962
 0 0 0 4.6928

When you want to stream an indefinite number of rows continuously, such as reading values from a
sensor array continuously, without accumulating the data without bound, specify a forgetting factor.

forgettingFactor = exp(-1/(2*m))

forgettingFactor = 0.9753

y3 = [1, 1, 1, 1];
R = fixed.qlessQRUpdate(R,y3,forgettingFactor)

R = 4×4

4 Functions

4-394

 7.1294 -1.5046 1.5038 1.1582
 0 5.2031 1.0676 0.3020
 0 0 3.2543 0.0379
 0 0 0 4.6431

Input Arguments
R — Upper-triangular input matrix
matrix

Upper triangular input, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

y — Measurement vector
vector

Measurement input, specified as a vector.
Data Types: single | double | fi
Complex Number Support: Yes

forgettingFactor — Forgetting factor
nonnegative scalar

Forgetting factor, specified as a nonnegative scalar between 0 and 1. The forgetting factor
determines how much weight past data is given. The forgettingFactor value is multiplied by R
after each row of R is processed.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
R — Updated upper-triangular matrix
matrix

Updated upper-triangular factor, returned as a matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qrAB | fixed.qrMatrixSolve

Introduced in R2020b

 fixed.qlessQRUpdate

4-395

fixed.qrAB
Compute C = Q'*B and upper-triangular factor R

Syntax
[C, R] = fixed.qrAB(A, B)
[C, R] = fixed.qrAB(A, B, regularizationParameter)

Description
[C, R] = fixed.qrAB(A, B) computes C = Q'*B and upper-triangular factor R. The function
simultaneously performs Givens rotations to A and B to transform A into R and B into C.

This syntax is equivalent to

[C,R] = qr(A,B)

[C, R] = fixed.qrAB(A, B, regularizationParameter) computes C and R using a
regularization parameter value specified by regularizationParameter. When a regularization
parameter is specified, the function simultaneously performs Givens rotations to transform

λIn
A

R

and

0n, p
B

C

where A is an m-by-n matrix, Bis a m-by-p matrix, and λ is the regularization parameter.

This syntax is equivalent to

[Q,R] = qr([regularizationParameter*eye(n); A], 0);
C = Q'[zeros(n,p);B];

Examples

Compute C and R Factors

This example shows how to compute the upper-triangular factor R, and C = Q′b.

Define the input matrices, A, and b.

rng('default');
m = 6;
n = 3;
p = 1;
A = randn(m,n)

4 Functions

4-396

A = 6×3

 0.5377 -0.4336 0.7254
 1.8339 0.3426 -0.0631
 -2.2588 3.5784 0.7147
 0.8622 2.7694 -0.2050
 0.3188 -1.3499 -0.1241
 -1.3077 3.0349 1.4897

b = randn(m,p)

b = 6×1

 1.4090
 1.4172
 0.6715
 -1.2075
 0.7172
 1.6302

The fixed.qrAB function to returns the upper-triangular factor, R, and C = Q′b.

[C, R] = fixed.qrAB(A,b)

C = 3×1

 -0.3284
 0.4055
 2.5481

R = 3×3

 3.3630 -2.8841 -1.0421
 0 4.8472 0.6885
 0 0 1.3258

Solve System of Linear Equations Using Regularization

This example shows how to solve a system of linear equations, Ax = b, by computing the upper-
triangular factor R, and C = Q′b. A regularization parameter can improve the conditioning of least
squares problems, and reduce the variance of the estimates when solving linear systems of equations.

Define input matrices, A, and b.

rng('default');
m = 50;
n = 5;
p = 1;
A = randn(m,n);
b = randn(m,p);

Use the fixed.qrAB function to compute the upper-triangular factor, R, and C = Q′b.

 fixed.qrAB

4-397

[C, R] = fixed.qrAB(A, b, 0.01)

C = 5×1

 -0.6361
 1.7663
 1.5892
 -2.0638
 -0.1327

R = 5×5

 9.0631 0.7471 0.4126 -0.3606 0.1883
 0 7.2515 -1.1145 0.6011 -0.7544
 0 0 7.6132 -0.9460 -0.7062
 0 0 0 6.3065 -2.3238
 0 0 0 0 5.9297

Use this result to solve Ax = b using x = R\C. Compute x = R\C using the fixed.qrMatrixSolve
function.

x = fixed.qrMatrixSolve(R,C)

x = 5×1

 -0.1148
 0.2944
 0.1650
 -0.3355
 -0.0224

Compare the result to computing x = A\b directly.

x = A\b

x = 5×1

 -0.1148
 0.2944
 0.1650
 -0.3355
 -0.0224

Input Arguments
A — Input coefficient matrix
matrix

Input coefficient matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

4 Functions

4-398

B — Right-hand side matrix
matrix

Right-hand side matrix, specified as a matrix.
Data Types: single | double | fi
Complex Number Support: Yes

regularizationParameter — Regularization parameter
nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
C — Linear system factor
matrix

Linear system factor, returned as a matrix that satisfies C = Q'B.

R — Upper-triangular factor
matrix

Upper-triangular factor, returned as a matrix that satisfies A = Q*R.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qlessQRUpdate | fixed.qrMatrixSolve

Introduced in R2020b

 fixed.qrAB

4-399

fixed.qrMatrixSolve
Solve system of linear equations Ax = B for x using QR decomposition

Syntax
x = fixed.qrMatrixSolve(A, B)
x = fixed.qrMatrixSolve(A, B, outputType)
x = fixed.qrMatrixSolve(A, B, outputType, regularizationParameter)

Description
x = fixed.qrMatrixSolve(A, B) solves the system of linear equations Ax = B using QR
decomposition.

x = fixed.qrMatrixSolve(A, B, outputType) returns the solution to the system of linear
equations Ax = B as a variable with the output type specified by outputType.

x = fixed.qrMatrixSolve(A, B, outputType, regularizationParameter) returns the
solution to the system of linear equations

λIn
A

x =
0n, p
B

where A is an m-by-n matrix, Bis an m-by-p matrix, and λ is the regularization parameter.

Examples

Solve a System of Equations Using QR Decomposition

This example shows how to solve a simple system of linear equations Ax = b, using QR
decomposition.

In this example, define A as a 5-by-3 matrix with a large condition number. To solve a system of linear
equations involving ill-conditioned (large condition number) non-square matrices, you must use QR
decomposition.

rng default;
A = gallery('randsvd', [5,3], 1000000);
b = [1; 1; 1; 1; 1];
x = fixed.qrMatrixSolve(A,b)

x = 3×1
104 ×

 -2.3777
 7.0686
 -2.2703

4 Functions

4-400

Compare the result of the fixed.qrMatrixSolve function with the result of the mldivide or \
function.

x = A\b

x = 3×1
104 ×

 -2.3777
 7.0686
 -2.2703

Specify Regularization Parameter in an Overdetermined System

This example shows the effect of a regularization parameter when solving an overdetermined system.
In this example, a quantity y is measured at several different values of time t to produce the
following observations.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';

Model the data with a decaying exponential function

y(t) = c1 + c2e−t.

The preceding equation says that the vector y should be approximated by a linear combination of two
other vectors. One is a constant vector containing all ones and the other is the vector with
components exp(-t). The unknown coefficients, c1 and c2, can be computed by doing a least-squares
fit, which minimizes the sum of the squares of the deviations of the data from the model. There are
six equations and two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 6×2

 1.0000 1.0000
 1.0000 0.7408
 1.0000 0.4493
 1.0000 0.3329
 1.0000 0.2019
 1.0000 0.1003

Use the fixed.qrMatrixSolve function to get the least-squares solution.

c = fixed.qrMatrixSolve(E, y)

c = 2×1

 0.4760
 0.3413

In other words, the least-squares fit to the data is

 fixed.qrMatrixSolve

4-401

y(t) = 0 . 4760 + 0 . 3413e−t .

The following statements evaluate the model at regularly spaced increments in t, and then plot the
result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

In cases where the input matrices are ill-conditioned, small positive values of a regularization
parameter can improve the conditioning of the least squares problem, and reduce the variance of the
estimates. Explore the effect of the regularization parameter on the least squares solution for this
data.

figure;
lambda = [0:0.1:0.5];
plot(t,y,'o', 'DisplayName', 'Original Data');
for i = 1:length(lambda)
 c = fixed.qrMatrixSolve(E, y, numerictype('double'), lambda(i));
 Y = [ones(size(T)) exp(-T)]*c;
 hold on
 plot(T,Y,'-', 'DisplayName', ['lambda =', num2str(lambda(i))])
end
legend('Original Data', 'lambda = 0', 'lambda = 0.1', 'lambda = 0.2', 'lambda = 0.3', 'lambda = 0.4', 'lambda = 0.5')

4 Functions

4-402

Input Arguments
A — Coefficient matrix
matrix

Coefficient matrix in the linear system of equations Ax = B.
Data Types: single | double | fi
Complex Number Support: Yes

B — Input array
vector | matrix

Input vector or matrix representing B in the linear system of equations Ax = B.
Data Types: single | double | fi
Complex Number Support: Yes

outputType — Output data type
numerictype object | numeric variable

Output data type, specified as a numerictype object or a numeric variable. If outputType is
specified as a numerictype object, the output, x, will have the specified data type. If outputType is
specified as a numeric variable, x will have the same data type as the numeric variable.

 fixed.qrMatrixSolve

4-403

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi | numerictype

regularizationParameter — Regularization parameter
nonnegative scalar

Regularization parameter, specified as a non-negative scalar. Small, positive values of the
regularization parameter can improve the conditioning of the problem and reduce the variance of the
estimates. While biased, the reduced variance of the estimate often results in a smaller mean squared
error when compared to least-squares estimates.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
x — Solution
vector | matrix

Solution, returned as a vector or matrix. If A is an m-by-n matrix and B is an m-by-p matrix, then x is
an n-by-p matrix.

See Also
fixed.backwardSubstitute | fixed.forwardSubstitute | fixed.qlessQR |
fixed.qlessQRMatrixSolve | fixed.qlessQRUpdate | fixed.qrAB

Introduced in R2020b

4 Functions

4-404

fixed.Quantizer
Quantize fixed-point numbers

Syntax
q = fixed.Quantizer
q = fixed.Quantizer(nt,rm,oa)
q = fixed.Quantizer(s,wl,fl,rm,oa)
q = fixed.Quantizer(Name,Value)

Description
q = fixed.Quantizer creates a quantizer q that quantizes fixed-point (fi) numbers using default
fixed-point settings.

q = fixed.Quantizer(nt,rm,oa) uses the numerictype (nt) object information and the
RoundingMethod (rm) and OverflowAction (oa) properties.

The numerictype, rounding method, and overflow action apply only during the quantization. The
resulting, quantized q does not have any fimath attached to it.

q = fixed.Quantizer(s,wl,fl,rm,oa) uses the Signed (s), WordLength (wl),
FractionLength (fl), RoundingMethod (rm), and OverflowAction (oa) properties.

q = fixed.Quantizer(Name,Value) creates a quantizer with the property options specified by
one or more Name,Value pair arguments. You separate pairs of Name,Value arguments with
commas. Name is the argument name, and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
nt

Binary-point, scaled numerictype object or slope-bias scaled, fixed-point numerictype object. If your
fixed.Quantizer uses a numerictype object that has either a Signedness of Auto or unspecified
Scaling, an error occurs.

rm

Rounding method to apply to the output data. Valid rounding methods are: Ceiling, Convergent,
Floor, Nearest, Round, and Zero. The associated property name is RoundingMethod.

Default: Floor

oa

Overflow action to take in case of data overflow. Valid overflow actions are Saturate and Wrap. The
associated property name is OverflowAction.

Default: Wrap

 fixed.Quantizer

4-405

s

Logical value, true or false, indicating whether the output is signed or unsigned, respectively. The
associated property name is Signed.

Default: true

wl

Word length (number of bits) of the output data. The associated property name is WordLength.

Default: 16

fl

Fraction length of the output data. The associated property name is FractionLength.

Default: 15

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Bias

The bias is part of the numerical representation used to interpret a fixed-point number on page 4-408.
Along with the slope, the bias forms the scaling of the number.

Default: 0

FixedExponent

Fixed-point exponent associated with the object. The exponent is part of the numerical representation
used to express a fixed-point number on page 4-408.

The exponent of a fixed-point number is equal to the negative of the fraction length. FixedExponent
must be an integer.

Default: -15

FractionLength

Fraction length of the stored integer value of the object, in bits. The fraction length can be any
integer value.

This property automatically defaults to the best precision possible based on the value of the word
length and the real-world value of the fi object.

Default: 15

OverflowAction

Action to take in case of data overflow. Valid overflow actions are Saturate and Wrap. .

4 Functions

4-406

Default: Wrap

RoundingMethod

Rounding method to apply to the output data. Valid rounding methods are: Ceiling, Convergent,
Floor, Nearest, Round, and Zero.

Default: Floor

Signed

Whether the object is signed. The possible values of this property are:

• 1 — signed
• 0 — unsigned
• true — signed
• false — unsigned

Note Although the Signed property is still supported, the Signedness property always appears in
the numerictype object display. If you choose to change or set the signedness of your numerictype
object using the Signed property, MATLAB updates the corresponding value of the Signedness
property.

Default: true

Signedness

Whether the object is signed, unsigned, or has an unspecified sign. The possible values of this
property are:

• Signed — signed
• Unsigned — unsigned

Default: Signed

Slope

Slope associated with the object. The slope is part of the numerical representation used to express a
fixed-point number on page 4-408. Along with the bias, the slope forms the scaling of a fixed-point
number.

Default: 2^-15

SlopeAdjustmentFactor

Slope adjustment associated with the object. The slope adjustment is equivalent to the fractional
slope of a fixed-point number. The fractional slope is part of the numerical representation used to
express a fixed-point number.

SlopeAdjustmentFactor must be greater than or equal to 1 and less than 2.

Default: 1

 fixed.Quantizer

4-407

WordLength

Word length of the stored integer value of the object, in bits. The word length can be any positive
integer value.

Default: 16

Output Arguments
q

Quantizer that quantizes fi input numbers

Examples
Use fixed.Quantizer to reduce the word length that results from adding two fixed-point numbers.

q = fixed.Quantizer;
x1 = fi(0.1,1,16,15);
x2 = fi(0.8,1,16,15);
y = quantize(q,x1+x2);

Use fixed.Quantizer object to change a binary point scaled fixed-point fi to a slope-bias scaled
fixed-point fi

qsb = fixed.Quantizer(numerictype(1,7,1.6,0.2),...
 'Round','Saturate');
ysb = quantize(qsb,fi(pi,1,16,13));

More About
Fixed-point numbers

Fixed-point numbers can be represented as

real‐worldvalue = (slope × storedinteger) + bias

where the slope can be expressed as

slope = f ractionalslope × 2f ixedexponent

Tips
• Use y = quantize(q,x) to quantize input array x using the fixed-point settings of quantizer q.

x can be any fixed-point number fi, except a Boolean value. If x is a scaled double, the x and y
data will be the same, but y will have fixed-point settings. If x is a double or single then y = x.
This functionality lets you share the same code for both floating-point data types and fi objects
when quantizers are present.

• Use n = numerictype(q) to get a numerictype for the current settings of quantizer q.
• Use clone(q) to create a quantizer object with the same property values as q.
• If you use a fixed.quantizer in code generation, note that it is a handle object and must be

declared as persistent.

4 Functions

4-408

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | numerictype | quantizer

Topics
“Set numerictype Object Properties”

Introduced in R2011b

 fixed.Quantizer

4-409

fixpt_instrument_purge
Remove corrupt fixed-point instrumentation from model

Compatibility

Note fixpt_instrument_purge will be removed in a future release.

Syntax
fixpt_instrument_purge
fixpt_instrument_purge(modelName, interactive)

Description
The fixpt_instrument_purge script finds and removes fixed-point instrumentation from a model
left by the Fixed-Point Tool and the fixed-point autoscaling script. The Fixed-Point Tool and the fixed-
point autoscaling script each add callbacks to a model. For example, the Fixed-Point Tool appends
commands to model-level callbacks. These callbacks make the Fixed-Point Tool respond to simulation
events. Similarly, the autoscaling script adds instrumentation to some parameter values that gathers
information required by the script.

Normally, these types of instrumentation are automatically removed from a model. The Fixed-Point
Tool removes its instrumentation when the model is closed. The autoscaling script removes its
instrumentation shortly after it is added. However, there are cases where abnormal termination of a
model leaves fixed-point instrumentation behind. The purpose of fixpt_instrument_purge is to
find and remove fixed-point instrumentation left over from abnormal termination.

fixpt_instrument_purge(modelName, interactive) removes instrumentation from model
modelName. interactive is true by default, which prompts you to make each change. When
interactive is set to false, all found instrumentation is automatically removed from the model.

See Also
autofixexp | fxptdlg

Introduced before R2006a

4 Functions

4-410

floor
Round toward negative infinity

Syntax
y = floor(a)

Description
y = floor(a) rounds fi object a to the nearest integer in the direction of negative infinity and
returns the result in fi object y.

Examples

Use floor on a Signed fi Object

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = floor(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 5
 FractionLength: 0

The following example demonstrates how the floor function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

 floor

4-411

y = floor(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions ceil, fix, and floor differ in the way they round fi objects:

• The ceil function rounds values to the nearest integer toward positive infinity.
• The fix function rounds values to the nearest integer toward zero.
• The floor function rounds values to the nearest integer toward negative infinity.

This example illustrates these differences for a given fi input object a.

a = fi([-2.5,-1.75,-1.25,-0.5,0.5,1.25,1.75,2.5]');
y = [a ceil(a) fix(a) floor(a)]

y=8×4 object
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.7500 -1.0000 -1.0000 -2.0000
 -1.2500 -1.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 1.0000 0 0
 1.2500 2.0000 1.0000 1.0000
 1.7500 2.0000 1.0000 1.0000
 2.5000 3.0000 2.0000 2.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

plot(a,y); legend('a','ceil(a)','fix(a)','floor(a)','location','NW');

4 Functions

4-412

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

floor does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.

 floor

4-413

• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that
of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | nearest | round

Introduced in R2008a

4 Functions

4-414

fma
Multiply and add using fused multiply add approach

Syntax
X = fma(A, B, C)

Description
X = fma(A, B, C) computes A.*B+C using a fused multiply add approach. Fused multiply add
operations round only once, often making the result more accurate than performing a multiplication
operation followed by an addition.

Examples

Multiply and Add Three Inputs Using Fused Multiply Add

This example shows how to use the fma function to calculate A × B + C using a fused multiply add
approach.

Define the inputs and use the fma function to compute the multiply add operation.

a = half(10);
b = half(10);
c = half(2);
x = fma(a, b, c)

x =

 half

 102

Compare the result of the fma function with the two-step approach of computing the product and
then the sum.

temp = a * b;
x = temp + c

x =

 half

 102

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

 fma

4-415

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, fma performs element-wise multiplication followed by addition.
Data Types: single | double | half

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array. When A and
B are matrices, fma performs element-wise multiplication followed by addition.
Data Types: single | double | half

C — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a floating-point scalar, vector, matrix, or multidimensional array.
Data Types: single | double | half

Output Arguments
X — Result of multiply and add operation
scalar | vector | matrix | multidimensional array

Result of multiply and add operation, A.*B+C, returned as a scalar, vector, matrix, or
multidimensional array.

See Also
half

Introduced in R2019a

4 Functions

4-416

for
Execute statements specified number of times

Syntax
for index = values
 statements
end

Description
for index = valuesstatements, end executes a group of statements in a loop for a specified
number of times.

If a colon operation with fi objects is used as the index, then the fi objects must be whole
numbers.

Refer to the MATLAB for reference page for more information.

Example
Use fi in a For Loop

Use a fi object as the index of a for-loop.

a = fi(1,0,8,0);
b = fi(2,0,8,0);
c = fi(10,0,8,0);

for x = a:b:c
 x
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2014b

 for

4-417

fractionlength
Fraction length of quantizer object

Syntax
fractionlength(q)

Description
fractionlength(q) returns the fraction length of quantizer object q.

Algorithms
For floating-point quantizer objects, f = w - e - 1, where w is the word length and e is the exponent
length.

For fixed-point quantizer objects, f is part of the format [w f].

See Also
fi | numerictype | quantizer | wordlength

Introduced before R2006a

4 Functions

4-418

fxpopt
Optimize data types of a system

Syntax
result = fxpopt(model, sud, options)

Description
result = fxpopt(model, sud, options) optimizes the data types in the model or subsystem
specified by sud in the model, model, with additional options specified in the
fxpOptimizationOptions object, options.

Examples

Optimize Fixed-Point Data Types

This example shows how to optimize the data types used by a system based on specified tolerances.

To begin, open the system for which you want to optimize the data types.

model = 'ex_auto_gain_controller';
sud = 'ex_auto_gain_controller/sud';
open_system(model)

Create an fxpOptimizationOptions object to define constraints and tolerances to meet your
design goals. Set the UseParallel property of the fxpOptimizationOptions object to true to
run iterations of the optimization in parallel. You can also specify word lengths to allow in your design
through the AllowableWordLengths property.

opt = fxpOptimizationOptions('AllowableWordLengths', 10:24, 'UseParallel', true)

 fxpopt

4-419

opt =

 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 10
 Verbosity: High
 AllowableWordLengths: [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
 UseParallel: 1

 Advanced Options
 AdvancedOptions: [1×1 struct]

Use the addTolerance method to define tolerances for the differences between the original
behavior of the system, and the behavior using the optimized fixed-point data types.

tol = 10e-2;
addTolerance(opt, [model '/output_signal'], 1, 'AbsTol', tol);

Use the fxpopt function to run the optimization. The software analyzes ranges of objects in your
system under design and the constraints specified in the fxpOptimizationOptions object to apply
heterogeneous data types to your system while minimizing total bit width.

result = fxpopt(model, sud, opt);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
 + Preprocessing
 + Modeling the optimization problem
 - Constructing decision variables
 + Running the optimization solver
Analyzing and transferring files to the workers ...done.
 - Evaluating new solution: cost 180, does not meet the tolerances.
 - Evaluating new solution: cost 198, does not meet the tolerances.
 - Evaluating new solution: cost 216, does not meet the tolerances.
 - Evaluating new solution: cost 234, does not meet the tolerances.
 - Evaluating new solution: cost 252, does not meet the tolerances.
 - Evaluating new solution: cost 270, does not meet the tolerances.
 - Evaluating new solution: cost 288, does not meet the tolerances.
 - Evaluating new solution: cost 306, meets the tolerances.
 - Evaluating new solution: cost 324, meets the tolerances.
 - Evaluating new solution: cost 342, meets the tolerances.
 - Evaluating new solution: cost 360, meets the tolerances.
 - Evaluating new solution: cost 378, meets the tolerances.
 - Evaluating new solution: cost 396, meets the tolerances.
 - Evaluating new solution: cost 414, meets the tolerances.
 - Evaluating new solution: cost 432, meets the tolerances.
 - Updated best found solution, cost: 306
 - Evaluating new solution: cost 304, meets the tolerances.
 - Evaluating new solution: cost 304, meets the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 305, does not meet the tolerances.
 - Evaluating new solution: cost 305, meets the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.

4 Functions

4-420

 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 296, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 291, meets the tolerances.
 - Evaluating new solution: cost 296, does not meet the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 300, meets the tolerances.
 - Evaluating new solution: cost 296, does not meet the tolerances.
 - Evaluating new solution: cost 301, meets the tolerances.
 - Evaluating new solution: cost 303, meets the tolerances.
 - Evaluating new solution: cost 299, meets the tolerances.
 - Evaluating new solution: cost 304, does not meet the tolerances.
 - Evaluating new solution: cost 300, meets the tolerances.
 - Updated best found solution, cost: 304
 - Updated best found solution, cost: 301
 - Updated best found solution, cost: 299
 - Updated best found solution, cost: 296
 - Updated best found solution, cost: 291
 - Evaluating new solution: cost 280, meets the tolerances.
 - Evaluating new solution: cost 287, meets the tolerances.
 - Evaluating new solution: cost 288, does not meet the tolerances.
 - Evaluating new solution: cost 287, does not meet the tolerances.
 - Evaluating new solution: cost 283, meets the tolerances.
 - Evaluating new solution: cost 283, does not meet the tolerances.
 - Evaluating new solution: cost 262, does not meet the tolerances.
 - Evaluating new solution: cost 283, does not meet the tolerances.
 - Evaluating new solution: cost 282, does not meet the tolerances.
 - Evaluating new solution: cost 288, meets the tolerances.
 - Evaluating new solution: cost 289, meets the tolerances.
 - Evaluating new solution: cost 288, meets the tolerances.
 - Evaluating new solution: cost 290, meets the tolerances.
 - Evaluating new solution: cost 281, does not meet the tolerances.
 - Evaluating new solution: cost 286, does not meet the tolerances.
 - Evaluating new solution: cost 287, meets the tolerances.
 - Evaluating new solution: cost 284, meets the tolerances.
 - Evaluating new solution: cost 282, meets the tolerances.
 - Evaluating new solution: cost 285, does not meet the tolerances.
 - Evaluating new solution: cost 277, meets the tolerances.
 - Updated best found solution, cost: 280
 - Updated best found solution, cost: 277
 - Evaluating new solution: cost 272, meets the tolerances.
 - Evaluating new solution: cost 266, meets the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.
 - Evaluating new solution: cost 271, does not meet the tolerances.
 - Evaluating new solution: cost 274, meets the tolerances.
 - Evaluating new solution: cost 275, meets the tolerances.
 - Evaluating new solution: cost 274, does not meet the tolerances.
 - Evaluating new solution: cost 275, meets the tolerances.
 - Evaluating new solution: cost 276, does not meet the tolerances.
 - Evaluating new solution: cost 271, meets the tolerances.
 - Evaluating new solution: cost 267, meets the tolerances.
 - Evaluating new solution: cost 270, meets the tolerances.
 - Evaluating new solution: cost 272, meets the tolerances.
 - Evaluating new solution: cost 264, does not meet the tolerances.
 - Evaluating new solution: cost 265, does not meet the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.
 - Evaluating new solution: cost 270, meets the tolerances.
 - Evaluating new solution: cost 269, meets the tolerances.

 fxpopt

4-421

 - Evaluating new solution: cost 276, meets the tolerances.
 - Evaluating new solution: cost 274, meets the tolerances.
 - Updated best found solution, cost: 272
 - Updated best found solution, cost: 266
 + Optimization has finished.
 - Neighborhood search complete.
 - Maximum number of iterations completed.
 + Fixed-point implementation that met the tolerances found.
 - Total cost: 266
 - Maximum absolute difference: 0.087035
 - Use the explore method of the result to explore the implementation.

Use the explore method of the OptimizationResult object, result, to launch Simulation Data
Inspector and explore the design containing the smallest total number of bits while maintaining the
numeric tolerances specified in the opt object.

 explore(result);

4 Functions

4-422

You can revert your model back to its original state using the revert method of the
OptimizationResult object.

 revert(result);

Input Arguments
model — Model containing system under design, sud
character vector

Name of the model containing the system that you want to optimize.
Data Types: char

sud — Model or subsystem whose data types you want to optimize
character vector

Model or subsystem whose data types you want to optimize, specified as a character vector
containing the path to the system.
Data Types: char

options — Additional optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying additional options to use during the data type
optimization process.

Output Arguments
result — Object containing the optimized design
OptimizationResult object

Result of the optimization, returned as an OptimizationResult object. Use the explore method of
the object to open the Simulation Data Inspector and view the behavior of the optimized system. You
can also explore other solutions found during the optimization that may or may not meet the
constraints specified in the fxpOptimizationOptions object, options.

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

 fxpopt

4-423

fxptdlg
Start Fixed-Point Tool

Syntax
fxptdlg('modelname')

Description
fxptdlg('modelname') starts the Fixed-Point Tool for the Simulink model specified by modelname.
You can also access this tool by the following methods:

• From the Apps tab, under Code Generation click Fixed-Point Tool.
• From a subsystem context (right-click) menu, select Fixed-Point Tool.

In conjunction with Fixed-Point Designer software, the Fixed-Point Tool provides convenient access
to:

• Model and subsystem parameters that control the signal logging, fixed-point instrumentation
mode, and data type override.

• Plotting capabilities that enable you to plot data that resides in the MATLAB workspace, namely,
simulation results associated with Scope, To Workspace, and root-level Outport blocks, in addition
to logged signal data (see “Signal Logging” in the Simulink User's Guide)

• An interactive automatic data typing feature that proposes fixed-point data types for appropriately
configured objects in your model, and then allows you to selectively accept and apply the data
type proposals

You can launch the Fixed-Point Tool for any system or subsystem, and the tool controls the object
selected in its System under design pane. If Fixed-Point Designer software is installed, the Fixed-
Point Tool displays the name, data type, design minimum and maximum values, minimum and
maximum simulation values, and scaling of each model object that logs fixed-point data. Additionally,
if a signal saturates or overflows, the tool displays the number of times saturation or overflow
occurred.

Note If your model uses accelerator or rapid accelerator simulation modes, the Fixed-Point Tool
changes the simulation mode to normal during range collection, and then sets it back to its original
simulation mode once the range collection simulation is complete.

Overriding Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer software.
However, even if you do not have Fixed-Point Designer software, you can configure data type override
settings to simulate a model that specifies fixed-point data types. In this mode, the Simulink software
temporarily overrides fixed-point data types with floating-point data types when simulating the model.

4 Functions

4-424

Note If you use fi on page 4-340 objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You can set fipref on page 4-
340 to prevent the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:

1 Enter the following at the command line.

set_param(gcs, 'DataTypeOverride', 'Double',...
 'DataTypeOverrideAppliesTo','AllNumericTypes',...
 'MinMaxOverflowLogging','ForceOff')

2 If you use fi objects or embedded numeric data types in your model, set the fipref
DataTypeOverride property to TrueDoubles or TrueSingles (to be consistent with the
model-wide data type override setting) and the DataTypeOverrideAppliesTo property to All
numeric types.

For example, at the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...
 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
“Propose Fraction Lengths Using Simulation Range Data” | Fixed-Point Tool

Introduced before R2006a

 fxptdlg

4-425

ge
Determine whether real-world value of one fi object is greater than or equal to another

Syntax
c = ge(a,b)
a >= b

Description
c = ge(a,b) is called for the syntax a >= b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a >= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the ge function to determine whether the real-world value of one fi object is greater than or
equal to another.

a = fi(pi);
b = fi(pi, 1, 32);
b >= a

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The ge function returns 0
because after quantization, the value of a is slightly greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a >= b

4 Functions

4-426

ans = logical
 1

The ge function casts b to the same word length as a, and returns 1 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | gt | le | lt | ne

Introduced before R2006a

 ge

4-427

get
Property values of object

Syntax
value = get(o,'propertyname')
structure = get(o)

Description
value = get(o,'propertyname') returns the property value of the property 'propertyname'
for the object o. If you replace 'propertyname' by a cell array of a vector of strings containing
property names, get returns a cell array of a vector of corresponding values.

structure = get(o) returns a structure containing the properties and states of object o.

o can be a fi, fimath, fipref, numerictype, or quantizer object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The syntax structure = get(o) is not supported.

See Also
set

Introduced before R2006a

4 Functions

4-428

getlsb
Least significant bit

Syntax
c = getlsb(a)

Description
c = getlsb(a) returns the value of the least significant bit in a as a u1,0.

a can be a scalar fi object or a vector fi object.

getlsb only supports fi objects with fixed-point data types.

Examples
The following example uses getlsb to find the least significant bit in the fi object a.

a = fi(-26, 1, 6, 0);
c = getlsb(a)

c =

 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0

You can verify that the least significant bit in the fi object a is 0 by looking at the binary
representation of a.

disp(bin(a))

100110

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getmsb

 getlsb

4-429

Introduced in R2007b

4 Functions

4-430

getmsb
Most significant bit

Syntax
c = getmsb(a)

Description
c = getmsb(a) returns the value of the most significant bit in a as a u1,0.

a can be a scalar fi object or a vector fi object.

getmsb only supports fi objects with fixed-point data types.

Examples
The following example uses getmsb to find the most significant bit in the fi object a.

a = fi(-26, 1, 6, 0);
c = getmsb(a)

c =

 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 1
 FractionLength: 0
>>

You can verify that the most significant bit in the fi object a is 1 by looking at the binary
representation of a.

disp(bin(a))

100110

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
bitand | bitandreduce | bitconcat | bitget | bitor | bitorreduce | bitset | bitxor |
bitxorreduce | getlsb

 getmsb

4-431

Introduced in R2007b

4 Functions

4-432

globalfimath
Configure global fimath and return handle object

Syntax
G = globalfimath
G = globalfimath('PropertyName1',PropertyValue1,...)
G = globalfimath(f)

Description
G = globalfimath returns a handle object to the global fimath. The global fimath has identical
properties to a fimath object but applies globally.

G = globalfimath('PropertyName1',PropertyValue1,...) sets the global fimath using the
named properties and their corresponding values. Properties that you do not specify in this syntax
are automatically set to that of the current global fimath.

G = globalfimath(f) sets the properties of the global fimath to match those of the input fimath
object f, and returns a handle object to it.

Unless, in a previous release, you used the saveglobalfimathpref function to save global fimath
settings to your MATLAB preferences, the global fimath properties you set with the globalfimath
function apply only to your current MATLAB session. It is best practice to remove global fimath from
the MATLAB preferences so that you start each MATLAB session using the default fimath settings.
To remove the global fimath, use the removeglobalfimathpref function.

Examples

Modifying globalfimath

Use the globalfimath function to set, change, and reset the global fimath.

Create a fimath object and use it as the global fimath.

G = globalfimath('RoundMode','Floor','OverflowMode','Wrap')

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

Create another fimath object using the new default.

F1 = fimath

F1 =
 RoundingMethod: Floor
 OverflowAction: Wrap

 globalfimath

4-433

 ProductMode: FullPrecision
 SumMode: FullPrecision

Create a fi object, A, associated with the global fimath.

A = fi(pi)

A =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Now set the "SumMode" property of the global fimath to "KeepMSB" and retain all the other property
values of the current global fimath.

G = globalfimath('SumMode','KeepMSB')

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: KeepMSB
 SumWordLength: 32
 CastBeforeSum: true

Change the global fimath by directly interacting with the handle object G.

G.ProductMode = 'SpecifyPrecision'

G =
 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: SpecifyPrecision
 ProductWordLength: 32
 ProductFractionLength: 30
 SumMode: KeepMSB
 SumWordLength: 32
 CastBeforeSum: true

Reset the global fimath to the factory default by calling the reset method on G. This is equivalent to
using the resetglobalfimath function.

reset(G);
G

G =
 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Tips
If you always use the same fimath settings and you are not sharing code with other people, using
the globalfimath function is a quick, convenient method to configure these settings. However, if

4 Functions

4-434

you share the code with other people or if you use the fiaccel function to accelerate the algorithm
or you generate C code for your algorithm, consider the following alternatives.

Goal Issue Using globalfimath Solution
Share code If you share code with someone

who is using different global
fimath settings, they might see
different results.

Separate the fimath properties
from your algorithm by using
types tables. For more
information, see “Separate Data
Type Definitions from
Algorithm”.

Accelerate your algorithm using
fiaccel or generate C code
from your MATLAB algorithm
using codegen

You cannot use globalfimath
within that algorithm. If you
generate code with one
globalfimath setting and run
it with a different
globalfimath setting, results
might vary. For more
information, see Specifying
Default fimath Values for MEX
Functions.

Use types tables in the
algorithm from which you want
to generate code. This insulates
you from the global settings and
makes the code portable. For
more information, see “Separate
Data Type Definitions from
Algorithm”.

See Also
codegen | fiaccel | fimath | removeglobalfimathpref | resetglobalfimath

Introduced in R2010a

 globalfimath

4-435

gt
Determine whether real-world value of one fi object is greater than another

Syntax
c = gt(a,b)
a > b

Description
c = gt(a,b) is called for the syntax a > b when a or b is a fi object. a and b must have the same
dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a > b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the gt function to determine whether the real-world value of one fi object is greater than
another.

a = fi(pi);
b = fi(pi, 1, 32);
a > b

ans = logical
 1

Input a has a 16-bit word length, while input b has a 32-bit word length. The gt function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a > b

4 Functions

4-436

ans = logical
 0

The gt function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | ge | le | lt | ne

Introduced before R2006a

 gt

4-437

half
Construct half-precision numeric object

Description
Use the half constructor to assign a half-precision data type to a number or variable. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size.

For more information, see “Floating-Point Numbers”.

Creation

Syntax
a = half(v)

Description

a = half(v) converts the values in v to half-precision.

Input Arguments

v — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Object Functions
These functions are supported for use with half-precision inputs.

Math and Arithmetic
abs Absolute value and complex magnitude
acos Inverse cosine in radians
acosh Inverse hyperbolic cosine
asin Inverse sine in radians
asinh Inverse hyperbolic sine
atan Inverse tangent in radians
atan2 Four-quadrant inverse tangent
atanh Inverse hyperbolic tangent
ceil Round toward positive infinity
conj Complex conjugate

4 Functions

4-438

conv Convolution and polynomial multiplication
conv2 2-D convolution
cos Cosine of argument in radians
cospi Compute cos(X*pi) accurately
dot Dot product
exp Exponential
expm1 Compute exp(x)-1 accurately for small values of x
fft Fast Fourier transform
fft2 2-D fast Fourier transform
fftn N-D fast Fourier transform
fftshift Shift zero-frequency component to center of spectrum
fix Round toward zero
floor Round toward negative infinity
fma Multiply and add using fused multiply add approach
hypot Square root of sum of squares (hypotenuse)
ifft Inverse fast Fourier transform
ifft2 2-D inverse fast Fourier transform
ifftn Multidimensional inverse fast Fourier transform
ifftshift Inverse zero-frequency shift
imag Imaginary part of complex number
ldivide Left array division
log Natural logarithm
log10 Common logarithm (base 10)
log1p Compute log(1+x) accurately for small values of x
mean Average or mean value of array
minus Subtraction
mldivide Solve systems of linear equations Ax = B for x
mod Remainder after division (modulo operation)
mrdivide Solve systems of linear equations xA = B for x
mtimes Matrix multiplication
plus Addition or append strings
pow10 Base 10 power and scale half-precision numbers
pow2 Base 2 power and scale floating-point numbers
power Element-wise power
prod Product of array elements
rdivide Right array division
real Real part of complex number
rem Remainder after division
round Round to nearest decimal or integer
rsqrt Reciprocal square root
sign Sign function (signum function)
sin Sine of argument in radians
sinh Hyperbolic sine
sinpi Compute sin(X*pi) accurately
sqrt Square root
sum Sum of array elements
tan Tangent of argument in radians
tanh Hyperbolic tangent
times Multiplication
uminus Unary minus
uplus Unary plus

 half

4-439

Data Types
cast Convert variable to different data type
cell Cell array
double Double-precision arrays
eps Floating-point relative accuracy
Inf Create array of all Inf values
int16 16-bit signed integer arrays
int32 32-bit signed integer arrays
int64 64-bit signed integer arrays
int8 8-bit signed integer arrays
isa Determine if input has specified data type
isfloat Determine whether input is floating-point data type
islogical Determine if input is logical array
isnan Determine which array elements are NaN
isnumeric Determine whether input is numeric array
isreal Determine whether array uses complex storage
logical Convert numeric values to logicals
NaN Create array of all NaN values
single Single-precision arrays
uint16 16-bit unsigned integer arrays
uint32 32-bit unsigned integer arrays
uint64 64-bit unsigned integer arrays
uint8 8-bit unsigned integer arrays

Relational and Logical Operators
all Determine if all array elements are nonzero or true
and Find logical AND
any Determine if any array elements are nonzero
eq Determine equality
ge Determine greater than or equal to
gt Determine greater than
isequal Determine array equality
isequaln Determine array equality, treating NaN values as equal
le Determine less than or equal to
lt Determine less than
ne Determine inequality
not Find logical NOT
or Find logical OR

Array and Matrix Operations
cat Concatenate arrays
circshift Shift array circularly
colon Vector creation, array subscripting, and for-loop iteration
complex Create complex array
ctranspose Complex conjugate transpose
eye Identity matrix
flip Flip order of elements
full Convert sparse matrix to full storage
horzcat Horizontal concatenation for heterogeneous arrays
iscolumn Determine whether input is column vector

4 Functions

4-440

isempty Determine whether array is empty
isfinite Determine which array elements are finite
isinf Determine which array elements are infinite
ismatrix Determine whether input is matrix
isrow Determine whether input is row vector
isscalar Determine whether input is scalar
isvector Determine whether input is vector
length Length of largest array dimension
max Maximum elements of an array
min Minimum elements of an array
ndims Number of array dimensions
numel Number of array elements
ones Create array of all ones
permute Permute array dimensions
repelem Repeat copies of array elements
repmat Repeat copies of array
reshape Reshape array
size Array size
subsasgn Redefine subscripted assignment
subsref Subscripted reference
transpose Transpose vector or matrix
vertcat Vertical concatenation for heterogeneous arrays
zeros Create array of all zeros

Language Fundamentals
display Show information about variable or result of expression

Graphics
area Area of 2-D alpha shape
bar Bar graph
barh Horizontal bar graph
fplot Plot expression or function
line Create primitive line
plot 2-D line plot
plot3 3-D point or line plot
plotmatrix Scatter plot matrix
rgbplot Plot colormap
scatter Scatter plot
scatter3 3-D scatter plot
xlim Set or query x-axis limits
ylim Set or query y-axis limits
zlim Set or query z-axis limits

Deep Learning
activations Compute deep learning network layer activations
classify Classify data using a trained deep learning neural network
predict Reconstruct the inputs using trained autoencoder
predictAndUpdateState Predict responses using a trained recurrent neural network and update the

network state

To display the complete list of supported functions, at the MATLAB Command Window, enter:

 half

4-441

methods(half(1))

Examples

Convert Value to Half Precision

To cast a double-precision number to half precision, use the half function.

a = half(pi)

a =

 half

 3.1406

You can also use the half function to cast an existing variable to half-precision.

v = single(magic(3))

v = 3x3 single matrix

 8 1 6
 3 5 7
 4 9 2

a = half(v)

a =

 3x3 half matrix

 8 1 6
 3 5 7
 4 9 2

Limitations
The following functions which support half-precision inputs, do not support complex half-precision
inputs.

• rsqrt
• fma

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

All functions that support half-precision inputs support code generation, except for the rsqrt
function.

4 Functions

4-442

In MATLAB, the isobject function returns true with a half-precision input. In generated code, this
function returns false.

If your target hardware does not have native support for half-precision, then half is used as a
storage type, with arithmetic operations performed in single-precision.

Some functions use half only as a storage type and the arithmetic is performed in single-precision,
regardless of the target hardware.

For deep learning code generation, half inputs are cast to single precision and computations are
performed in single precision.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

• CUDA® compute capability of 5.3 or higher is required for generating and executing code with
half-precision data types.

• CUDA toolkit version of 10.0 or later is required for generating and executing code with half-
precision data types.

• You must set the memory allocation (malloc) mode to 'Discrete' for generating CUDA code.
• Half-precision complex data types are not supported for GPU code generation.
• For GPU Code generation, you can perform half-precision matrix multiplication with real inputs.
• In MATLAB, the isobject function returns true with a half-precision input. In generated code,

this function returns false.
• fft, fft2, fftn, fftshift, ifft, ifft2, ifftn,and ifftshift are not supported for GPU

code generation.
• If your target hardware does not have native support for half-precision, then half is used as a

storage type, with arithmetic operations performed in single-precision.
• Some functions use half only as a storage type and the arithmetic is performed in single-

precision, regardless of the target hardware.
• For deep learning code generation, half inputs are cast to single precision and computations are

performed in single precision. To perform computations in half, set the library target to
'tensorrt' and set the data type to 'FP16' in coder.DeepLearningConfig.

See Also
double | single

Topics
“Floating-Point Numbers”
“Edge Detection with Sobel Method in Half-Precision” (MATLAB Coder)
Edge Detection with Sobel Method in Half-Precision (GPU Coder)

Introduced in R2018b

 half

4-443

hex
Hexadecimal representation of stored integer of fi object

Syntax
b = hex(a)

Description
b = hex(a) returns the stored integer of fi object a in hexadecimal format as a character vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Hexadecimal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a=1×2 object
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the hexadecimal representation of the stored integers of fi object a.

b = hex(a)

b =
'80 7f'

4 Functions

4-444

Write Hex Data to a File

This example shows how to write hexadecimal data from the MATLAB workspace into a text file.

Define your data and create a writable text file called hexdata.txt.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

Use the fprintf function to write your data to the hexdata.txt file.

for k = 1:length(a)
 fprintf(h, '%s\n', hex(a(k)));
end

fclose(h);

To see the contents of the file you created, use the type function.

type hexdata.txt

0000
1000
2000
3000
4000
5000
6000
7000
8000
9000
a000
b000
c000
d000
e000
f000

Read Hex Data From a File

This example shows how to read hexadecimal data from a text file back into the MATLAB workspace.

Define your data, create a writable text file called hexdata.txt, and write your data to the
hexdata.txt file.

x = (0:15)'/16;
a = fi(x, 0, 16, 16);
h = fopen('hexdata.txt', 'w');

for k = 1:length(a)
 fprintf(h, '%s\n', hex(a(k)));
end

fclose(h);

 hex

4-445

Open hexdata.txt for reading and read its contents into a workspace variable

h = fopen('hexdata.txt', 'r');

nextline = '';
str = '';

while ischar(nextline)
 nextline = fgetl(h);
 if ischar(nextline)
 str = [str; nextline];
 end
end

fclose(h);

Create a fi object with the correct scaling and assign it the hex values stored in the str variable.

b = fi([], 0, 16, 16);
b.hex = str

b=16×1 object
 0
 0.0625
 0.1250
 0.1875
 0.2500
 0.3125
 0.3750
 0.4375
 0.5000
 0.5625
 0.6250
 0.6875
 0.7500
 0.8125
 0.8750
 0.9375

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 16

Input Arguments
a — Stored integer
fi object

Stored integer, specified as a fi object.
Data Types: fi

See Also
bin | dec | oct | storedInteger

4 Functions

4-446

Introduced before R2006a

 hex

4-447

hex2num
Convert hexadecimal string to number using quantizer object

Syntax
x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description
x = hex2num(q,h) converts hexadecimal character vector h to numeric matrix x. The attributes of
the numbers in x are specified by quantizer object q. When h is a cell array, hex2num returns x as
a cell array of the same dimension containing numbers. For fixed-point hexadecimal representations,
hex2num uses two's complement representation. For floating-point, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point
conversion zero-fills on the left. Floating-point conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal representations h1, h2,... to
numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction that num2hex returns the
hexadecimal representations in a column.

Examples
To create all the 4-bit fixed-point two's complement numbers in fractional form, use the following
code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

 0.8750 0.3750 -0.1250 -0.6250
 0.7500 0.2500 -0.2500 -0.7500
 0.6250 0.1250 -0.3750 -0.8750
 0.5000 0 -0.5000 -1.0000

See Also
bin2num | num2bin | num2hex | num2int

Introduced before R2006a

4 Functions

4-448

horzcat
Concatenate multiple fi objects horizontally

Syntax
C = horzcat(A,B)
C = horzcat(A1,A2,…An)

Description
C = horzcat(A,B) concatenates B horizontally to the end of A when A and B have compatible sizes
(the lengths of the dimensions match except in the second dimension).

C = horzcat(A1,A2,…An) concatenates A1,A2,…,An horizontally.

horzcat is equivalent to using square brackets for horizontally concatenating arrays. For example,
[A,B] or [A B] is equal to horzcat(A,B) when A and B are compatible arrays.

Note The fimath and numerictype properties of a concatenated matrix of fi objects, C, are taken
from the leftmost fi object in the list A1,A2,…,An.

Input Arguments
A — First input
scalar | vector | matrix | multidimensional array

First input, specified as a scalar, vector, matrix, or multidimensional array.

B — Second input
scalar | vector | matrix | multidimensional array

Second input, specified as a scalar, vector, matrix, or multidimensional array.

The elements of B are concatenated to the end of the first input along the second dimension. The
sizes of the input arguments must be compatible. For example, if the first input is a matrix of size 3-
by-2, then B must have 3 rows.

A1,A2,…An — List of inputs
scalar | vector | matrix | multidimensional array

List of inputs, specified as a comma-separated list of elements to concatenate in the order they are
specified.

Any number of matrices can be concatenated within one pair of brackets. Multidimensional arrays
are horizontally concatenated along the second dimension.

The inputs must have compatible sizes. For example, if A1 is a column vector of length m, then the
remaining inputs must each have m rows to concatenate horizontally.

 horzcat

4-449

Tips
• Horizontal and vertical concatenation can be combined together, as in [1 2;3 4].
• The matrices in a concatenation expression can themselves be formed via a concatenation, as in

[a b;[c d]].
• [A B;C] is allowed if the number of rows of A equals the number of rows of B and if the number

of columns of A plus the number of columns of B equals the number of columns of C.
• When concatenating an empty array to a nonempty array, horzcat omits the empty array in the

output. For example,

horzcat(fi([1 2]),[])

ans =

 1 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
vertcat

Introduced before R2006a

4 Functions

4-450

innerprodintbits
Number of integer bits needed for fixed-point inner product

Syntax
innerprodintbits(a,b)

Description
innerprodintbits(a,b) computes the minimum number of integer bits necessary in the inner
product of a'*b to guarantee that no overflows occur and to preserve best precision.

• a and b are fi vectors.
• The values of a are known.
• Only the numeric type of b is relevant. The values of b are ignored.

Examples
The primary use of this function is to determine the number of integer bits necessary in the output Y
of an FIR filter that computes the inner product between constant coefficient row vector B and state
column vector Z. For example,

 for k=1:length(X);
 Z = [X(k);Z(1:end-1)];
 Y(k) = B * Z;
 end

Algorithms
In general, an inner product grows log2(n) bits for vectors of length n. However, in the case of this
function the vector a is known and its values do not change. This knowledge is used to compute the
smallest number of integer bits that are necessary in the output to guarantee that no overflow will
occur.

The largest gain occurs when the vector b has the same sign as the constant vector a. Therefore, the
largest gain due to the vector a is a*sign(a'), which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no overflow occurs in the inner
product is computed by:

n = ceil(log2(sum(abs(a)))) + number of integer bits in b + 1 sign bit

The extra sign bit is only added if both a and b are signed and b attains its minimum. This prevents
overflow in the event of (-1)*(-1).

Introduced before R2006a

 innerprodintbits

4-451

int
Get stored integer value of a fi object

Syntax
i = int(a)

Description
i = int(a) returns the integer value of a fi object, stored in one of the built-in integer data types.

Examples

Get the Stored Integer Value of a fi Object

Create a fi object with default settings. Use the int function to get its stored integer value. The
output is an int16 because the input used the default word length of 16-bits.

a = fi(pi);
b = int(a)

b = int16
 25736

Create a fi object that uses a 20-bit word length and get the stored integer value of the fi object.

a = fi(pi,1,20);
b = int(a)

b = int32
 411775

The output is an int32 to accommodate the larger input word length.

Input Arguments
a — Fixed-point numeric object
scalar | vector | matrix | multidimensional array

Fixed-point numeric object from which you want to get the stored integer value. The word length of
the input determines the data type of the output.
Data Types: fi
Complex Number Support: Yes

Output Arguments
i — Stored integer value
scalar | vector | matrix | multidimensional array

4 Functions

4-452

Stored integer value of the input fi object, returned as one of the built-in integer data types. The
word length of the input determines the data type of the output. The output has the same dimensions
as the input.

See Also
Functions
bin | hex | oct | sdec | storedInteger

Introduced in R2006a

 int

4-453

int8
Convert fi object to signed 8-bit integer

Syntax
c = int8(a)

Description
c = int8(a) returns the built-in int8 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int8.

Examples
This example shows the int8 values of a fi object.

a = fi([-pi 0.1 pi],1,8);
c = int8(a)

c =

 -3 0 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int16 | int32 | int64 | storedInteger | uint16 | uint32 | uint64 | uint8

Introduced before R2006a

4 Functions

4-454

int16
Convert fi object to signed 16-bit integer

Syntax
c = int16(a)

Description
c = int16(a) returns the built-in int16 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int16.

Examples
This example shows the int16 values of a fi object.

a = fi([-pi 0.1 pi],1,16);
c = int16(a)

c =

 -3 0 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int32 | int64 | int8 | storedInteger | uint16 | uint32 | uint64 | uint8

Introduced before R2006a

 int16

4-455

int32
Convert fi object to signed 32-bit integer

Syntax
c = int32(a)

Description
c = int32(a) returns the built-in int32 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int32.

Examples
This example shows the int32 values of a fi object.

a = fi([-pi 0.1 pi],1,32);
c = int32(a)

c =

 -3 0 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int16 | int64 | int8 | storedInteger | uint16 | uint32 | uint64 | uint8

Introduced before R2006a

4 Functions

4-456

int64
Convert fi object to signed 64-bit integer

Syntax
c = int64(a)

Description
c = int64(a) returns the built-in int64 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an int64.

Examples
This example shows the int64 values of a fi object.

a = fi([-pi 0.1 pi],1,64);
c = int64(a)

c =

 -3 0 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
int16 | int32 | int8 | storedInteger | uint16 | uint32 | uint64 | uint8

Introduced in R2008b

 int64

4-457

intmax
Largest positive stored integer value representable by numerictype of fi object

Syntax
x = intmax(a)

Description
x = intmax(a) returns the largest positive stored integer value representable by the numerictype
of a.

Examples
a = fi(pi, true, 16, 12);
x = intmax(a)

x =

 32767

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

See Also
eps | intmin | lowerbound | lsb | range | realmax | realmin | stripscaling | upperbound

Introduced before R2006a

4 Functions

4-458

intmin
Smallest stored integer value representable by numerictype of fi object

Syntax
x = intmin(a)

Description
x = intmin(a) returns the smallest stored integer value representable by the numerictype of a.

Examples

a = fi(pi, true, 16, 12);
x = intmin(a)

x =

 -32768

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 0

See Also
eps | intmax | lowerbound | lsb | range | realmax | realmin | stripscaling | upperbound

Introduced before R2006a

 intmin

4-459

isboolean
Determine whether input is Boolean

Syntax
tf = isboolean(a)
tf = isboolean(T)

Description
tf = isboolean(a) returns 1 (true) when the DataType property of fi object a is Boolean.
Otherwise, it returns 0 (false).

tf = isboolean(T) returns 1 (true) when the DataType property of numerictype object T is
Boolean. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Boolean

Create a fi object and determine if its data type is Boolean.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isboolean(a)

tf = logical
 0

a = fi(pi,'DataType','Boolean')

a =
 1

 DataTypeMode: Boolean

tf = isboolean(a)

tf = logical
 1

4 Functions

4-460

Determine Whether numerictype Object is a Boolean

Create a numerictype object and determine if its data type is Boolean.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isboolean(T)

tf = logical
 0

T = numerictype('Boolean')

T =

 DataTypeMode: Boolean

tf = isboolean(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

 isboolean

4-461

isdouble
Determine whether input is double-precision data type

Syntax
tf = isdouble(a)
tf = isdouble(T)

Description
tf = isdouble(a) returns 1 (true) when the DataType property of fi object a is double.
Otherwise, it returns 0 (false).

tf = isdouble(T) returns 1 (true) when the DataType property of numerictype object T is
double. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a double

Create a fi object and determine if its data type is double.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isdouble(a)

tf = logical
 0

a = fi(pi,'DataType','double')

a =
 3.1416

 DataTypeMode: Double

tf = isdouble(a)

tf = logical
 1

4 Functions

4-462

Determine Whether numerictype Object is a double

Create a numerictype object and determine if its data type is double.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isdouble(T)

tf = logical
 0

T = numerictype('Double')

T =

 DataTypeMode: Double

tf = isdouble(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isfixed | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

 isdouble

4-463

isequal
Determine whether real-world values of two fi objects are equal, or determine whether properties of
two fimath, numerictype, or quantizer objects are equal

Syntax
y = isequal(a,b,…)
y = isequal(F,G,…)
y = isequal(T,U,…)
y = isequal(q,r,…)

Description
y = isequal(a,b,…) returns logical 1 (true) if all the fi object inputs have the same real-world
value. Otherwise, it returns logical 0 (false).

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

y = isequal(F,G,…) returns logical 1 (true) if all the fimath object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(T,U,…) returns logical 1 (true) if all the numerictype object inputs have the same
properties. Otherwise, it returns logical 0 (false).

y = isequal(q,r,…) returns logical 1 (true) if all the quantizer object inputs have the same
properties. Otherwise, it returns logical 0 (false).

Examples

Compare Two fi Objects

Use the isequal function to determine if two fi objects have the same real-world value.

format long
a = fi(pi)

a =
 3.141601562500000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

b = fi(pi,1,32)

b =
 3.141592653468251

4 Functions

4-464

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 29

y = isequal(a,b)

y = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The isequal function
returns 0 because the two fi objects do not have the same real-world value.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
y = isequal(a,b)

y = logical
 1

The isequal function casts b to the same word length as a, and returns 1. This behavior allows
relational operations to work between fi objects and floating-point constants without introducing
floating-point values in generated code.

Compare Two fimath Objects

Use the isequal function to determine if two fimath objects have the same properties.

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent');
G = fimath('RoundingMethod','Convergent','ProductMode','FullPrecision');
y = isequal(F,G)

y = logical
 1

Compare Two numerictype Objects

Use the isequal function to determine if two numerictype objects have the same properties.

T = numerictype;
U = numerictype(true, 16, 15);
y = isequal(T,U)

 isequal

4-465

y = logical
 1

Compare Two quantizer Objects

Use the isequal function to determine if two quantizer objects have the same properties.

q = quantizer('fixed', [5 4]);
r = quantizer('fixed', 'floor', 'saturate', [5 4]);
y = isequal(q,r)

y = logical
 1

Input Arguments
a,b,… — fi objects to be compared
scalar | vector | matrix | multidimensional array

fi objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi
Complex Number Support: Yes

F,G,… — fimath objects to be compared
fimath object

fimath objects to be compared.

T,U,… — numerictype objects to be compared
scalar | vector | matrix | multidimensional array

numerictype objects to be compared, specified as a scalar, vector, matrix, or multidimensional array.

q,r,… — quantizer objects to be compared
quantizer object

quantizer objects to be compared.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | fi | fimath | ispropequal | numerictype | quantizer

4 Functions

4-466

Introduced before R2006a

 isequal

4-467

isequivalent
Determine if two numerictype objects have equivalent properties

Syntax
y = isequivalent (T1, T2)

Description
y = isequivalent (T1, T2) determines whether the numerictype object inputs have
equivalent properties and returns a logical 1 (true) or 0 (false). Two numerictype objects are
equivalent if they describe the same data type.

Examples

Compare two numerictype objects

Use isequivalent to determine if two numerictype objects have the same data type.

T1 = numerictype(1, 16, 2^-12, 0)

T1 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^-12
 Bias: 0

T2 = numerictype(1, 16, 12)

T2 =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

isequivalent(T1,T2)

ans = logical
 1

Although the Data Type Mode is different for T1 and T2, the function returns 1 (true) because the
two objects have the same data type.

4 Functions

4-468

Input Arguments
T1, T2 — Inputs to be compared
numerictype objects

Inputs to be compared, specified as numerictype objects.

See Also
eq | isequal | ispropequal

Introduced in R2014a

 isequivalent

4-469

isfi
Determine whether variable is fi object

Syntax
tf = isfi(a)

Description
tf = isfi(a) returns 1 (true) if a is a fi object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fi Object

Create a variable and determine whether it is a fi object.

a = fi(pi);
tf = isfi(a)

tf = logical
 1

b = single([1 2 3 4]);
tf = isfi(b)

tf = logical
 0

Input Arguments
a — Input array
array

Input array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Avoid using the isfi function in code that you intend to convert using the automated workflow.
The value returned by isfi in the fixed-point code might differ from the value returned in the
original MATLAB algorithm. The behavior of the fixed-point code might differ from the behavior of
the original algorithm.

4 Functions

4-470

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | isfimath | isfipref | isnumerictype | isquantizer

Introduced before R2006a

 isfi

4-471

isfimath
Determine whether variable is fimath object

Syntax
tf = isfimath(F)

Description
tf = isfimath(F) returns 1 (true) if F is a fimath object. Otherwise, it returns 0 (false).

Examples

Determine Whether Variable is a fimath Object

Create a variable and determine whether it is a fimath object

F = fimath;
tf = isfimath(F)

tf = logical
 1

T = numerictype;
tf = isfimath(T)

tf = logical
 0

A = fi([1 2 3 4]);
tf = isfimath(A)

tf = logical
 0

Input Arguments
F — Input array
array

Input array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-472

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi | isfipref | isnumerictype | isquantizer

Introduced before R2006a

 isfimath

4-473

isfimathlocal
Determine whether fi object has local fimath

Syntax
tf = isfimathlocal(a)

Description
tf = isfimathlocal(a) returns 1 (true) if the fi object a has a local fimath object. Otherwise,
it returns 0 (false).

Examples

Determine Whether fi Object has Local fimath

Create a fi object and determine whether it has local fimath.

F = fimath;
a = fi(pi);
b = fi(pi,F);

tf_a = isfimathlocal(a)

tf_a = logical
 0

tf_b = isfimathlocal(b)

tf_b = logical
 1

Input Arguments
a — Input array
array

Input array.
Data Types: fi

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

4 Functions

4-474

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fimath | isfi | isfimathlocal | isfipref | isnumerictype | isquantizer | removefimath |
sfi | ufi

Introduced in R2009b

 isfimathlocal

4-475

isfipref
Determine whether input is fipref object

Syntax
tf = isfipref(P)

Description
tf = isfipref(P) returns 1 (true) if P is a fipref object. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is a fipref Object

Create a variable and determine whether it is a fipref object.

P = fipref;
tf = isfipref(P)

tf = logical
 1

F = fimath;
tf = isfipref(F)

tf = logical
 0

Input Arguments
P — Input array
array

Input array.

See Also
fipref | isfi | isfimath | isnumerictype | isquantizer

Introduced in R2008a

4 Functions

4-476

isfixed
Determine whether input is fixed-point data type

Syntax
tf = isfixed(a)
tf = isfixed(T)
tf = isfixed(q)

Description
tf = isfixed(a) returns 1 (true) when the DataType property of fi object a is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(T) returns 1 when the DataType property of numerictype object T is Fixed.
Otherwise, it returns 0 (false).

tf = isfixed(q) returns 1 when q is a fixed-point quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a Fixed-Point Data Type

Create a fi object and determine whether it is a fixed-point data type.

a = fi([pi pi/2])

a=1×2 object
 3.1416 1.5708

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isfixed(a)

tf = logical
 1

Create a numerictype object and determine whether it is a fixed-point data type.

T = numerictype('Double')

T =

 DataTypeMode: Double

 isfixed

4-477

tf = isfixed(T)

tf = logical
 0

Create a quantizer object and determine whether it is a fixed-point data type.

q = quantizer('mode','single')

q =

 DataMode = single
 Format = [32 8]

tf = isfixed(q)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

q — Input quantizer object
scalar

Input quantizer object, specified as a scalar.

See Also
isboolean | isdouble | isfloat | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4 Functions

4-478

isfloat
Determine whether input is floating-point data type

Syntax
y = isfloat(a)
y = isfloat(T)
y = isfloat(q)

Description
y = isfloat(a) returns 1 when the DataType property of fi object a is single, or double, and
0 otherwise.

y = isfloat(T) returns 1 when the DataType property of numerictype object T is single, or
double, and 0 otherwise.

y = isfloat(q) returns 1 when q is a floating-point quantizer, and 0 otherwise.

See Also
isboolean | isdouble | isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint
| isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

 isfloat

4-479

isnumerictype
Determine whether input is numerictype object

Syntax
tf = isnumerictype(T)

Description
tf = isnumerictype(T) returns 1 (true) if T is a numerictype object. Otherwise, it returns 0
(false).

Examples

Determine Whether Input is a numerictype Object

Create a variable and determine whether it is a numerictype object.

T = numerictype;
tf = isnumerictype(T)

tf = logical
 1

q = quantizer;
tf = isnumerictype(q)

tf = logical
 0

Input Arguments
T — Input array
array

Input array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-480

See Also
isfi | isfimath | isfipref | isquantizer | numerictype

Introduced before R2006a

 isnumerictype

4-481

ispropequal
Determine whether properties of two fi objects are equal

Syntax
tf = ispropequal(a,b)

Description
tf = ispropequal(a,b) returns 1 (true) if a and b are both fi objects and have the same
properties. Otherwise, it returns 0 (false).

Examples

Determine Whether Properties of Two fi Objects are Equal

Create two fi objects and determine whether they have the same properties.

F = fimath;

a = fi(pi);
b = fi(pi,F);
c = fi(pi/2,F);
d = fi(pi/2,0);

tf = ispropequal(a,b)

tf = logical
 1

tf = ispropequal(b,c)

tf = logical
 0

tf = ispropequal(c,d)

tf = logical
 0

Input Arguments
a,b — Inputs to be compared (as separate arguments)
arrays

Inputs to be compared, specified as arrays.
Data Types: fi

4 Functions

4-482

Tips
To compare the real-world values of two fi objects a and b, use a == b or isequal(a,b).

See Also
fi | isequal

Introduced before R2006a

 ispropequal

4-483

isquantizer
Determine whether input is quantizer object

Syntax
tf = isquantizer(q)

Description
tf = isquantizer(q) returns 1 (true) when q is a quantizer object. Otherwise, it returns 0
(false).

Examples

Determine Whether Variable is a quantizer Object

Create a variable and determine whether it is a quantizer object.

q = quantizer('fixed', 'Ceiling', 'Wrap', [16 12])

q =

 DataMode = fixed
 RoundMode = ceil
 OverflowMode = wrap
 Format = [16 12]

tf = isquantizer(q)

tf = logical
 1

y = quantize(q,[pi pi/2])

y = 1×2

 3.1416 1.5708

tf = isquantizer(y)

tf = logical
 0

Input Arguments
q — Input array
array

4 Functions

4-484

Input array.

See Also
isfi | isfimath | isfipref | isnumerictype | quantizer

Introduced in R2008a

 isquantizer

4-485

isscaleddouble
Determine whether input is scaled double data type

Syntax
tf = isscaleddouble(a)
tf = isscaleddouble(T)

Description
tf = isscaleddouble(a) returns 1 (true) when the DataType property of fi object a is
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaleddouble(T) returns 1 (true) when the DataType property of numerictype object
T is ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is a Scaled Double

Create a fi object and determine whether its DataType property is set to ScaledDouble.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscaleddouble(a)

tf = logical
 0

T = numerictype('DataType','ScaledDouble');
a = fi(pi,T)

a =
 3.1416

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(a)

4 Functions

4-486

tf = logical
 1

Determine Whether numerictype Object is a Scaled Double

Create a numerictype object and determine whether its DataType property is set to
ScaledDouble.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(T)

tf = logical
 0

T = numerictype('DataType','ScaledDouble')

T =

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscaleddouble(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

 isscaleddouble

4-487

See Also
isboolean | isdouble | isfixed | isfloat | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2008a

4 Functions

4-488

isscaledtype
Determine whether input is fixed-point or scaled double data type

Syntax
tf = isscaledtype(a)
tf = isscaledtype(T)

Description
tf = isscaledtype(a) returns 1 (true) when the DataType property of fi object a is Fixed or
ScaledDouble. Otherwise, it returns 0 (false).

tf = isscaledtype(T) returns 1 (true) when the DataType property of numerictype object T
is Fixed or ScaledDouble. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Fixed-Point or Scaled Double Data Type

Create a fi object and determine whether its DataType property is set to Fixed or ScaledDouble.

a = fi([pi,pi/2]);
tf = isscaledtype(a)

tf = logical
 1

Create a numerictype object and determine whether its DataType property is set to Fixed or
ScaledDouble.

T1 = numerictype('DataType','ScaledDouble');
tf = isscaledtype(T1)

tf = logical
 1

T2 = numerictype('DataType','Single');
tf = isscaledtype(T2)

tf = logical
 0

 isscaledtype

4-489

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified | issingle | numerictype

Introduced in R2008a

4 Functions

4-490

isscalingbinarypoint
Determine whether input has binary point scaling

Syntax
tf = isscalingbinarypoint(a)
tf = isscalingbinarypoint(T)

Description
tf = isscalingbinarypoint(a) returns 1 (true) when the fi object a has binary point scaling
or trivial slope and bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial
when the slope is an integer power of two and the bias is zero.

tf = isscalingbinarypoint(T) returns 1 (true) when the numerictype object T has binary
point scaling or trivial slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Binary Point Scaling

Create a fi object and determine whether it has binary point scaling.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingbinarypoint(a)

tf = logical
 1

b = fi(pi,1,16,3,2)

b =
 2

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 2

tf = isscalingbinarypoint(b)

 isscalingbinarypoint

4-491

tf = logical
 0

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingbinarypoint returns 1.

c = fi(pi,1,16,4,0)

c =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^2
 Bias: 0

tf = isscalingbinarypoint(c)

tf = logical
 1

Create a numerictype object and determine whether it has binary point scaling.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscalingbinarypoint(T)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

4 Functions

4-492

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingslopebias | isscalingunspecified | issingle

Introduced in R2010b

 isscalingbinarypoint

4-493

isscalingslopebias
Determine whether input has nontrivial slope and bias scaling

Syntax
tf = isscalingslopebias(a)
tf = isscalingslopebias(T)

Description
tf = isscalingslopebias(a) returns 1 (true) when the fi object a has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

tf = isscalingslopebias(T) returns 1 (true) when the numerictype object T has nontrivial
slope and bias scaling. Otherwise, it returns 0 (false).

Examples

Determine Whether Input has Nontrivial Slope and Bias Scaling

Create a fi object and determine whether it has nontrivial slope and bias scaling.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingslopebias(a)

tf = logical
 0

b = fi(pi,1,16,3,1)

b =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3
 Bias: 1

tf = isscalingslopebias(b)

4 Functions

4-494

tf = logical
 1

If the fi object has trivial slope and bias scaling, that is, the slope is an integer power of two and the
bias is zero, isscalingslopebias returns 0.

c = fi(pi,1,16,4,0)

c =
 4

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 2^2
 Bias: 0

tf = isscalingslopebias(c)

tf = logical
 0

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isscalingslopebias(T)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

 isscalingslopebias

4-495

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingunspecified | issingle

Introduced in R2010b

4 Functions

4-496

isscalingunspecified
Determine whether input has unspecified scaling

Syntax
tf = isscalingunspecified(a)
tf = isscalingunspecified(T)

Description
tf = isscalingunspecified(a) returns 1 (true) if fi object a has a fixed-point or scaled
double data type and its scaling has not been specified.

tf = isscalingunspecified(T) returns 1 (true) if numerictype object T has a fixed-point or
scaled double data type and its scaling has not been specified.

Examples

Determine Whether Input has Unspecified Scaling

Create a numerictype object and determine whether it has unspecified scaling.

T1 = numerictype(0)

T1 =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Unsigned
 WordLength: 16

tf = isscalingunspecified(T1)

tf = logical
 1

T2 = numerictype(0,24,12,'DataType','ScaledDouble')

T2 =

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 12

tf = isscalingunspecified(T2)

tf = logical
 0

 isscalingunspecified

4-497

Create a fi object and determine whether it has unspecified scaling.

a = fi(pi,1)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = isscalingunspecified(a)

tf = logical
 0

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | issingle

Introduced in R2010b

4 Functions

4-498

issigned
Determine whether fi object is signed

Syntax
tf = issigned(a)

Description
tf = issigned(a) returns 1 (true) if the fi object a is signed. Otherwise, it returns 0 (false).

Examples

Determine Whether fi Object is Signed

Create a fi object and determine whether it is signed or unsigned.

a1 = fi(pi,1)

a1 =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = issigned(a1)

tf = logical
 1

a2 = fi(pi,0)

a2 =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 14

tf = issigned(a2)

tf = logical
 0

If a numerictype object with Auto Signedness is used to create a fi object, the Signedness
property of the fi object automatically defaults to Signed.

T = numerictype('Signedness','Auto')

 issigned

4-499

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Auto
 WordLength: 16
 FractionLength: 15

a3 = fi(pi,T)

a3 =
 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = issigned(a3)

tf = logical
 1

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
isfi | isfixed | isscaleddouble | isscaledtype | isscalingbinarypoint |
isscalingslopebias | isscalingunspecified

Introduced before R2006a

4 Functions

4-500

issingle
Determine whether input is single-precision data type

Syntax
tf = issingle(a)
tf = issingle(T)

Description
tf = issingle(a) returns 1 (true) when the DataType property of fi object a is single.
Otherwise, it returns 0 (false).

tf = issingle(T) returns 1 (true) when the DataType property of numerictype object T is
single. Otherwise, it returns 0 (false).

Examples

Determine Whether Input is Single-Precision Data Type

Create a fi object and determine whether it is single-precision data type.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

tf = issingle(a)

tf = logical
 0

Create a numerictype object and determine whether it is single-precision data type.

T = numerictype('Single')

T =

 DataTypeMode: Single

tf = issingle(T)

tf = logical
 1

 issingle

4-501

Input Arguments
a — Input fi object
scalar | vector | matrix | multidimensional array

Input fi object, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: fi

T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype |
isscalingbinarypoint | isscalingslopebias | isscalingunspecified

Introduced in R2008a

4 Functions

4-502

isslopebiasscaled
Determine whether numerictype object has nontrivial slope and bias scaling

Syntax
tf = isslopebiasscaled(T)

Description
tf = isslopebiasscaled(T) returns 1 (true) when numerictype T has nontrivial slope and
bias scaling. Otherwise, it returns 0 (false). Slope and bias scaling is trivial when the slope is an
integer power of two and the bias is zero.

Examples

Determine Whether numerictype Object has Nontrivial Slope and Bias Scaling

Create a numerictype object and determine whether it has nontrivial slope and bias scaling.

T1 = numerictype

T1 =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

tf = isslopebiasscaled(T1)

tf = logical
 0

T2 = numerictype('DataTypeMode','Fixed-point: slope and bias scaling',...
 'WordLength', 32, 'Slope', 2^-2, 'Bias', 4)

T2 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 0.25
 Bias: 4

tf = isslopebiasscaled(T2)

tf = logical
 1

 isslopebiasscaled

4-503

T3 = numerictype('DataTypeMode','Fixed-point: slope and bias scaling',...
 'WordLength', 32, 'Slope', 2^2, 'Bias', 0)

T3 =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 2^2
 Bias: 0

tf = isslopebiasscaled(T3)

tf = logical
 0

Input Arguments
T — Input numerictype object
scalar

Input numerictype object, specified as a scalar.

See Also
isboolean | isdouble | isfixed | isfloat | isscaleddouble | isscaledtype | issingle |
numerictype

Introduced in R2008a

4 Functions

4-504

le
Determine whether real-world value of fi object is less than or equal to another

Syntax
c = le(a,b)
a <= b

Description
c = le(a,b) is called for the syntax a <= b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a <= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the le function to determine whether the real-world value of one fi object is less than or equal
to another.

a = fi(pi);
b = fi(pi, 1, 32);
a <= b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The le function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a <= b

 le

4-505

ans = logical
 1

The le function casts b to the same word length as a, and returns 1 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | ge | gt | lt | ne

Introduced before R2006a

4 Functions

4-506

logreport
Quantization report

Syntax
logreport(a)
logreport(a, b, ...)

Description
logreport(a) displays the minlog, maxlog, lowerbound, upperbound, noverflows, and
nunderflows for the fi object a.

logreport(a, b, ...) displays the report for each fi object a, b,

Examples
The following example produces a logreport for fi objects a and b:

fipref('LoggingMode','On');
a = fi(pi);
b = fi(randn(10),1,8,7);

Warning: 35 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 2 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)

logreport(a,b)

logreport(a,b)
 minlog maxlog lowerbound upperbound noverflows nunderflows
 a 3.141602 3.141602 -4 3.999878 0 0
 b -1 0.9921875 -1 0.9921875 35 2

See Also
fipref | quantize | quantizer

Introduced in R2008a

 logreport

4-507

lowerbound
Lower bound of range of fi object

Syntax
lowerbound(a)

Description
lowerbound(a) returns the lower bound of the range of fi object a. If L=lowerbound(a) and
U=upperbound(a), then [L,U]=range(a).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lsb | range | realmax | realmin | upperbound

Introduced before R2006a

4 Functions

4-508

lsb
Scaling of least significant bit of fi object, or value of least significant bit of quantizer object

Syntax
b = lsb(a)
p = lsb(q)

Description
b = lsb(a) returns the scaling of the least significant bit of fi object a. The result is equivalent to
the result given by the eps function.

p = lsb(q) returns the quantization level of quantizer object q, or the distance from 1.0 to the
next largest floating-point number if q is a floating-point quantizer object.

Examples
This example uses the lsb function to find the value of the least significant bit of the quantizer
object q.

q = quantizer('fixed',[8 7]);
p = lsb(q)

p =

 0.0078

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation supports scalar fixed-point signals only.
• Code generation supports scalar, vector, and matrix, fi single and double signals.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lowerbound | quantize | range | realmax | realmin | upperbound

Introduced before R2006a

 lsb

4-509

lt
Determine whether real-world value of one fi object is less than another

Syntax
c = lt(a,b)
a < b

Description
c = lt(a,b) is called for the syntax a < b when a or b is a fi object. a and b must have the same
dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a < b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the lt function to determine whether the real-world value of one fi object is less than another.

a = fi(pi);
b = fi(pi, 1, 32);
a < b

ans = logical
 0

Input a has a 16-bit word length, while input b has a 32-bit word length. The lt function returns 0
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a < b

ans = logical
 0

4 Functions

4-510

The lt function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | ge | gt | le | ne

Introduced before R2006a

 lt

4-511

mat2str
Convert matrix to string

Syntax
str = mat2str(A)
str = mat2str(A, n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')

Description
str = mat2str(A) converts fi object A to a string representation. The output is suitable for input
to the eval function such that eval(str) produces the original fi object exactly.

str = mat2str(A, n) converts fi object A to a string representation using n bits of precision.

str = mat2str(A, 'class') creates a string representation with the name of the class of A
included. This option ensures that the result of evaluating str will also contain the class information.

str = mat2str(A, n, 'class') uses n bits of precision and includes the class of A.

Examples

Convert fi Object to a String

Convert the fi object a to a string.

a = fi(pi);
str = mat2str(a)

str =
'3.1416015625'

Convert fi Object to a String with Specified Precision

Convert the fi object a to a string using eight bits of precision.

a = fi(pi);
str = mat2str(a, 8)

str =
'3.1416016'

4 Functions

4-512

Input Arguments
A — Input array
scalar | vector | matrix

Input array, specified as a scalar, vector, or matrix. A cannot be a multidimensional array.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

n — Number of bits of precision
positive integer

Number of bits of precision in the output, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
str — String representation of input array
character array

String representation of input array, returned as a character array.

See Also
mat2str | tostring

Introduced in R2015b

 mat2str

4-513

max
Largest element in array of fi objects

Syntax
x = max(a)
x= max(a,[],dim)
[x,y] = max(___)

m = max(a,b)

Description
x = max(a) returns the largest elements along different dimensions of fi array a.

If a is a vector, max(a) returns the largest element in a.

If a is a matrix, max(a) treats the columns of a as vectors, returning a row vector containing the
maximum element from each column.

If a is a multidimensional array, max operates along the first nonsingleton dimension and returns an
array of maximum values.

x= max(a,[],dim) returns the largest elements along dimension dim.

[x,y] = max(___) finds the indices of the maximum values and returns them in array y, using any
of the input arguments in the previous syntaxes. If the largest value occurs multiple times, the index
of the first occurrence is returned.

m = max(a,b) returns an array the same size as a and b with the largest elements taken from a or
b.

Examples

Largest Element in a Vector

Create a fixed-point vector, and return the maximum value from the vector.

a = fi([1,5,4,9,2],1,16);
x = max(a)

x =
 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

4 Functions

4-514

Largest Element of Each Matrix Row

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a=4×4 object
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the largest element of each row by finding the maximum values along the second dimension.

x = max(a,[],2)

x=4×1 object
 16
 11
 12
 15

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output vector, x, is a column vector that contains the largest element of each row.

Largest Element of Each Matrix Column

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a=4×4 object
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the largest element of each column.

x = max(a)

 max

4-515

x=1×4 object
 16 14 15 13

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, x, is a row vector that contains the largest elements from each column of a.

Find the index of each of the maximum elements.

[x,y] = max(a)

x=1×4 object
 16 14 15 13

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

y = 1×4

 1 4 4 1

Vector y contains the indices to the minimum elements in x.

Maximum Elements from Two Arrays

Create two fixed-point arrays of the same size.

a = fi([2.3,4.7,6;0,7,9.23],1,16);
b = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the largest elements from a or b.

m = max(a,b)

m=2×3 object
 9.7998 4.7002 6.0000
 3.1416 7.0000 9.2300

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

m contains the largest elements from each pair of corresponding elements in a and b.

4 Functions

4-516

Largest Element of a Complex Vector

Create a complex fixed-point vector, a.

a = fi([1+2i,3+6i,6+3i,2-4i],1,16)

a=1×4 object
 1.0000 + 2.0000i 3.0000 + 6.0000i 6.0000 + 3.0000i 2.0000 - 4.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

The function finds the largest element of a complex vector by taking the element with the largest
magnitude.

abs(a)

ans=1×4 object
 2.2361 6.7083 6.7083 4.4722

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

In vector a, the largest elements, at position 2 and 3, have a magnitude of 6.7083. The max function
returns the largest element in output x and the index of that element in output y.

[x,y] = max(a)

x =
 3.0000 + 6.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

y = 2

Although the elements at index 2 and 3 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments
a — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of a
and b must match unless one is a scalar.

The max function ignores NaNs.

 max

4-517

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

b — Second input fi array
fi object | numeric variable

Second fi input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions
of a and b must match unless one is a scalar.

The max function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
x — Maximum values
scalar | vector | matrix | multidimensional array

Maximum values, returned as a scalar, vector, matrix, or multidimensional array. x always has the
same data type as the input.

y — Index of maximum values
scalar | vector | matrix | multidimensional array

Indices of the maximum values in array x, returned as a scalar, vector, matrix, or multidimensional
array. If the largest value occurs more than once, then y contains the index to the first occurrence of
the value. y is always of data type double.

m — Array of maximum values
scalar | vector | matrix | multidimensional array

Array of maximum values of a and b, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
When a or b is complex, the max function returns the elements with the largest magnitude. If two
magnitudes are equal, then max returns the first value. This behavior differs from how the builtin max
function resolves ties between complex numbers.

4 Functions

4-518

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mean | median | min | sort

Introduced before R2006a

 max

4-519

maxlog
Log maximums

Syntax
y = maxlog(a)
y = maxlog(q)

Description
y = maxlog(a) returns the largest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = maxlog(q) is the maximum value after quantization during a call to quantize(q,...) for
quantizer object q. This value is the maximum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). maxlog(q) is equivalent to
get(q,'maxlog') and q.maxlog.

Examples

Example 1: Using maxlog with fi objects

1 P = fipref('LoggingMode','on');
format long g
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
maxlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =

 0.999969482421875

The largest value maxlog can return is the maximum representable value of its input. In this
example, a is a signed fi object with word length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15 (4-10
)

2 You can obtain the numerical range of any fi object a using the range function:

4 Functions

4-520

format long g
r = range(a)

r =

 -1 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Example 2: Using maxlog with quantizer objects

1 q = quantizer;
warning on
format long g
x = [-20:10];
y = quantize(q,x);
maxlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =

 0.999969482421875

The largest value maxlog can return is the maximum representable value of its input.
2 You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

 -1 0.999969482421875

See Also
fipref | minlog | noverflows | nunderflows | reset | resetlog

Introduced before R2006a

 maxlog

4-521

mean
Average or mean value of fixed-point array

Syntax
M = mean(A)
M = mean(A,dim)

Description
M = mean(A) computes the mean value of the real-valued fixed-point array A along its first
nonsingleton dimension.

M = mean(A,dim) computes the mean value of the real-valued fixed-point array A along dimension
dim. dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The fixed-point output array, M, has the same numerictype properties as the fixed-point input array,
A.

If the input array, A, has a local fimath, then it is used for intermediate calculations. The output, M, is
always associated with the default fimath.

When A is an empty fixed-point array (value = []), the value of the output array is zero.

Examples

Mean Along Columns of Fixed-Point Array

Create a matrix and compute the mean of each column. A is a signed fi object with a 32-bit word
length and a best-precision fraction length of 28 bits.

A = fi([0 1 2; 3 4 5],1,32);
M = mean(A)

A =

 0 1 2
 3 4 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

M =

 1.5000 2.5000 3.5000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

4 Functions

4-522

 WordLength: 32
 FractionLength: 28

Mean Along Rows of Fixed-Point Array

Create a matrix and compute the mean of each row. A is a signed fi object with a 32-bit word length
and a best-precision fraction length of 28 bits.

A = fi([0 1 2; 3 4 5],1,32)
M = mean(A,2)

A =

 0 1 2
 3 4 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

M =

 1
 4

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 28

Input Arguments
A — Input array
vector | matrix | multidimensional array

Input array, specified as a vector, matrix, or multidimensional array.

• If A is a scalar, then mean(A) returns A.
• If A is an empty fixed-point array (value = []), the value of the output array is zero.

Data Types: fi

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive, real-valued, integer scalar with a power-of-two
slope and a bias of 0. If no value is specified, then the default is the first array dimension whose size
does not equal 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

 mean

4-523

Algorithms
The general equation for computing the mean of an array A, across dimension dim is:

sum(A,dim)/size(A,dim)

Because size(a,dim) is always a positive integer, the algorithm for computing mean casts
size(A,dim) to an unsigned 32-bit fi object with a fraction length of zero (denote this fi object
'SizeA'). The algorithm then computes the mean of A according to the following equation, where Tx
represents the numerictype properties of the fixed-point input array A:

c = Tx.divide(sum(A,dim), SizeA)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
max | median | min

Introduced in R2010a

4 Functions

4-524

median
Median value of fixed-point array

Syntax
c = median(a)
c = median(a,dim)

Description
c = median(a) computes the median value of the fixed-point array a along its first nonsingleton
dimension.

c = median(a,dim) computes the median value of the fixed-point array a along dimension dim.
dim must be a positive, real-valued integer with a power-of-two slope and a bias of 0.

The input to the median function must be a real-valued fixed-point array.

The fixed-point output array c has the same numerictype properties as the fixed-point input array a.
If the input, a, has a local fimath, then it is used for intermediate calculations. The output, c, is
always associated with the default fimath.

When a is an empty fixed-point array (value = []), the value of the output array is zero.

Examples
Compute the median value along the first dimension of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx1 = median(x,1)

Compute the median value along the second dimension (columns) of a fixed-point array.

x = fi([0 1 2; 3 4 5; 7 2 2; 6 4 9], 1, 32)
% x is a signed FI object with a 32-bit word length
% and a best-precision fraction length of 27 bits
mx2 = median(x, 2)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
max | mean | min

Introduced in R2010a

 median

4-525

min
Smallest element in array of fi objects

Syntax
x = min(a)
x= min(a,[],dim)
[x,y] = min(___)

m = min(a,b)

Description
x = min(a) returns the smallest elements along different dimensions of fi array a.

If a is a vector, min(a) returns the smallest element in a.

If a is a matrix, min(a) treats the columns of a as vectors, returning a row vector containing the
minimum element from each column.

If a is a multidimensional array, min operates along the first nonsingleton dimension and returns an
array of minimum values.

x= min(a,[],dim) returns the smallest elements along dimension dim.

[x,y] = min(___) finds the indices of the minimum values and returns them in array y, using any
of the input arguments in the previous syntaxes. If the smallest value occurs multiple times, the index
of the first occurrence is returned.

m = min(a,b) returns an array the same size as a and b with the smallest elements taken from a or
b.

Examples

Smallest Element in a Vector

Create a fixed-point vector, and return the minimum value from the vector.

a = fi([1,5,4,9,2],1,16);
x = min(a)

x =
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

4 Functions

4-526

Minimum Element of Each Matrix Row

Create a matrix of fixed-point values.

a = fi(magic(4),1,16)

a=4×4 object
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the smallest element of each row by finding the minimum values along the second dimension.

x = min(a,[],2)

x=4×1 object
 2
 5
 6
 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, x, is a column vector that contains the smallest element of each row of a.

Minimum Element of Each Matrix Column

Create a fixed-point matrix.

a = fi(magic(4),1,16)

a=4×4 object
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

Find the smallest element of each column.

x = min(a)

 min

4-527

x=1×4 object
 4 2 3 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

The output, x, is a row vector that contains the smallest element of each column of a.

Find the index of each of the minimum elements.

[x,y] = min(a)

x=1×4 object
 4 2 3 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 10

y = 1×4

 4 1 1 4

Minimum Elements from Two Arrays

Create two fixed-point arrays of the same size.

a = fi([2.3,4.7,6;0,7,9.23],1,16);
b = fi([9.8,3.21,1.6;pi,2.3,1],1,16);

Find the minimum elements from a or b.

m = min(a,b)

m=2×3 object
 2.2998 3.2100 1.6001
 0 2.2998 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

m contains the smallest elements from each pair of corresponding elements in a and b.

4 Functions

4-528

Minimum Element of a Complex Vector

Create a complex fixed-point vector, a.

a = fi([1+2i,2+i,3+8i,9+i],1,8)

a=1×4 object
 1.0000 + 2.0000i 2.0000 + 1.0000i 3.0000 + 8.0000i 9.0000 + 1.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

The function finds the smallest element of a complex vector by taking the element with the smallest
magnitude.

abs(a)

ans=1×4 object
 2.2500 2.2500 8.5000 9.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

In vector a, the smallest elements, at position 1 and 2, have a magnitude of 2.25. The min function
returns the smallest element in output x, and the index of that element in output, y.

[x,y] = min(a)

x =
 1.0000 + 2.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = 1

Although the elements at index 1 and 2 have the same magnitude, the index of the first occurrence of
that value is always returned.

Input Arguments
a — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions of a
and b must match unless one is a scalar.

The min function ignores NaNs.

 min

4-529

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

b — Second input fi array
fi object | numeric variable

Second fi input array, specified as a scalar, vector, matrix, or multidimensional array. The dimensions
of a and b must match unless one is a scalar.

The min function ignores NaNs.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

dim — dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If you
do not specify a value, the default value is the first array dimension whose size does not equal 1.

Data Types: fi|single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Output Arguments
x — Minimum values
scalar | vector | matrix | multidimensional array

Minimum values, returned as a scalar, vector, matrix, or multidimensional array. x always has the
same data type as the input.

y — Index of minimum values
scalar | vector | matrix | multidimensional array

Indices of the minimum values in array x, returned as a scalar, vector, matrix, or multidimensional
array. If the smallest value occurs more than once, then y contains the index to the first occurrence of
the value. y is always of data type double.

m — Array of minimum values
scalar | vector | matrix | multidimensional array

Array of minimum values of a and b, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
When a or b is complex, the min function returns the element with the smallest magnitude. If two
magnitudes are equal, then min returns the first value. This behavior differs from how the builtin min
function resolves ties between complex numbers.

4 Functions

4-530

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
max | mean | median | sort

Introduced before R2006a

 min

4-531

minlog
Log minimums

Syntax
y = minlog(a)
y = minlog(q)

Description
y = minlog(a) returns the smallest real-world value of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref object LoggingMode property to on. Reset logging for a fi
object using the resetlog function.

y = minlog(q) is the minimum value after quantization during a call to quantize(q,...) for
quantizer object q. This value is the minimum value encountered over successive calls to
quantize since logging was turned on, and is reset with resetlog(q). minlog(q) is equivalent to
get(q,'minlog') and q.minlog.

Examples

Example 1: Using minlog with fi objects

1 P = fipref('LoggingMode','on');
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
minlog(a)

Warning: 1 overflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 underflow(s) occurred in the fi assignment operation.
> In embedded.fi/fifactory
In fi (line 226)
Warning: 1 overflow(s) occurred in the fi assignment operation.

ans =

 -1

The smallest value minlog can return is the minimum representable value of its input. In this
example, a is a signed fi object with word length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15 (4-11
)

2 You can obtain the numerical range of any fi object a using the range function:

format long g
r = range(a)

4 Functions

4-532

r =

 -1 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Example 2: Using minlog with quantizer objects

1 q = quantizer;
warning on
x = [-20:10];
y = quantize(q,x);
minlog(q)

Warning: 29 overflow(s) occurred in the fi quantize operation.
> In embedded.quantizer/quantize (line 81)

ans =

 -1

The smallest value minlog can return is the minimum representable value of its input.
2 You can obtain the range of x after quantization using the range function:

format long g
r = range(q)

r =

 -1 0.999969482421875

See Also
fipref | maxlog | noverflows | nunderflows | reset | resetlog

Introduced before R2006a

 minlog

4-533

minus
Matrix difference between fi objects

Syntax
minus(a,b)

Description
minus(a,b) is called for the syntax a - b when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same dimensions unless one is a
scalar value (a 1-by-1 matrix). A scalar value can be subtracted from any other value.

minus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
mtimes | plus | times | uminus

Introduced before R2006a

4 Functions

4-534

mod
Modulus after division for fi objects

Syntax
m = mod(x,y)

Description
m = mod(x,y) returns the modulus after division of x by y, where x is the dividend and y is the
divisor. This function is often called the modulo operation, which can be expressed as m = x -
floor(x./y).*y.

For fixed-point or integer input arguments, the output data type is the aggregate type of both input
signedness, word lengths, and fraction lengths. For floating-point input arguments, the output data
type is the same as the inputs.

The mod function ignores and discards any fimath attached to the inputs. The output is always
associated with the default fimath.

Note The combination of fixed-point and floating-point inputs is not supported.

Examples

Modulus of two fi Objects

Calculate the mod of two fi objects.

x = fi(-3,1,7,0);
y = fi(2,1,15,0);
m1 = mod(x,y)
m2 = mod(y,x)

m1 =

 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 15
 FractionLength: 0

m2 =

 -1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 mod

4-535

 WordLength: 15
 FractionLength: 0

Modulus of Two Floating-Point Inputs

Convert the fi inputs in the previous example to double type and calculate the mod.

Mf1 = mod(double(x),double(y))
Mf2 = mod(double(y),double(x))

Mf1 =

 1

Mf2 =

 -1

Input Arguments
x — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a scalar, vector, matrix, or multidimensional array. x must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

y — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a scalar, vector, matrix, or multidimensional array. y must be a real-valued
integer, fixed-point, or floating-point array, or real scalar. Numeric inputs x and y must either be the
same size, or have sizes that are compatible.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
m — Result of modulus operation
scalar | vector | matrix | multidimensional array

Result of modulus operation, returned as a scalar, vector, matrix, or multidimensional array.

If both inputs x and y are floating-point, then the data type of m is the same as the inputs. If either
input x or y is fixed-point, then the data type of m is the aggregate numerictype. This value equals
that of fixed.aggregateType(x,y).

The output m is always associated with the default fimath.

4 Functions

4-536

Algorithms
mod(x,y) for a fi object uses the same definition as the built-in MATLAB mod function.

See Also
fixed.aggregateType | mod

Introduced in R2011b

 mod

4-537

mpower
Fixed-point matrix power (^)

Syntax
c = mpower(a,k)
c = a^k

Description
c = mpower(a,k) and c = a^k compute matrix power. The exponent k requires a positive, real-
valued integer value.

The fixed-point output array c has the same local fimath as the input a. If a has no local fimath, the
output c also has no local fimath. The matrix power operation is performed using default fimath
settings.

Examples
Compute the power of a 2-dimensional square matrix for exponent values 0, 1, 2, and 3.

x = fi([0 1; 2 4], 1, 32);

px0 = x^0
px1 = x^1
px2 = x^2
px3 = x^3

Tips
For more information about the mpower function, see the MATLAB mpower reference page.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the exponent k is a variable and the input is a scalar, the ProductMode property of the
governing fimath must be SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar, the SumMode property of the
governing fimath must be SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or Keep LSB.

• For variable-sized signals, you may see different results between the generated code and
MATLAB.

4 Functions

4-538

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Both inputs must be scalar, and the exponent input, k, must be a constant integer.

See Also
mpower | power

Introduced in R2010a

 mpower

4-539

mpy
Multiply two objects using fimath object

Syntax
c = mpy(F,a,b)

Description
c = mpy(F,a,b) performs elementwise multiplication on a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and b, or if the fimath
properties associated with a and b are different. The output fi object c has no local fimath.

a and b can both be fi objects with the same dimensions unless one is a scalar. If either a or b is
scalar, then c has the dimensions of the nonscalar object. a and b can also be doubles, singles, or
integers.

Examples
In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...
 'ProductWordLength',40,'ProductFractionLength',30);
c = mpy(F, a, b)

c =

 8.5397

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 30

Algorithms
c = mpy(F,a,b) is similar to

a.fimath = F;
b.fimath = F;
c = a .* b

c =
 8.5397

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40

4 Functions

4-540

 FractionLength: 30

 RoundingMethod: nearest
 OverflowAction: saturate
 ProductMode: SpecifyPrecision
 ProductWordLength: 40
 ProductFractionLength: 30
 SumMode: FullPrecision

but not identical. When you use mpy, the fimath properties of a and b are not modified, and the
output fi object c has no local fimath. When you use the syntax c = a .* b, where a and b have
their own fimath objects, the output fi object c gets assigned the same fimath object as inputs a
and b. See “fimath Rules for Fixed-Point Arithmetic” in the Fixed-Point Designer User's Guide for
more information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax F.mpy(a,b). You must use the syntax mpy(F,a,b).
• When you provide complex inputs to the mpy function inside of a MATLAB Function block, you

must declare the input as complex before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known complex inputs to On.

See Also
add | divide | fi | fimath | mrdivide | numerictype | rdivide | sub | sum

Introduced before R2006a

 mpy

4-541

mrdivide, /
Package: embedded

Right-matrix division

Syntax
X = A/b
X = mrdivide(A, b)

Description
X = A/b performs right-matrix division.

X = mrdivide(A, b) is an alternative way to execute X = A/b.

Examples

Divide fi Matrix by a Constant

In this example, you use the forward slash (/) operator to perform right matrix division on a 3-by-3
magic square of fi objects. Because the numerator input is a fi object, the denominator input b
must be a scalar.

A = fi(magic(3))

A=3×3 object
 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

b = fi(3,1,12,8)

b =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 12
 FractionLength: 8

X = A/b

X=3×3 object
 2.6250 0.3750 2.0000
 1.0000 1.6250 2.3750

4 Functions

4-542

 1.3750 3.0000 0.6250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

Perform Matrix Division

You can perform right-matrix division when neither input is a fi object. The matrix dimensions must
be compatible for matrix division.

A = [2, 3, 1; 0, 8, 4; 1, 1, 0]

A = 3×3

 2 3 1
 0 8 4
 1 1 0

B = [7, 6, 6; 1, 0, 5; 9, 0, 4]

B = 3×3

 7 6 6
 1 0 5
 9 0 4

X = mrdivide(A,B)

X = 3×3

 0.5000 -0.2927 -0.1341
 1.3333 0.0325 -1.0407
 0.1667 -0.2033 0.0041

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. If one or both of the inputs
is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

b — Denominator
scalar | vector | matrix | multidimensional array

 mrdivide, /

4-543

Denominator, specified as a real scalar, vector, matrix, or multidimensional array. If one or both of the
inputs is a fi object, then b must be a scalar. When b is a scalar, mrdivide is equivalent to rdivide.

If neither input is a fi object, then the sizes of the input matrices must be compatible for matrix
division.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
X — Quotient
scalar | vector | matrix | multidimensional array

Solution, returned as an array with the same dimensions as the numerator input A. When A is
complex, the real and imaginary parts of A are independently divided by b.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
add | divide | fi | fimath | numerictype | rdivide | sub | sum

Introduced in R2009a

4 Functions

4-544

mtimes
Matrix product of fi objects

Syntax
mtimes(a,b)

Description
mtimes(a,b) is called for the syntax a * b when a or b is an object.

a * b is the matrix product of a and b. A scalar value (a 1-by-1 matrix) can multiply any other value.
Otherwise, the number of columns of a must equal the number of rows of b.

mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode property of the governing fimath is
set to SpecifyPrecision or KeepLSB.

• For variable-sized signals, you may see different results between the generated code and
MATLAB.

• In the generated code, the output for variable-sized signals is computed using the SumMode
property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed using the SumMode property of
the governing fimath when both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the governing fimath.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
minus | plus | times | uminus

 mtimes

4-545

Introduced before R2006a

4 Functions

4-546

ne
Determine whether real-world values of two fi objects are not equal

Syntax
c = ne(a,b)
a ~= b

Description
c = ne(a,b) is called for the syntax a ~= b when a or b is a fi object. a and b must have the
same dimensions unless one is a scalar. A scalar can be compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and returns a matrix of the same
size with elements set to 1 where the relation is true, and 0 where the relation is false.

In relational operations comparing a floating-point value to a fixed-point value, the floating-point
value is cast to the same word length and signedness as the fi object, with best-precision scaling.

Examples

Compare Two fi Objects

Use the ne function to determine whether the real-world values of two fi objects are not equal.

a = fi(pi);
b = fi(pi, 1, 32);
a ~= b

ans = logical
 1

Input a has a 16-bit word length, while input b has a 32-bit word length. The ne function returns 1
because after quantization, the value of a is greater than that of b.

Compare a Double to a fi Object

When comparing a double to a fi object, the double is cast to the same word length and signedness
of the fi object.

a = fi(pi);
b = pi;
a ~= b

ans = logical
 0

 ne

4-547

The ne function casts b to the same word length as a, and returns 0 because the two inputs have the
same real-world value. This behavior allows relational operations to work between fi objects and
floating-point constants without introducing floating-point values in generated code.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals with different biases are not supported.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eq | ge | gt | le | lt

Introduced before R2006a

4 Functions

4-548

nearest
Round toward nearest integer with ties rounding toward positive infinity

Syntax
y = nearest(a)

Description
y = nearest(a) rounds fi object a to the nearest integer or, in case of a tie, to the nearest integer
in the direction of positive infinity, and returns the result in fi object y.

Examples

Use nearest on a Signed fi Object

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = nearest(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the nearest function affects the numerictype properties
of a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

 nearest

4-549

y = nearest(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y=8×4 object
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

nearest does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi

4 Functions

4-550

Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | floor | round

Introduced in R2008a

 nearest

4-551

nextpow2
Package: embedded

Exponent of next higher power of 2 of fi object

Syntax
P = nextpow2(N)

Description
P = nextpow2(N) returns the first P such that 2.^P >= abs(N). By convention, nextpow2(0)
returns zero.

Examples

Next Power of 2 of fi Object

Define a fi object and calculate the exponent for the next higher power of 2.

N = fi(1000,1,18,2);
P = nextpow2(N)

P =

 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

Next Power of 2 of fi Values

Define a vector of fi values and calculate the exponents for the next power of 2 higher than those
values.

N = fi([1 -2 3 -4 5 9 519],1,16,3,2);
P = nextpow2(N)

P =

 1 0 1 2 3 3 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

4 Functions

4-552

 WordLength: 5
 FractionLength: 0

Input Arguments
N — Input values
scalar | vector | N-dimensional array

Input values, specified as a real-valued scalar, vector, or N-dimensional array.
Data Types: fi

Output Arguments
P — Exponent of next higher power of 2
scalar | vector | N-dimensional array

Exponent of next higher power of 2, returned as a scalar, vector, or N-dimensional array.

The output is returned as an unsigned fi object with binary-point scaling, a fraction length of zero,
and the smallest word length which can represent the value of the largest returned exponent.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Slope-bias representation is not supported for code generation.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
fi | nextpow2

Introduced in R2020a

 nextpow2

4-553

nnz
Package: embedded

Number of nonzero elements in fi object

Syntax
N = nnz(X)

Description
N = nnz(X) returns the number of nonzero elements in X.

When X is a built-in MATLAB type, floating-point fi object, or scaled double fi object, N is returned
as a double. When X is a fixed-point fi object, N is returned as a uint32 if X has fewer than 232

elements. Otherwise, N is returned as a uint64.

Examples

Number of Nonzero Elements in fi Object

Create a fi object and determine the number of nonzero elements it contains.

p = fi([],1,24,12);
X = eye(2,3,'like',p)

X =

 1 0 0
 0 1 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

N = nnz(X)

N =

 uint32

 2

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

4 Functions

4-554

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | nnz

Introduced in R2020b

 nnz

4-555

noperations
Number of operations

Syntax
noperations(q)

Description
noperations(q) is the number of quantization operations during a call to quantize(q,...) for
quantizer object q. This value accumulates over successive calls to quantize. You reset the value
of noperations to zero by issuing the command resetlog(q).

Each time any data element is quantized, noperations is incremented by one. The real and complex
parts are counted separately. For example, (complex * complex) counts four quantization
operations for products and two for sum, because(a+bi)*(c+di) = (a*c - b*d) + (a*d +
b*c). In contrast, (real*real) counts one quantization operation.

In addition, the real and complex parts of the inputs are quantized individually. As a result, for a
complex input of length 204 elements, noperations counts 408 quantizations: 204 for the real part
of the input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all expanded from real values to
complex values, with a corresponding increase in the number of quantization operations recorded by
noperations. In concrete terms, (real*real) requires fewer quantizations than
(real*complex) and (complex*complex). Changing all the values to complex because one is
complex, such as the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

See Also
maxlog | minlog

Introduced before R2006a

4 Functions

4-556

normalizedReciprocal
Compute normalized reciprocal

Syntax
[y,e] = normalizedReciprocal(u)

Description
[y,e] = normalizedReciprocal(u) returns y and e such that (2.^e).*y = 1./u and 0.5 <
abs(y) <= 1.

• If u = 0 and u is a fixed-point or scaled-double data type, then y = 2 – eps(y) and e =
2^(nextpow2(w)) – w + f, where w is the word length of u and f is the fraction length of u.

• If u = 0 and u is a floating-point data type, then y = Inf and t = 1.

Examples

Compute Normalized Reciprocal of a Fixed-Point Vector

This example shows how to compute the element-wise normalized reciprocal of a vector of fixed-point
values.

u = fi([-pi,0.01,pi])

u=1×3 object
 -3.1416 0.0100 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

[y,e] = normalizedReciprocal(u)

y=1×3 object
 -0.6367 0.7806 0.6367

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 14

e = 1x3 int32 row vector

 -1 7 -1

 normalizedReciprocal

4-557

Input Arguments
u — Input to take normalized reciprocal of
scalar | vector | matrix | N-dimensional array

Input to take the normalized reciprocal of, specified as a real-valued scalar, vector, matrix, or N-
dimensional array.
Data Types: single | double | fi

Output Arguments
y — Normalized reciprocal
scalar | vector | matrix | N-dimensional array

Normalized reciprocal that satisfies 0.5 < abs(y) <= 1 and (2.^e).*y = 1./u, returned as a
scalar, vector, matrix, or N-dimensional array.

• If the input u is a signed fixed-point or scaled-double data type with word length w, then y is a
signed fixed-point or scaled-double with word length w and fraction length w – 2.

• If the input u is an unsigned fixed-point or scaled-double data type with word length w, then y is
an unsigned fixed-point or scaled-double with word length w and fraction length w – 1.

• If the input u is a double, then y is a double.
• If the input u is a single, the y is a single.

e — Exponent
scalar | vector | matrix | N-dimensional array

Exponent that satisfies 0.5 < abs(y) <= 1 and (2.^e).*y = 1./u, returned as an integer
scalar, vector, matrix, or N-dimensional array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Slope-bias representation is not supported for fixed-point data types.

See Also
Functions
fi

Blocks
Normalized Reciprocal HDL Optimized

Topics
“How to Use HDL Optimized Normalized Reciprocal”

4 Functions

4-558

Introduced in R2020a

 normalizedReciprocal

4-559

noverflows
Number of overflows

Syntax
y = noverflows(a)
y = noverflows(q)

Description
y = noverflows(a) returns the number of overflows of fi object a since logging was turned on or
since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object
using the resetlog function.

y = noverflows(q) returns the accumulated number of overflows resulting from quantization
operations performed by a quantizer object q.

See Also
maxlog | minlog | nunderflows | resetlog

Introduced before R2006a

4 Functions

4-560

nts
Determine fixed-point data type

Syntax
nts
nts({'block',PORT})
nts({line-handle})
nts({gsl})

Description
nts opens the NumericTypeScope window. To connect to a signal in a Simulink model, select the
signal and then, in the NumericTypeScope window, select File > Connect to Simulink Signal.

The NumericTypeScope suggests a fixed-point data type in the form of a numerictype object based
on the dynamic range of the input data and the criteria that you specify in the “Bit Allocation Panel”
on page 4-567. The scope allows you to visualize the dynamic range of data in the form of a log2
histogram. It displays the data values on the X-axis and the number or percentage of occurrences on
the Y-axis. Each bin in the histogram corresponds to a bit in a word. For example, 20 corresponds to
the first integer bit in the binary word, 2-1 corresponds to the first fractional bit in the binary word.

nts({'block',PORT}) opens the NumericTypeScope window and connects the scope to the
signal output from block on output port with index PORT. If the block has more than one output port,
you must specify the port index. The scope cannot connect to more than one output port.

nts({line-handle}) opens the NumericTypeScope window and connects the scope to the
Simulink signal which has the line handle specified in line-handle.

nts({gsl}) opens the NumericTypeScope window and connects the scope to the currently
selected Simulink signal. You must select a signal in a Simulink model first, otherwise the scope
opens with no signal selected.

Input Arguments
block

Full path to the specified block.

line-handle

Handle of the Simulink signal that you want to view with the scope. To get the handle of the currently
selected signal, at the MATLAB command line, enter gsl.

PORT

Index of the output port that you want to view with the scope. If the block has more than one output
port, you must specify the index. The scope cannot connect to more than one output port.

 nts

4-561

The NumericTypeScope Window
The NumericTypeScope opens with the default toolbars on page 4-564 displayed at the top of the
window and the dialog panels on page 4-567 to the right.

4 Functions

4-562

 nts

4-563

Toolbars
By default the scope displays a toolbar that provides these options:

Button Action
New NumericTypeScope.

Connect to Simulink signal. The scope connects to the currently selected signal. If a
block with only one output port is selected and the Connect scope on selection of is
set to Signal lines or blocks, connects to the output port of the selected block.
For more information, see “Sources Pane” on page 4-566.

After connecting the scope to a signal in a Simulink model, the scope displays an additional toolbar
with the following options:

Button Action
Stop simulation

Start simulation

Simulate one step

Snapshot. Freezes the display so that you can examine the results. To reenable display
refreshing, click the button again.
Highlight Simulink signal.

Persistent. By default, the scope makes a persistent connection to the selected signal. If
you want to view different signals during the simulation, click this button to make a
floating connection. You can then select any signal in the model and the scope displays
it.

Dialog Boxes and Panels
• “Configuration Dialog Box” on page 4-564
• “Dialog Panels” on page 4-567

Configuration Dialog Box

Use the NumericTypeScope configuration dialog box to control the behavior and appearance of the
scope window.

To open the Configuration dialog box, from the scope main menu, select File > Configuration >
Edit, or, with the scope as your active window, press the N key.

4 Functions

4-564

For information about each pane, see “Core Pane” on page 4-565 and “Sources Pane” on page 4-
566.

To save configuration settings for future use, select File > Configuration > Save as. The
configuration settings you save become the default configuration settings for the
NumericTypeScope.

Caution Before saving your own set of configuration settings in the matlab/toolbox/fixpoint
folder, save a backup copy of the default configuration settings in another location. If you do not save
a backup copy of the default configuration settings, you cannot restore these settings at a later time.

To save your configuration settings for future use, save them in the matlab/toolbox/fixpoint
folder with the file name NumericTypeScopeSL.cfg. You can re-save your configuration settings at
anytime, but you must save them in this folder with this filename.

Core Pane

The Core pane controls the general settings of the scope.

To open the Core - General UI Properties dialog box, select General UI and then click Properties.

 nts

4-565

• Display the full source path in the title bar—Select this check box to display the full path to
the selected block in the model. Otherwise, the scope displays only the block name.

To open the Core - Source UI Properties dialog box, select Source UI and then click Properties.

• Keyboard commands respect source playback modes—Has no effect. The following table
shows the keyboard shortcut mapping. You cannot disable this mapping.

Action Keyboard Shortcut
Open new NumericTypeScope Insert
Change configuration N
Display keyboard help K
Play simulation P
Pause simulation Space
Stop simulation S
Step forward Right arrow, Page down

• Recently used sources list—Sets the maximum number of recently used sources displayed
under the Files menu option.

Sources Pane

The Sources pane controls how the scope connects to Simulink. You cannot disable the Simulink
source.

To open the Sources - Simulink Properties dialog box, select the Sources tab and then click
Properties.

• Load Simulink model if not open—When selected, if you specify a signal in a Simulink model
that is not currently open, the scope opens the model.

4 Functions

4-566

• Connect scope on selection of—Connects the scope only when you select signal lines or when
you select signal lines or blocks. If you select Signal lines or blocks, the scope cannot
connect to blocks that have more than one output port.

Dialog Panels
Bit Allocation Panel

The scope Bit Allocation panel provides options for specifying data type criteria. Adjust these
criteria to observe the effect on suggested numerictype. For streaming data, the suggested
numerictype adjusts over time in order to continue to satisfy the specified criteria.

You can:

• Specify a known word length and signedness and, using Specify constraint, add additional
constraints such as the maximum number of occurrences outside range or the smallest value that
the suggested data type must represent.

• Specify Integer length and Fraction length constraints so that the scope suggests an
appropriate word length.

• Set the Signedness and Word length to Auto so that the scope suggests values for these
parameters.

• Enable Graphical control and use the cursors on either side of the binary point to adjust the
fraction length and observe the effect on the suggested numerictype on the input data. For
example, you can see the number of values that are outside range, below precision, or both. You
can also view representable minimum and maximum values of the changed suggested data type.

• Specify extra bits for either the fraction length or the integer length. The extra bits act as a safety
margin to minimize the risk of overflow and precision loss.

Legend

The scope Legend panel informs you which colors the scope uses to indicate values. These colors
represent values that are outside range, in range, or below precision when displayed in the scope.

 nts

4-567

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope settings. By
manipulating the visual display (via the Bit Allocation panel or with the cursors), you can change
the data type specification.

The Data Details section displays the percentage of values that fall outside range or below precision
with the numerictype object located at the top of this panel. SQNR (Signal Quantization Noise
Ratio) varies depending on the signal. If the parameter has no value, then there is not enough data to
calculate the SQNR. When scope information or the numerictype changes, the SQNR resets.

The Type Details section provides details about the fixed-point data type. You can copy the
numerictype specification by right-clicking the Resulting Type pane and then selecting Copy
numerictype.
Input Data

The Input Data panel provides statistical information about the values currently displayed in the
NumericScopeType.

4 Functions

4-568

Examples

Connect a NumericTypeScope to a signal in a Simulink model

Open a NumericTypeScope window and connect to a signal.

Open the model.

fxpdemo_approx

Open a NumericTypeScope.

nts

In the fxpdemo_approx model, select the yEven signal.

In the NumericTypeScope window, select File > Connect to Simulink Signal.

Run the simulation to view the dynamic range of the output. The NumericTypeScope suggests a
data type for the output.

 nts

4-569

4 Functions

4-570

Connect a NumericTypeScope to a block output port

Connect a NumericTypeScope to a block output port and view the dynamic range of block output.

Specify the block path and name and the output port number.

blk='fxpdemo_approx/Even';
nts({blk,1})

Run the simulation to view the dynamic range of the output. The NumericTypeScope suggests a
data type for the output.

Specify a Simulink signal to display

Connect a NumericTypeScope to a signal selected in a model.

Open the model.

fxpdemo_approx

In the fxpdemo_approx model, select the yEven signal.

Open a NumericTypeScope, specifying the line handle of the selected signal.

nts({gsl})

Tips
• Use the NumericTypeScope to help you identify any values that are outside range or below

precision based on the current data type.

When the information is available, the scope indicates values that are outside range, below
precision, and in range of the data type by color-coding the histogram bars as follows:

• Blue — Histogram bin contains values that are in range of the current data type.
• Red — Histogram bin contains values that are outside range in the current data type.
• Yellow — Histogram bin contains values that are below precision in the current data type.

• Select View > Vertical Units to select whether to display values as a percentage or as an actual
count.

• Use the View > Bring All NumericTypeScope Windows Forward menu option to manage your
NumericTypeScope windows. Selecting this option or pressing Ctrl+F brings all
NumericTypeScope windows into view.

See Also
hist | log2 | numerictypescope

Introduced in R2012a

 nts

4-571

num2bin
Convert number to binary representation using quantizer object

Syntax
y = num2bin(q,x)

Description
y = num2bin(q,x) converts the numeric array x into a binary character vector returned in y using
the data type properties specified by the quantizer object q.

If x is a cell array containing numeric matrices, then x will be a cell array of the same dimension
containing binary strings. If x is a structure, then each numeric field of x is converted to binary.

[y1,y2,…] = num2bin(q,x1,x2,…) converts the numeric matrices x1, x2, … to binary strings y1, y2,
….

Examples

Convert Numeric Matrix to Binary Character Vector

Convert a matrix of numeric values to a binary character vector using the attributes specified by a
quantizer object.

x = magic(3)/9

x = 3×3

 0.8889 0.1111 0.6667
 0.3333 0.5556 0.7778
 0.4444 1.0000 0.2222

q = quantizer([5,3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [5 3]

y = num2bin(q,x)

y = 9x5 char array
 '00111'
 '00010'
 '00011'
 '00000'

4 Functions

4-572

 '00100'
 '01000'
 '00101'
 '00110'
 '00001'

Convert Between Binary String and Numeric Array

Convert between a binary character vector and a numeric array using the properties specified in a
quantizer object.

Convert Numeric Array to Binary String

Create a quantizer object specifying a word length of 4 bits and a fraction length of 3 bits. The
other properties of the quantizer object take the default values of specifying a signed, fixed-point
data type, rounding towards negative infinity, and saturate on overflow.

q = quantizer([4 3])

q =

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [4 3]

Create an array of numeric values.

[a,b] = range(q);
x = (b:-eps(q):a)

x = 1×16

 0.8750 0.7500 0.6250 0.5000 0.3750 0.2500 0.1250 0 -0.1250 -0.2500 -0.3750 -0.5000 -0.6250 -0.7500 -0.8750 -1.0000

Convert the numeric vector x to binary representation using the properties specified by the
quantizer object q. Note that num2bin always returns the binary representations in a column.

b = num2bin(q,x)

b = 16x4 char array
 '0111'
 '0110'
 '0101'
 '0100'
 '0011'
 '0010'
 '0001'
 '0000'
 '1111'
 '1110'
 '1101'
 '1100'

 num2bin

4-573

 '1011'
 '1010'
 '1001'
 '1000'

Use bin2num to perform the inverse operation.

y = bin2num(q,b)

y = 16×1

 0.8750
 0.7500
 0.6250
 0.5000
 0.3750
 0.2500
 0.1250
 0
 -0.1250
 -0.2500
 ⋮

Convert Binary String to Numeric Array

All of the 3-bit fixed-point two's-complement numbers in fractional form are given by:

q = quantizer([3 2]);
b = ['011 111'
 '010 110'
 '001 101'
 '000 100'];

Use bin2num to view the numeric equivalents of these values.

x = bin2num(q,b)

x = 4×2

 0.7500 -0.2500
 0.5000 -0.5000
 0.2500 -0.7500
 0 -1.0000

Input Arguments
q — Data type properties to use for conversion
quantizer object

Data type properties to use for conversion, specified as a quantizer object.
Example: q = quantizer([16 15]);

x — Numeric input array
scalar | vector | matrix | multidimensional array | cell array | structure

4 Functions

4-574

Numeric input array, specified as a scalar, vector, matrix, multidimensional array, cell array, or
structure.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
struct | cell

Tips
• num2bin and bin2num are inverses of one another. Note that num2bin always returns the binary

representations in a column.

Algorithms
• The fixed-point binary representation is two's complement.
• The floating-point binary representation is in IEEE Standard 754 style.

See Also
bin2num | hex2num | num2hex | num2int | quantizer

Introduced before R2006a

 num2bin

4-575

num2hex
Convert number to hexadecimal equivalent using quantizer object

Syntax
y = num2hex(q,x)

Description
y = num2hex(q,x) converts numeric matrix x into a hexadecimal string returned in y. The
attributes of the number are specified by the quantizer object q.

[y1,y2,…] = num2hex(q,x1,x2,…) converts numeric matrices x1, x2, … to hexadecimal strings y1,
y2, ….

Examples

Convert Numeric Matrix to Hexadecimal

Use num2hex to convert a matrix of numeric values to hexadecimal representation.

Convert Floating-Point Values

This is a floating-point example using a quantizer object q that has a 6-bit word length and a 3-bit
exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y = 9x2 char array
 '18'
 '12'
 '14'
 '0c'
 '15'
 '18'
 '16'
 '17'
 '10'

Convert Fixed-Point Values

All of the 4-bit fixed-point two's complement numbers in fractional form are given by:

q = quantizer([4 3]);
x = [0.875 0.375 -0.125 -0.625
 0.750 0.250 -0.250 -0.750
 0.625 0.125 -0.375 -0.875
 0.500 0 -0.500 -1.000];
y = num2hex(q,x)

4 Functions

4-576

y = 16x1 char array
 '7'
 '6'
 '5'
 '4'
 '3'
 '2'
 '1'
 '0'
 'f'
 'e'
 'd'
 'c'
 'b'
 'a'
 '9'
 '8'

Input Arguments
q — Attributes of the number
quantizer object

Attributes of the number, specified as a quantizer object.

x — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array

Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array
of doubles.
Data Types: double | cell
Complex Number Support: Yes

Output Arguments
y — Hexadecimal strings
column vector | cell array

Hexadecimal strings, returned as a column vector. If x is a cell array containing numeric matrices,
then y is returned as a cell array of the same dimension containing hexadecimal strings.

Tips
• num2hex and hex2num are inverses of each other, except that hex2num returns the hexadecimal

values in a column.

Algorithms
• For fixed-point quantizer objects, the representation is two's complement.
• For floating-point quantizer objects, the representation is IEEE Standard 754 style.

For example, for q = quantizer('double'):

 num2hex

4-577

q = quantizer('double');
num2hex(q,nan)

ans =

 'fff8000000000000'

The leading fraction bit is 1, and all the other fraction bits are 0. Sign bit is 1, and exponent bits
are all 1.

num2hex(q,inf)

ans =

 '7ff0000000000000'

Sign bit is 0, exponent bits are all 1, and all fraction bits are 0.

num2hex(q,-inf)

ans =

 'fff0000000000000'

Sign bit is 1, exponent bits are all 1, and all fraction bits are 0.

See Also
bin2num | hex2num | num2bin | num2int | quantizer

Introduced before R2006a

4 Functions

4-578

num2int
Convert number to signed integer using quantizer object

Syntax
y = num2int(q,x)

Description
y = num2int(q,x) converts numeric values in x to output y containing integers using the data type
properties specified by the fixed-point quantizer object q. If x is a cell array containing numeric
matrices, then y will be a cell array of the same dimension.

[y1,y2,…] = num2int(q,x1,x2,…) uses q to convert numeric values x1, x2,… to integers y1, y2,….

Examples

Convert Matrix of Numeric Values to Signed Integer

All the two's complement 4-bit numbers in fractional form are given by:

x = [0.875 0.375 -0.125 -0.625
 0.750 0.250 -0.250 -0.750
 0.625 0.125 -0.375 -0.875
 0.500 0.000 -0.500 -1.000];

Define a quantizer object to use for conversion.

q = quantizer([4 3]);

Use num2int to convert to signed integer.

y = num2int(q,x)

y =

 7 3 -1 -5
 6 2 -2 -6
 5 1 -3 -7
 4 0 -4 -8

Input Arguments
q — Data type format to use for conversion
fixed-point quantizer object

Data type format to use for conversion, specified as a fixed-point quantizer object.
Example: q = quantizer([5 4]);

 num2int

4-579

x — Numeric values to convert
scalar | vector | matrix | multidimensional array | cell array

Numeric values to convert, specified as a scalar, vector, matrix, multidimensional array, or cell array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

Algorithms
• When q is a fixed-point quantizer object, f is equal to fractionlength(q), and x is numeric:

y = x × 2f

• num2int is meaningful only for fixed-point quantizer objects. When q is a floating-point
quantizer object, x is returned unchanged (y = x).

• y is returned as a double, but the numeric values will be integers, also known as floating-point
integers or flints.

See Also
bin2num | hex2num | num2bin | num2hex | quantizer

Introduced before R2006a

4 Functions

4-580

num2str
Convert numbers to character array

Syntax
s = num2str(A)
s = num2str(A,precision)
s = num2str(A,formatSpec)

Description
s = num2str(A) converts fi object A into a character array representation. The output is suitable
for input to the eval function such that eval(s) produces the original fi object exactly.

s = num2str(A,precision) converts fi object A to a character array representation using the
number of digits of precision specified by precision.

s = num2str(A,formatSpec) applies a format specified by formatSpec to all elements of A.

Examples

Convert a fi Object to a Character Vector

Create a fi object, A, and convert it to a character vector.

A = fi(pi)

A =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

S = num2str(A)

S =

 '3.1416'

Convert a fi Object to a Character with Specified Precision

Create a fi object and convert it to a character vector with 8 digits of precision.

A = fi(pi)

A =

 num2str

4-581

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

S = num2str(A,8)

S =

 '3.1416016'

Input Arguments
A — Input array
numeric array

Input array, specified as a numeric array.
Data Types: fi | double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical
Complex Number Support: Yes

precision — Number of digits of precision
positive integer

Maximum number of significant digits in the output string, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

formatSpec — Format of output fields
formatting operators

Format of the output fields, specified using formatting operators. formatSpec also can include
ordinary text and special characters.

For more information on formatting operators, see the num2str reference page in the MATLAB
documentation.

Output Arguments
s — Text representation of input array
character array

Text representation of the input array, returned as a character array.

See Also
mat2str | num2str | tostring

Introduced in R2016a

4 Functions

4-582

numel
Number of data elements in fi array

Syntax
n = numel(A)

Description
n = numel(A) returns the number of elements, n, in fi array A.

Using numel in your MATLAB code returns the same result for built-in types and fi objects. Use
numel to write data-type independent MATLAB code for array handling.

Examples

Number of Elements in 2-D fi Array

Create a 2-by-3- array of fi objects.

X = fi(ones(2,3),1,24,12)

X=2×3 object
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

numel counts 6 elements in the matrix.

n = numel(X)

n = 6

Number of Elements in Multidimensional fi Array

Create a 2-by-3-by-4 array of fi objects.

X = fi(ones(2,3,4),1,24,12)

X =
(:,:,1) =
 1 1 1
 1 1 1
(:,:,2) =

 numel

4-583

 1 1 1
 1 1 1
(:,:,3) =
 1 1 1
 1 1 1
(:,:,4) =
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

numel counts 24 elements in the matrix.

n = numel(X)

n = 24

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects.

Complex Number Support: Yes

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
numel

Introduced in R2013b

4 Functions

4-584

numerictype
Construct an embedded.numerictype object describing fixed-point or floating-point data type

Syntax
T = numerictype
T = numerictype(s)
T = numerictype(s,w)
T = numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
T = numerictype(___ ,Name,Value)
T = numerictype(T1,Name,Value)
T = numerictype('Double')
T = numerictype('Single')
T = numerictype('Boolean')

Description
T = numerictype creates a default numerictype object.

T = numerictype(s) creates a fixed-point numerictype object with unspecified scaling, a signed
property value of s, and a 16-bit word length.

T = numerictype(s,w) creates a fixed-point numerictype object with unspecified scaling, a
signed property value of s, and word length of w.

T = numerictype(s,w,f) creates a fixed-point numerictype object with binary point scaling, a
signed property value of s, word length of w, and fraction length of f.

T = numerictype(s,w,slope,bias) creates a fixed-point numerictype object with slope and
bias scaling, a signed property value of s, word length of w, slope, and bias.

T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias) creates a fixed-point
numerictype object with slope and bias scaling, a signed property value of s, word length of w,
slopeadjustmentfactor, and bias.

T = numerictype(___ ,Name,Value) allows you to set properties using name-value pairs. All
properties that you do not specify a value for are assigned their default values.

T = numerictype(T1,Name,Value) allows you to make a copy, T1, of an existing numerictype
object, T, while modifying any or all of the property values.

T = numerictype('Double') creates a numerictype object of data type double.

T = numerictype('Single') creates a numerictype object of data type single.

T = numerictype('Boolean') creates a numerictype object of data type Boolean.

 numerictype

4-585

Examples

Create a Default numerictype Object

This example shows how to create a numerictype object with default property settings.

T = numerictype

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Create a numerictype Object with Default Word Length and Scaling

This example shows how to create a numerictype object with the default word length and scaling
by omitting the arguments for word length, w, and fraction length, f.

T = numerictype(1)

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Signed
 WordLength: 16

The object is signed, with a word length of 16 bits and unspecified scaling.

You can use the signedness argument, s, to create an unsigned numerictype object.

T = numerictype(0)

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Unsigned
 WordLength: 16

The object is has the default word length of 16 bits and unspecified scaling.

Create a numerictype Object with Unspecified Scaling

This example shows how to create a numerictype object with unspecified scaling by omitting the
fraction length argument, f.

T = numerictype(1,32)

4 Functions

4-586

T =

 DataTypeMode: Fixed-point: unspecified scaling
 Signedness: Signed
 WordLength: 32

The object is signed, with a 32-bit word length.

Create a numerictype Object with Specified Word and Fraction Length

This example shows how to create a signed numerictype object with binary-point scaling, a 32-bit
word length, and 30-bit fraction length.

T = numerictype(1,32,30)

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 30

Create a numerictype Object with Slope and Bias Scaling

This example shows how to create a numerictype object with slope and bias scaling. The real-world
value of a slope and bias scaled number is represented by:

realworldvalue = slope × integer + bias

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope of 2^-2, and a bias of 4.

T = numerictype(1,16,2^-2,4)

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.25
 Bias: 4

Alternatively, the slope can be represented by:

slope = slopeadjustmentfactor × 2fixedexponent

Create a numerictype object that describes a signed, fixed-point data type with a word length of 16
bits, a slope adjustment factor of 1, a fixed exponent of -2, and a bias of 4.

T = numerictype(1,16,1,-2,4)

 numerictype

4-587

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.25
 Bias: 4

Create a numerictype Object with Specified Property Values

This example shows how to use name-value pairs to set numerictype properties at object creation.

T = numerictype('Signed',true,'DataTypeMode','Fixed-point: slope and bias scaling', ...
 'WordLength',32,'Slope',2^-2,'Bias',4)

T =

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 32
 Slope: 0.25
 Bias: 4

Create a numerictype Object with Unspecified Sign

This example shows how to create a numerictype object with an unspecified sign by using name-
value pairs to set the Signedness property to Auto.

T = numerictype('Signedness','Auto')

T =

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Auto
 WordLength: 16
 FractionLength: 15

Create a numerictype Object with Specified Data Type

This example shows how to create a numerictype object with a specific data type by using
arguments and name-value pairs.

T = numerictype(0,24,12,'DataType','ScaledDouble')

T =

4 Functions

4-588

 DataTypeMode: Scaled double: binary point scaling
 Signedness: Unsigned
 WordLength: 24
 FractionLength: 12

The returned numerictype object, T, is unsigned, and has a word length of 24 bits, a fraction length
of 12 bits, and a data type set to scaled double.

Create a Single, Double, or Boolean numerictype Object

This example shows how to create a numerictype object with data type set to single, double, or
Boolean at object creation.

Create a numerictype object with the data type mode set to single.

T = numerictype('Single')

T =

 DataTypeMode: Single

Create a numerictype object with the data type mode set to double.

T = numerictype('Double')

T =

 DataTypeMode: Double

Create a numerictype object with the data type mode set to Boolean.

T = numerictype('Boolean')

T =

 DataTypeMode: Boolean

Input Arguments
s — Whether object is signed
true or 1 (default) | false or 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).
Example: T = numerictype(true)
Data Types: logical

w — Word length
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.

 numerictype

4-589

Example: T = numerictype(true,16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

f — Fraction length
15 (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

Fraction length can be greater than word length. For more information, see “Binary Point
Interpretation” (Fixed-Point Designer).
Example: T = numerictype(true,16,15)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slope — Slope
3.0518e-05 (default) | finite floating-point number greater than zero

Slope, specified as a finite floating-point number greater than zero.

The slope and the bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Example: T = numerictype(true,16,2^-2,4)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bias — Bias associated with object
0 (default) | floating-point number

Bias associated with the object, specified as a floating-point number.

The slope and the bias determine the scaling of a fixed-point number.
Example: T = numerictype(true,16,2^-2,4)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slopeadjustmentfactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

4 Functions

4-590

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fixedexponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: F = numerictype('DataTypeMode','Fixed-point: binary point
scaling','DataTypeOverride','Inherit')

Note When you create a numerictype object by using name-value pairs, Fixed-Point Designer
creates a default numerictype object, and then, for each property name you specify in the
constructor, assigns the corresponding value. This behavior differs from the behavior that occurs
when you use a syntax such as T = numerictype(s,w). See “Example: Construct a numerictype
Object with Property Name and Property Value Pairs”.

Bias — Bias
0 (default) | floating-point number

Bias, specified as a floating-point number.

The slope and bias determine the scaling of a fixed-point number.
Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Bias',4)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DataType — Data type category
'Fixed' (default) | 'Boolean' | 'Double' | 'ScaledDouble' | 'Single'

Data type category, specified as one of these values:

• 'Fixed' – Fixed-point or integer data type

 numerictype

4-591

• 'Boolean' – Built-in MATLAB Boolean data type
• 'Double' – Built-in MATLAB double data type
• 'ScaledDouble' – Scaled double data type
• 'Single' – Built-in MATLAB single data type

Example: T = numerictype('Double')
Data Types: char

DataTypeMode — Data type and scaling mode
'Fixed-point: binary point scaling' (default) | 'Fixed-point: slope and bias
scaling' | 'Fixed-point: unspecified scaling' | 'Scaled double: binary point
scaling' | 'Scaled double: slope and bias scaling' | 'Scaled double: unspecified
scaling' | 'Double' | 'Single' | 'Boolean'

Data type and scaling mode associated with the object, specified as one of these values:

• 'Fixed-point: binary point scaling' – Fixed-point data type and scaling defined by the
word length and fraction length

• 'Fixed-point: slope and bias scaling' – Fixed-point data type and scaling defined by
the slope and bias

• 'Fixed-point: unspecified scaling' – Fixed-point data type with unspecified scaling
• 'Scaled double: binary point scaling' – Double data type with fixed-point word length

and fraction length information retained
• 'Scaled double: slope and bias scaling' – Double data type with fixed-point slope and

bias information retained
• 'Scaled double: unspecified scaling' – Double data type with unspecified fixed-point

scaling
• 'Double' – Built-in double
• 'Single' – Built-in single
• 'Boolean' – Built-in boolean

Example: T = numerictype('DataTypeMode','Fixed-point: binary point scaling')
Data Types: char

DataTypeOverride — Data type override settings
'Inherit' (default) | 'Off'

Data type override settings, specified as one of these values:

• 'Inherit' – Turn on DataTypeOverride
• 'Off' – Turn off DataTypeOverride

Note The DataTypeOverride property is not visible when its value is set to the default,
'Inherit'.

Example: T = numerictype('DataTypeOverride','Off')
Data Types: char

4 Functions

4-592

FixedExponent — Fixed-point exponent
-15 (default) | integer

Fixed-point exponent associated with the object, specified as an integer.

Note The FixedExponent property is the negative of the FractionLength. Changing one property
changes the other.

Example: T = numerictype('FixedExponent',-12)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FractionLength — Fraction length of the stored integer value
best precision (default) | integer

Fraction length, in bits, of the stored integer value, specified as an integer.

The default value is the best precision fraction length based on the value of the object and the word
length.
Example: T = numerictype('FractionLength',12)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Scaling — Fixed-point scaling mode
'BinaryPoint' (default) | 'SlopeBias' | 'Unspecified'

Fixed-point scaling mode of the object, specified as one of these values:

• 'BinaryPoint' – Scaling for the numerictype object is defined by the fraction length.
• 'SlopeBias' – Scaling for the numerictype object is defined by the slope and bias.
• 'Unspecified' – Temporary setting that is only allowed at numerictype object creation, and

allows for the automatic assignment of a best-precision binary point scaling.

Example: T = numerictype('Scaling','BinaryPoint')
Data Types: char

Signed — Whether the object is signed
true or 1 (default) | false or 0

Whether the object is signed, specified as a numeric or logical 1 (true) or 0 (false).

Note Although the Signed property is still supported, the Signedness property always appears in
the numerictype object display. If you choose to change or set the signedness of your numerictype
object using the Signed property, MATLAB updates the corresponding value of the Signedness
property.

Example: T = numerictype('Signed',true)
Data Types: logical

Signedness — Whether the object is signed
'Signed' (default) | 'Unsigned' | 'Auto'

 numerictype

4-593

Whether the object is signed, specified as one of these values:

• 'Signed' – Signed
• 'Unsigned' – Unsigned
• 'Auto' – Unspecified sign

Note Although you can create numerictype objects with an unspecified sign (Signedness:
Auto), all fixed-point numerictype objects must have a Signedness of Signed or Unsigned. If you
use a numerictype object with Signedness: Auto to construct a numerictype object, the
Signedness property of the numerictype object automatically defaults to Signed.

Example: T = numerictype('Signedness','Signed')
Data Types: char

Slope — Slope
3.0518e-05 (default) | finite, positive floating-point number

Slope, specified as a finite, positive floating-point number.

The slope and bias determine the scaling of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','Slope',2^-2)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SlopeAdjustmentFactor — Slope adjustment factor
1 (default) | positive scalar

Slope adjustment factor, specified as a positive scalar.

The slope adjustment factor must be greater than or equal to 1 and less than 2. If you input a
slopeadjustmentfactor outside this range, the numerictype object automatically applies a
scaling normalization to the values of slopeadjustmentfactor and fixedexponent so that the
revised slope adjustment factor is greater than or equal to 1 and less than 2, and maintains the value
of the slope.

The slope adjustment is equivalent to the fractional slope of a fixed-point number.

Note

slope = slopead justmentfactor × 2f ixedexponent

Changing one of these properties affects the others.

4 Functions

4-594

Example: T = numerictype('DataTypeMode','Fixed-point: slope and bias
scaling','SlopeAdjustmentFactor',1.5)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WordLength — Word length of the stored integer value
16 (default) | positive integer

Word length, in bits, of the stored integer value, specified as a positive integer.
Example: T = numerictype('WordLength',16)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Fixed-point signals coming in to a MATLAB Function block from Simulink are assigned a
numerictype object that is populated with the signal's data type and scaling information.

• Returns the data type when the input is a non fixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be constant.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | fipref | quantizer

Topics
“numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects”
“numerictype Object Properties”

Introduced before R2006a

 numerictype

4-595

NumericTypeScope
Determine fixed-point data type

Syntax
H = NumericTypeScope
show(H)
step(H, data)
release(H)
reset(H)

Description
The NumericTypeScope is an object that provides information about the dynamic range of your
data. The scope provides a visual representation of the dynamic range of your data in the form of a
log2 histogram. In this histogram, the bit weights appear along the X-axis, and the percentage of
occurrences along the Y-axis. Each bin of the histogram corresponds to a bit in the binary word. For
example, 20 corresponds to the first integer bit in the binary word, 2-1 corresponds to the first
fractional bit in the binary word.

The scope suggests a data type in the form of a numerictype object that satisfies the specified
criteria. See the section on Bit Allocation in “Dialog Panels” on page 4-601.

H = NumericTypeScope returns a NumericTypeScope object that you can use to view the dynamic
range of data in MATLAB. To view the NumericTypeScope window after creating H, use the show
method.

show(H) opens the NumericTypeScope object H and brings it into view. Closing the scope window
does not delete the object from your workspace. If the scope object still exists in your workspace, you
can open it and bring it back into view using the show method.

step(H, data) processes your data and allows you to visualize the dynamic range. The object H
retains previously collected information about the variable between each call to step.

release(H) releases system resources (such as memory, file handles or hardware connections) and
allows all properties and input characteristics to be changed.

reset(H) clears all stored information from the NumericTypeScope object H. Resetting the object
clears the information displayed in the scope window.

Identifying Values Outside Range and Below Precision
The NumericTypeScope can also help you identify any values that are outside range or below
precision based on the current data type. To prepare the NumericTypeScope to identify them,
provide an input variable that is a fi object and verify that one of the following conditions is true:

• The DataTypeMode of the fi object is set to Scaled doubles: binary point scaling.
• The DataTypeOverride property of the Fixed-Point Designer fipref object is set to

ScaledDoubles.

4 Functions

4-596

When the information is available, the scope indicates values that are outside range, below precision,
and in range of the data type by color-coding the histogram bars as follows:

• Blue — Histogram bin contains values that are in range of the current data type.
• Red — Histogram bin contains values that are outside range in the current data type.
• Yellow — Histogram bin contains values that are below precision in the current data type.

For an example of the scope color coding, see the figures in “Vertical Units” on page 4-603.

See also Legend in “Dialog Panels” on page 4-601.

See the “Examples” on page 4-0 section to learn more about using the NumericTypeScope to
select data types.

Dialog Boxes and Toolbar
• “The NumericTypeScope Window” on page 4-597
• “Configuration Dialog Box” on page 4-599
• “Dialog Panels” on page 4-601
• “Vertical Units” on page 4-603
• “Bring All NumericType Scope Windows Forward” on page 4-604
• “Toolbar (Mac Only)” on page 4-605

The NumericTypeScope Window

The NumericTypeScope opens with the default toolbars displayed at the top of the window and the
dialog panels to the right.

 NumericTypeScope

4-597

4 Functions

4-598

Configuration Dialog Box

The NumericTypeScope configuration allows you to control the behavior and appearance of the
scope window.

To open the Configuration dialog box, select File > Configuration, or, with the scope as your active
window, press the N key.

The Configuration Dialog box contains a series of panes each containing a table of configuration
options. See the reference section for each pane for instructions on setting the options on each one.
This dialog box has one pane, the Core pane, with only one option, for General UI settings for the
scope user interface.

To save configuration settings for future use, select File > Configuration > Save as. The
configuration settings you save become the default configuration settings for the
NumericTypeScope object.

Caution Before saving your own set of configuration settings in the matlab/toolbox/fixedpoint/
fixedpoint folder, save a backup copy of the default configuration settings in another location. If you
do not save a backup copy of the default configuration settings, you cannot restore these settings at a
later time.

To save your configuration settings for future use, save them in the matlab/toolbox/fixedpoint/
fixedpoint folder with the file name NumericTypeScopeComponent.cfg. You can re-save your
configuration settings at anytime, but remember to do so in the specified folder using the specified
file name.

Core Pane

The Core pane in the Configuration dialog box controls the general settings of the scope.

 NumericTypeScope

4-599

Click General UI and then click Options to open the Core:General UI Options dialog box.

• Display the full source path in the title bar—Select this check box to display the file name and
variable name in the scope title bar. If the scope is not from a file, or if you clear this check box,
the scope displays only the variable name in the title bar.

• Open message log—Control when the Message Log window opens. The Message log window
helps you debug issues with the scope. Choose to open the Message Log window for any of these
conditions:

• for any new messages
• for warn/fail messages
• only for fail messages
• manually

The option defaults to for warn/fail messages.

You can open the Message Log at any time by selecting Help > Message Log or by pressing Ctrl
+M. The Message Log dialog box provides a system level record of loaded configuration settings
and registered extensions. The Message Log displays summaries and details of each message, and
you can filter the display of messages by Type and Category.

• Type—Select the type of messages to display in the Message Log. You can select All, Info,
Warn, or Fail. Type defaults to All.

• Category—Select the category of messages to display in the Message Log. You can select All,
Configuration, or Extension. The scope uses Configuration messages to indicate when
new configuration files are loaded, and Extension messages to indicate when components are
registered. Category defaults to All.

4 Functions

4-600

Dialog Panels

• “Bit Allocation” on page 4-601
• “Legend” on page 4-601
• “Resulting Type” on page 4-602
• “Input Data” on page 4-602

Bit Allocation

The scope Bit Allocation dialog panel, as shown in the following figure, offers you several options for
specifying data type criteria.

You can use this panel to specify a known word length and the desired maximum occurrences outside
range. You can also use the panel to specify the desired number of occurrences outside range and the
smallest value to be represented by the suggested data type. For streaming data, the suggested
numerictype object adjusts over time in order to continue to satisfy the specified criteria.

The scope also allows you to interact with the histogram plot. When you select Graphical control on
the Bit Allocation dialog panel, you enable cursors on either side of the binary point. You can interact
with these cursors and observe the effect of the suggested numerictype on the input data. For
example, you can see the number of values that are outside range, below precision, or both. You can
also view representable minimum and maximum values of the data type.

Legend

The scope Legend panel informs you which colors the scope uses to indicate values. These colors
represent values that are outside range, in range, or below precision when displayed in the scope.

 NumericTypeScope

4-601

Resulting Type

The Resulting Type panel describes the fixed-point data type as defined by scope settings. By
manipulating the visual display (via the Bit Allocation panel or with the cursors) you can change the
value of the data type.

The Data Details section displays the percentage of values that fall outside range or below precision
with the numerictype object located at the top of this panel. SQNR (Signal Quantization Noise
Ratio) varies depending on the signal. If the parameter has no value, then there is not enough data to
calculate the SQNR. When scope information or the numerictype changes, the SQNR resets.

Type Details section provides details about the fixed-point data type.

Input Data

The Input Data panel provides statistical information about the values currently displayed in the
NumericScopeType object.

4 Functions

4-602

Vertical Units

Use the Vertical Units selection to display values that are outside range or below precision as a
percentage or as an actual count. For example, the following image shows the values that are outside
range or below precision as a percentage of the total values.

This next example shows the values that are outside range or below precision as an actual count.

 NumericTypeScope

4-603

Bring All NumericType Scope Windows Forward

The NumericScopeType GUI offers a View > Bring All NumericType Scopes Forward menu
option to help you manage your NumericTypeScope windows. Selecting this option or pressing Ctrl
+F brings all NumericTypeScope windows into view. If a NumericTypeScope window is not
currently open, this menu option opens the window and brings it into view.

4 Functions

4-604

Toolbar (Mac Only)

Activate the Toolbar by selecting View > Toolbar. When this tool is active, you can dock or undock
the scope from the GUI.

The toolbar feature is for the Mac only. Selecting Toolbar on Windows® and UNIX® versions displays
only an empty toolbar. The docking icon always appears in the GUI in the upper-right corner for these
versions.

Methods
release

Use this method to release system resources (such as memory, file handles or hardware connections)
and allow all properties and input characteristics to be changed.

Example:

>>release(H)

reset

Use this method to clear the information stored in the object H. Doing so allows you to reuse H to
process data from a different variable.

Example:

>>reset(H)

show

Use this method to open the scope window and bring it into view.

Example:

>>show(H)

step

Use this method to process your data and visualize the dynamic range in the scope window.

Example:

>>step(H, data)

Examples

 NumericTypeScope

4-605

View the Dynamic Range of a fi Object

Set the fi object DataTypeOverride to Scaled Doubles, and then view its dynamic range.

fp = fipref;
initialDTOSetting = fp.DataTypeOverride;
fp.DataTypeOverride = 'ScaledDoubles';
a = fi(magic(10),1,8,2);
b = fi([a; 2.^(-5:4)],1,8,3);
h = NumericTypeScope;
step(h,b);
fp.DataTypeOverride = initialDTOSetting;

The log2 histogram display shows that the values appear both outside range and below precision in
the variable. In this case, b has a data type of numerictype(1,8,3). The numerictype(1,8,3) data type
provides 5 integer bits (including the signed bit), and 3 fractional bits. Thus, this data type can

4 Functions

4-606

represent only values between -2^4 and 2^4- 2^-3 (from -16 to 15.8750). Given the range and
precision of this data type, values greater than 2^4 fall outside the range and values less than 2^-3
fall below the precision of the data type. When you examine the NumericTypeScope display, you can
see that values requiring bits 5, 6, and 7 are outside range and values requiring fractional bits 4 and
5 are below precision. Given this information, you can prevent values that are outside range and
below precision by changing the data type of the variable b to numerictype(0,13,5).

Determine Numeric Type For a fi Object

View the dynamic range, and determine an appropriate numeric type for a fi object with a
DataTypeMode of Scaled double: binary point scaling.

Create a numerictype object with a DataTypeMode of Scaled double: binary point scaling. You can
then use that numerictype object to construct your fi objects. Because you set the DataTypeMode to
Scaled double: binary point scaling, the NumericTypeScope can now identify overflows in your data.

T = numerictype;
T.DataTypeMode = 'Scaled double: binary point scaling';
T.WordLength = 8;
T.FractionLength = 6;
a = fi(sin(0:100)*3.5, T);
b = fi(cos(0:100)*1.75,T);
acc = fi(0,T);
h = NumericTypeScope;
for i = 1:length(a)
 acc(:) = a(i)*0.7+b(i);
 step(h,acc)
end

 NumericTypeScope

4-607

This dynamic range analysis shows that you can represent the entire range of data in the accumulator
with 5 bits; two to the left of the binary point (integer bits) and three to the right of it (fractional bits).
You can verify that this data type is able to represent all the values by changing the WordLength and
FractionLength properties of the numerictype object T. Then, use T to redefine the accumulator.

To view the dynamic range analysis based on this new data type, reset the NumericTypeScope object
h, and rerun the loop.

T.WordLength = 5;
T.FractionLength = 2;
acc = fi(0,T);
release(h)
reset(h)
for i = 1:length(a)
 acc(:) = a(i)*0.7 + b(i);

4 Functions

4-608

 step(h,acc)
end

See Also
hist | log2

Introduced in R2010a

 NumericTypeScope

4-609

nunderflows
Number of underflows

Syntax
y = nunderflows(a)
y = nunderflows(q)

Description
y = nunderflows(a) returns the number of underflows of fi object a since logging was turned on
or since the last time the log was reset for the object.

Turn on logging by setting the fipref property LoggingMode to on. Reset logging for a fi object
using the resetlog function.

y = nunderflows(q) returns the accumulated number of underflows resulting from quantization
operations performed by a quantizer object q.

See Also
maxlog | minlog | noverflows | resetlog

Introduced before R2006a

4 Functions

4-610

oct
Octal representation of stored integer of fi object

Syntax
b = oct(a)

Description
b = oct(a) returns the stored integer of fi object a in octal format as a character vector.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Examples

View Stored Integer of fi Object in Octal Format

Create a signed fi object with values -1 and 1, a word length of 8 bits, and a fraction length of 7
bits.

a = fi([-1 1], 1, 8, 7)

a=1×2 object
 -1.0000 0.9922

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Find the octal representation of the stored integers of fi object a.

b = oct(a)

b =
'200 177'

 oct

4-611

Input Arguments
a — Stored integer
fi object

Stored integer, specified as a fi object.
Data Types: fi

See Also
bin | dec | hex | storedInteger

Introduced before R2006a

4 Functions

4-612

ones
Create array of all ones with fixed-point properties

Syntax
X = ones('like',p)
X = ones(n,'like',p)
X = ones(sz1,...,szN,'like',p)
X = ones(sz,'like',p)

Description
X = ones('like',p) returns a scalar 1 with the same numerictype, complexity (real or
complex), and fimath as p.

X = ones(n,'like',p) returns an n-by-n array of ones like p.

X = ones(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of ones like p.

X = ones(sz,'like',p) returns an array of ones like p. The size vector, sz, defines size(X).

Examples

2-D Array of Ones With Fixed-Point Attributes

Create a 2-by-3 array of ones with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3- array of ones that has the same numerictype properties as p.

X = ones(2,3,'like',p)

X=2×3 object
 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Size Defined by Existing Array

Define a 3-by-2 array A.

 ones

4-613

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz = 1×2

 3 2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of ones that is the same size as A and has the same numerictype properties as p.

X = ones(sz,'like',p)

X=3×2 object
 1 1
 1 1
 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Square Array of Ones With Fixed-Point Attributes

Create a 4-by-4 array of ones with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 4-by-4 array of ones that has the same numerictype properties as p.

X = ones(4, 'like', p)

X=4×4 object
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

4 Functions

4-614

Create Array of Ones with Attached fimath

Create a signed fi object with word length of 16, fraction length of 15 and OverflowAction set to
Wrap.

format long
p = fi([],1,16,15,'OverflowAction','Wrap');

Create a 2-by-2 array of ones with the same numerictype properties as p.

X = ones(2,'like',p)

X=2×2 object
 0.999969482421875 0.999969482421875
 0.999969482421875 0.999969482421875

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

 RoundingMethod: Nearest
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

1 cannot be represented by the data type of p, so the value saturates. The output fi object X has the
same numerictype and fimath properties as p.

Complex Fixed-Point One

Create a scalar fixed-point 1 that is not real valued, but instead is complex like an existing array.

Define a complex fi object.

p = fi([1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = ones('like',p)

X =
 1.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

 ones

4-615

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

4 Functions

4-616

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-n matrix of
ones.

• If n is zero, X is an empty matrix.
• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector indicates the size
of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.

 ones

4-617

• If any trailing dimensions greater than two have a size of one, the output, X, does not include
those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

If the value 1 overflows the numeric type of p, the output saturates regardless of the specified
OverflowAction property of the attached fimath. All subsequent operations performed on the
output obey the rules of the attached fimath.

Complex Number Support: Yes

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

See Also
cast | ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”
“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2013a

4 Functions

4-618

plus
Matrix sum of fi objects

Syntax
plus(a,b)

Description
plus(a,b) is called for the syntax a + b when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions unless one is a scalar value (a
1-by-1 matrix). A scalar value can be added to any other value.

plus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in Fixed-Point Designer calculations, see
“fimath Properties Usage for Fixed-Point Arithmetic” and “fimath ProductMode and SumMode”.

For information about calculations using Fixed-Point Designer software, see the Fixed-Point Designer
documentation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi inputs must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Inputs cannot be of data type logical.

See Also
minus | mtimes | times | uminus

Introduced before R2006a

 plus

4-619

pow10
Base 10 power and scale half-precision numbers

Syntax
Y = pow10(X)

Description
Y = pow10(X) returns an array, Y, whose elements are 10 raised to the power X.

Note This function supports only half-precision inputs.

Examples

Base 10 Power

Create a half-precision vector, X.

X = half([1;2;3;4])

X =

 4x1 half column vector

 1
 2
 3
 4

Compute an array, Y, whose elements are 10 raised to the power X.

Y = pow10(X)

Y =

 4x1 half column vector

 10
 100
 1000
 10000

Input Arguments
X — Power
scalar | vector | matrix | multidimensional array

Power, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

4 Functions

4-620

Data Types: Half

Output Arguments
Y — Output array
scalar | vector | matrix | multidimensional array

Array whose elements are 10 raised to the power X, returned as a half-precision scalar, vector, matrix,
or multidimensional array.

See Also
half

Introduced in R2018b

 pow10

4-621

pow2
Efficient fixed-point multiplication by 2K

Syntax
b = pow2(a,K)

Description
b = pow2(a,K) returns the value of a shifted by K bits where K is an integer and a and b are fi
objects. The output b always has the same word length and fraction length as the input a.

Note In fixed-point arithmetic, shifting by K bits is equivalent to, and more efficient than, computing
b = a*2K.

If K is a non-integer, the pow2 function will round it to floor before performing the calculation.

The scaling of a must be equivalent to binary point-only scaling; in other words, it must have a power
of 2 slope and a bias of 0.

a can be real or complex. If a is complex, pow2 operates on both the real and complex portions of a.

The pow2 function obeys the OverflowAction and RoundingMethod properties associated with a.
If obeying the RoundingMethod property associated with a is not important, try using the bitshift
function.

The pow2 function does not support fi objects of data type Boolean.

The function also does not support the syntax b = pow2(a) when a is a fi object.

Examples
Example 4.1. Example 1

In the following example, a is a real-valued fi object, and K is a positive integer.

The pow2 function shifts the bits of a 3 places to the left, effectively multiplying a by 23.

a = fi(pi,1,16,8)
b = pow2(a,3)
binary_a = bin(a)
binary_b = bin(b)

a =

 3.140625

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

4 Functions

4-622

 FractionLength: 8

b =

 25.125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

binary_a =

 '0000001100100100'

binary_b =

 '0001100100100000'

Example 4.2. Example 2

In the following example, a is a real-valued fi object, and K is a negative integer.

The pow2 function shifts the bits of a 4 places to the right, effectively multiplying a by 2–4.

a = fi(pi,1,16,8)
b = pow2(a,-4)
binary_a = bin(a)
binary_b = bin(b)

a =

 3.140625

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

b =

 0.1953125

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

binary_a =

 '0000001100100100'

binary_b =

 '0000000000110010'

 pow2

4-623

Example 4.3. Example 3

The following example shows the use of pow2 with a complex fi object:

format long g
P = fipref('NumericTypeDisplay', 'short');
a = fi(57 - 2i, 1, 16, 8)

a =

 57 - 2i
 numerictype(1,16,8)

pow2(a,2)

ans =

 127.99609375 - 8i
 numerictype(1,16,8)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bitshift | bitsll | bitsra | bitsrl

Introduced before R2006a

4 Functions

4-624

power, .^
Package: embedded

Fixed-point element-wise power

Syntax
C = A.^B
C = power(A, B)

Description
C = A.^B raises each element of A to the corresponding power in B.

C = power(A, B) is an alternative way to compute A.^B.

Examples

Raise Each Element of a Matrix to a Scalar Power

Create a fixed-point matrix and raise it to a scalar power.

A = fi([1, 3; 4, 2])

A=2×2 object
 1 3
 4 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

C = A.^3

C=2×2 object
 1 27
 64 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 48
 FractionLength: 36

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

 power, .^

4-625

Base, specified as a scalar, vector, matrix, or multidimensional array. Inputs A and B must either be
the same size or have sizes that are compatible (for example, A is an M-by-N matrix and B is a scalar
or 1-by-N row vector).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

B — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a non-negative, real, integer-valued scalar, vector, matrix, or multidimensional
array. Inputs A and B must either be the same size or have sizes that are compatible (for example, A is
an M-by-N matrix and B is a scalar or 1-by-N row vector).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
C — Power
scalar | vector | matrix | multidimensional array

Power, returned as an array with the same dimensions as the input A. When A has a local fimath
object, the output C also has the same local fimath object. The array power operation is always
performed using the default fimath settings.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When the exponent k is a variable, the ProductMode property of the governing fimath must be
SpecifyPrecision.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Both inputs must be scalar, and the exponent input, k, must be a constant integer.

See Also
mpower | power

Introduced in R2010a

4 Functions

4-626

qr
Orthogonal-triangular decomposition

Description
The Fixed-Point Designer qr function differs from the MATLAB qr function as follows:

• The input A in qr(A) must be a real, signed fi object.
• The qr function ignores and discards any fimath attached to the input. The output is always

associated with the default fimath.
• Pivoting is not supported for fixed-point inputs. You cannot use the following syntaxes:

• [~,~,E] = qr(...)
• qr(A,'vector')
• qr(A,B,'vector')

• Economy size decomposition is not supported for fixed-point inputs. You cannot use the following
syntax: [Q,R] = qr(A,0).

• The least-squares-solution form is not supported for fixed-point inputs. You cannot use the
following syntax: qr(A,B).

Refer to the MATLAB qr reference page for more information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2014a

 qr

4-627

quantize
Quantize fixed-point numbers

Syntax
y = quantize(x)
y = quantize(x,nt)
y = quantize(x,nt,rm)
y = quantize(x,nt,rm,oa)

yBP = quantize(x,s)
yBP = quantize(x,s,wl)
yBP = quantize(x,s,wl,fl)
yBP = quantize(x,s,wl,fl,rm)
yBP = quantize(x,s,wl,fl,rm,oa)

Description
y = quantize(x) quantizes x using these default values:

• numerictype (true,16,15)
• Floor rounding method
• Wrap overflow action

The numerictype, rounding method, and overflow action apply only during the quantization. The
resulting value, quantized y, does not have any fimath attached to it.

y = quantize(x,nt) quantizes x to the specified numerictype nt. The rounding method and
overflow action use default values.

y = quantize(x,nt,rm) quantizes x to the specified numerictype, nt and rounding method, rm.
The overflow action uses the default value.

y = quantize(x,nt,rm,oa) quantizes x to the specified numerictype, nt, rounding method, rm,
and overflow action, oa.

yBP = quantize(x,s) quantizes x to a binary-point, scaled fixed-point number. The s input
specifies the sign to be used in numerictype (s,16,15). Unspecified properties use these default
values:

• WordLength 16
• FractionLength 15
• RoundingMethod Floor
• OverflowAction Wrap

yBP = quantize(x,s,wl) uses the specified word length, wl. The fraction length defaults to wl–1.
Unspecified properties use default values.

4 Functions

4-628

yBP = quantize(x,s,wl,fl) uses the specified fraction length, fl. Unspecified properties use
default values.

yBP = quantize(x,s,wl,fl,rm) uses the specified rounding method, rm. Unspecified properties
use default values.

yBP = quantize(x,s,wl,fl,rm,oa) uses the specified overflow action, oa.

Examples

Quantize Binary-Point Scaled to Binary-Point Scaled Data

Create numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit fraction length
data type.

ntBP = numerictype(1,8,4);

Define the input.

x_BP = fi(pi)

x_BP =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use the defined numerictype, ntBP, to quantize the input, x_BP, to a binary-point scaled data type.

yBP1 = quantize(x_BP,ntBP)

yBP1 =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Quantize Binary-Point Scaled to Slope-Bias Data

Create a numerictype object, ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...
 'SlopeAdjustmentFactor',1.8,'Bias',...
 1,'FixedExponent',-12);

Define the input.

x_BP = fi(pi)

x_BP =
 3.1416

 quantize

4-629

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Use the defined numerictype, ntSB, to quantize the input, x_BP, to a slope-bias data type.

ySB1 = quantize(x_BP, ntSB)

ySB1 =
 3.1415

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Quantize Slope-Bias Scaled to Binary-Point Scaled Data

Create a numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit fraction length
data type.

ntBP = numerictype(1,8,4);

Define the input.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB=5×3 object
 0.8147 0.0975 0.1576
 0.8750 0.2785 0.8750
 0.1270 0.5469 0.8750
 0.8750 0.8750 0.4854
 0.6324 0.8750 0.8003

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3.0517578125e-5
 Bias: -0.125

Use the defined numerictype, ntBP, to quantize the input, x_SB, to a binary point scaled data type.

yBP2 = quantize(x_SB,ntBP,'Nearest','Saturate')

yBP2=5×3 object
 0.8125 0.1250 0.1875
 0.8750 0.2500 0.8750
 0.1250 0.5625 0.8750
 0.8750 0.8750 0.5000
 0.6250 0.8750 0.8125

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-630

 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Quantize Slope-Bias Scaled to Slope-Bias Scaled Data

Create a numerictype object, ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...
 'SlopeAdjustmentFactor',1.8,'Bias',...
 1,'FixedExponent',-12);

Define the input.

x_SB = fi(rand(5,3),numerictype('Scaling','SlopeBias','Bias',-0.125))

x_SB=5×3 object
 0.8147 0.0975 0.1576
 0.8750 0.2785 0.8750
 0.1270 0.5469 0.8750
 0.8750 0.8750 0.4854
 0.6324 0.8750 0.8003

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 3.0517578125e-5
 Bias: -0.125

Use the defined numerictype, ntSB, to quantize the input, x_SB, to a slope-bias data type.

ySB2 = quantize(x_SB,ntSB,'Ceiling','Wrap')

ySB2=5×3 object
 0.8150 0.0978 0.1580
 0.8752 0.2789 0.8752
 0.1272 0.5469 0.8752
 0.8752 0.8752 0.4854
 0.6326 0.8752 0.8005

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Quantize Built-in Integer to Binary-Point Scaled Data

Create a numerictype object, ntBP, which specifies a signed, 8-bit word length, 4-bit fraction length
data type.

 quantize

4-631

ntBP = numerictype(1,8,4);

Define the input.

xInt = int8(-16:4:16)

xInt = 1x9 int8 row vector

 -16 -12 -8 -4 0 4 8 12 16

Use the defined numerictype, ntBP, to quantize the input|xInt| to a binary point scaled data type.

yBP3 = quantize(xInt,ntBP,'Zero')

yBP3=1×9 object
 0 4 -8 -4 0 4 -8 -4 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

Show the range of the quantized output.

range(yBP3)

ans=1×2 object
 -8.0000 7.9375

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 4

The first two and last three values are wrapped because they are outside the representable range of
the output type.

Quantize Built-in Integer to Slope-Bias Data

Create a numerictype object ntSB, which specifies a slope-bias data type.

ntSB = numerictype('Scaling','SlopeBias', ...
 'SlopeAdjustmentFactor',1.8,'Bias',...
 1,'FixedExponent',-12);

Define the input.

xInt = int8(-16:4:16)

xInt = 1x9 int8 row vector

 -16 -12 -8 -4 0 4 8 12 16

4 Functions

4-632

Use the defined numerictype, ntSB, to quantize the input, xInt, to a slope-bias data type.

ySB3 = quantize(xInt,ntSB,'Round','Saturate')

ySB3=1×9 object
 Columns 1 through 7
 -13.4000 -11.9814 -7.9877 -3.9939 -0.0002 3.9936 7.9873
 Columns 8 through 9
 11.9811 15.3996

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

Show the range of the quantized output.

range(ySB3)

ans=1×2 object
 -13.4000 15.3996

 DataTypeMode: Fixed-point: slope and bias scaling
 Signedness: Signed
 WordLength: 16
 Slope: 0.000439453125
 Bias: 1

The first and last values saturate because they are at the limits of he representable range of the
output type.

Input Arguments
x — Input data
fi objects or built-in integers

Input data to quantize. Valid inputs are:

• Built-in signed or unsigned integers (int8, int16, int32, int64, uint8, uint16, uint32,
uint64)

• Binary point scaled fixed-point fi
• Slope-bias scaled fixed-point fi

Although fi doubles and fi singles are allowed as inputs, they pass through the quantize function
without being quantized.

nt — Numerictype
(true,16,15) (default)

Numerictype object that defines the sign, word length, and fraction length of a fixed-point number.

rm — Rounding method
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

 quantize

4-633

Rounding method to use

oa — Overflow action
Wrap (default) | Saturate

Action to take when a data overflow occurs

s — Signedness
true (default) | false

Whether the fixed-point number is signed (true) or unsigned (false)

wl — Word length
16 (default)

Word length of the fixed-point number

fl — Fraction length
15 (default)

Fraction length of the fixed-point number

Output Arguments
y — Quantized output
fi object

Quantized value of the input

yBP — Quantized output
fi object

Input quantized to binary-point scaled value

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | fimath | fixed.Quantizer | numerictype

Topics
“Compute Quantization Error”

Introduced before R2006a

4 Functions

4-634

quantizenumeric
Quantize numeric data

Syntax
y = quantizenumeric(x, s, w, f, r, o)
y = quantizenumeric(x, s, w, f, r)

Description
y = quantizenumeric(x, s, w, f, r, o) quantizes the value specified in x based on the
numeric type information specified in s, w, f, r, and o.

y = quantizenumeric(x, s, w, f, r) quantizes the value specified in x using the numeric
type information specified in s, w, f, and r.

Examples

Quantize the Value of pi

Quantize the value of pi using a signed numeric type with a word length of 16 bits, a fraction length
of 13 bits, and rounding towards positive infinity.

x = pi;
y = quantizenumeric(x,1,16,13,'ceil')

y = 3.1416

Specify a different rounding method. Observe rounding towards zero affects the quantized value.

x = pi;
y = quantizenumeric(x,1,16,13,'fix')

y = 3.1415

Input Arguments
x — Value to quantize
scalar | vector | array

The value to quantize, specified as a scalar, vector, matrix or multidimensional array.
Data Types: double

s — signedness
1 | 0

The signedness of the quantized value, specified as either 0 (unsigned) or 1 (signed).
Data Types: double

 quantizenumeric

4-635

w — word length
scalar integer

The word length of the quantized value, specified as a scalar integer.
Data Types: double

f — fraction length
scalar integer

The fraction length of the quantized value, specified as a scalar integer.
Data Types: double

r — Rounding method
character vector

Rounding method to use for quantization, specified as one of the following:

• ceil— Round towards positive infinity (same as 'ceiling')
• ceiling— Round towards positive infinity (same as 'ceil')
• convergent— Convergent rounding
• fix— Round towards zero (same as 'zero')
• floor— Round towards negative infinity
• nearest— Round towards nearest with ties rounding towards positive infinity
• round— Round towards nearest with ties rounding up in absolute value
• zero— Round towards zero (same as 'fix')

Data Types: char

o — Overflow action
saturate | wrap

Overflow action to use for quantization, specified as either 'saturate' or 'wrap'. When no
overflow action is specified, quantize numeric uses saturate.
Data Types: char

Output Arguments
y — quantized output value
scalar | vector | matrix | multidimensional array

The quantized output value. y always has the same dimensions as x, and is always a double.

See Also
cast | fi | fimath | fixed.Quantizer | numerictype | quantize | quantizer

Introduced in R2016a

4 Functions

4-636

quantize method
Apply quantizer object to data

Syntax
y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description
y = quantize(q, x) uses the quantizer object q to quantize x. When x is a numeric array, each
element of x is quantized. When x is a cell array, each numeric element of the cell array is quantized.
When x is a structure, each numeric field of x is quantized. Quantize does not change nonnumeric
elements or fields of x, nor does it issue warnings for nonnumeric values. The output y is a built-in
double. When the input x is a structure or cell array, the fields of y are built-in doubles.

[y1,y2,...] = quantize(q,x1,x2,...) is equivalent to y1 = quantize(q,x1), y2 =
quantize(q,x2),...

The quantizer object states

• max — Maximum value before quantizing
• min — Minimum value before quantizing
• noverflows — Number of overflows
• nunderflows — Number of underflows
• noperations — Number of quantization operations

are updated during the call to quantize, and running totals are kept until a call to resetlog is
made.

Examples

Custom Precision Floating-Point

The following example demonstrates using quantize to quantize data.

u=linspace(-15, 15, 1000);
q=quantizer([6 3], 'float');
range(q)

ans = 1×2

 -14 14

y=quantize(q, u);

Warning: 68 overflow(s) occurred in the fi quantize operation.

 quantize method

4-637

plot(u, y); title(tostring(q))

Fixed-Point

The following example demonstrates using quantize to quantize data.

u=linspace(-15, 15, 1000);
q=quantizer([6 2], 'wrap');
range(q)

ans = 1×2

 -8.0000 7.7500

y=quantize(q, u);

Warning: 468 overflow(s) occurred in the fi quantize operation.

plot(u, y); title(tostring(q))

4 Functions

4-638

See Also
assignmentquantizer | quantizer | set | unitquantize | unitquantizer

Introduced in R2012b

 quantize method

4-639

quantizer
Construct quantizer object

Syntax
q = quantizer
q = quantizer('PropertyName1',PropertyValue1,...)
q = quantizer(PropertyValue1,PropertyValue2,...)
q = quantizer(struct)
q = quantizer(pn,pv)

Description
q = quantizer creates a quantizer object with properties set to their default values. To use this
object to quantize values, use the quantize method.

q = quantizer('PropertyName1',PropertyValue1,...) uses property name/ property value
pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a quantizer object with the
listed property values. When two values conflict, quantizer sets the last property value in the list.
Property values are unique; you can set the property names by specifying just the property values in
the command.

q = quantizer(struct), where struct is a structure whose field names are property names, sets
the properties named in each field name with the values contained in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell array of character vectors
pn to the corresponding values in the cell array pv.

The quantizer object property values are listed below. These properties are described in detail in
“quantizer Object Properties” on page 3-4.

Property Name Property Value Description
mode 'double' Double-precision mode.

Override all other
parameters.

'float' Custom-precision
floating-point mode.

'fixed' Signed fixed-point mode.
'single' Single-precision mode.

Override all other
parameters.

'ufixed' Unsigned fixed-point
mode.

roundmode 'ceil' Round toward positive
infinity.

4 Functions

4-640

Property Name Property Value Description
'convergent' Round to nearest integer

with ties rounding to
nearest even integer.

'fix' Round toward zero.
'floor' Round toward negative

infinity.
'Nearest' Round to nearest integer

with ties rounding toward
positive infinity.

'Round' Round to nearest integer
with ties rounding to
nearest integer with
greater absolute value.

overflowmode (fixed-point only) 'saturate' Saturate on overflow.
'wrap' Wrap on overflow.

format [wordlength fractionlength] Format for fixed or
ufixed mode.

[wordlength exponentlength] Format for float mode.

The default property values for a quantizer object are

 DataMode = fixed
 RoundMode = floor
 OverflowMode = saturate
 Format = [16 15]

Along with the preceding properties, quantizer objects have read-only states: max, min,
noverflows, nunderflows, and noperations. They can be accessed through quantizer/get or
q.maxlog, q.minlog, q.noverflows, q.nunderflows, and q.noperations, but they cannot be
set. They are updated during the quantizer/quantize method, and are reset by the resetlog
function.

The following table lists the read-only quantizer object states:

Property Name Description
max Maximum value before quantizing
min Minimum value before quantizing
noverflows Number of overflows
nunderflows Number of underflows
noperations Number of data points quantized

Examples
The following example operations are equivalent.

Setting quantizer object properties by listing property values only in the command,

 quantizer

4-641

q = quantizer('fixed', 'Ceiling', 'Saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);

Using property name and property value cell arrays pn and pv to set quantizer object properties,

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

Using property name/property value pairs to configure a quantizer object,

q = quantizer('mode', 'fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

See Also
assignmentquantizer | fi | fimath | fipref | numerictype | quantize | quantizenumeric |
set | unitquantize | unitquantizer

Introduced before R2006a

4 Functions

4-642

randquant
Generate uniformly distributed, quantized random number using quantizer object

Syntax
randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

Description
randquant(q,n) uses quantizer object q to generate an n-by-n matrix with random entries whose
values cover the range of q when q is a fixed-point quantizer object. When q is a floating-point
quantizer object, randquant populates the n-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n matrix with random entries
whose values cover the range of q when q is a fixed-point quantizer object. When q is a floating-
point quantizer object, randquant populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an m-by-n-by-p-by ... matrix with
random entries whose values cover the range of q when q is fixed-point quantizer object. When q is
a floating-point quantizer object, randquant populates the matrix with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n matrix with random entries
whose values cover the range of q when q is a fixed-point quantizer object. When q is a floating-
point quantizer object, randquant populates the m-by-n array with values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p m-by-n matrices containing
random entries whose values cover the range of q when q is a fixed-point quantizer object. When q
is a floating-point quantizer object, randquant populates the m-by-n arrays with values covering
the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence randquant generates during
each call is determined by the state of the generator. Because MATLAB resets the random number
generator state at startup, the sequence of random numbers generated by the function remains the
same unless you change the state.

randquant works like rng in most respects.

 randquant

4-643

Examples
q = quantizer([4 3]);
rng('default')
randquant(q,3)

ans =

 0.5 0.625 -0.5
 0.625 0.125 0
 -0.875 -0.875 0.75

See Also
quantizer | rand | range | realmax

Introduced before R2006a

4 Functions

4-644

range
Numerical range of fi or quantizer object

Syntax
range(a)
[min_val, max_val]= range(a)
r = range(q)
[min_val, max_val] = range(q)

Description
range(a) returns a fi object with the minimum and maximum possible values of fi object a. All
possible quantized real-world values of a are in the range returned. If a is a complex number, then all
possible values of real(a) and imag(a) are in the range returned.

[min_val, max_val]= range(a) returns the minimum and maximum values of fi object a in
separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that for all real x, y =
quantize(q,x) returns y in the range a ≤ y ≤ b.

[min_val, max_val] = range(q) returns the minimum and maximum values of the range in
separate output variables.

Examples
q = quantizer('float',[6 3]);
r = range(q)

r =

 -14 14

q = quantizer('fixed',[4 2],'floor');
[min_val,max_val] = range(q)

min_val =

 -2

max_val =

 1.75

Algorithms
If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

 range

4-645

a = − realmax(q) − eps(q) = −2w− 1

2f

b = realmax(q) = 2w− 1− 1
2f

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'),

a = 0

b = realmax(q) = 2w− 1
2f

See realmax for more information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
max | min | realmax | realmin | upperbound

Introduced before R2006a

4 Functions

4-646

rdivide, ./
Package: embedded

Right-array division

Syntax
X = A./B
X = rdivide(A,B)

Description
X = A./B performs right-array division by dividing each element of A by the corresponding element
of B.

X = rdivide(A,B) is an alternative way to execute X = A./B.

Examples

Perform Right-Array Division of Two Matrices

This example shows how perform right-array division on a 3-by-3 magic square of fi objects. Each
element of the 3-by-3 magic square is divided by the corresponding element in the 3-by-3 input array
b.

The rdivide function outputs a 3-by-3 array of signed fi objects, each of which has a word length of
16 bits and fraction length of 11 bits.

a = fi(magic(3))

a=3×3 object
 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

b = int8([3 3 4; 1 2 4 ; 3 1 2])

b = 3x3 int8 matrix

 3 3 4
 1 2 4
 3 1 2

c = a./b

 rdivide, ./

4-647

c=3×3 object
 2.6665 0.3335 1.5000
 3.0000 2.5000 1.7500
 1.3335 9.0000 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Input Arguments
A — Numerator
scalar | vector | matrix | multidimensional array

Numerator, specified as a scalar, vector, matrix, or multidimensional array. If inputs A and B are not
the same size, one of them must be a scalar value.

If A is complex, the real and imaginary parts of A are independently divided by B.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

B — Denominator
scalar | vector | matrix | multidimensional array

Denominator, specified as a scalar, vector, matrix, or multidimensional array. If inputs A and B are not
the same size, one of them must be a scalar value.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Output Arguments
X — Quotient
scalar | vector | matrix | multidimensional array

Quotient, returned as a scalar, vector, matrix, or multidimensional array.

The following table shows the rules used to assign property values to the output of the rdivide
function.

Output Property Rule
Signedness If either input is Signed, then the output is Signed.

If both inputs are Unsigned, then the output is Unsigned.
WordLength The output word length equals the maximum of the input word

lengths.
FractionLength For c = a./b, the fraction length of output c equals the

fraction length of a minus the fraction length of b.

4 Functions

4-648

Algorithms
The following table shows the rules the rdivide function uses to handle inputs with different data
types.

Case Rule
Interoperation of fi objects and
built-in integers

Built-in integers are treated as fixed-point objects.

For example, B = int8(2) is treated as an s8,0 fi object.
Interoperation of fi objects and
constants

MATLAB for code generation treats constant integers as fixed-
point objects with the same word length as the fi object and a
fraction length of 0.

Interoperation of mixed data types Similar to all other fi object functions, when inputs a and b
have different data types, the data type with the higher
precedence determines the output data type. The order of
precedence is as follows:

1 ScaledDouble
2 Fixed-point
3 Built-in double
4 Built-in single

When both inputs are fi objects, the only data types that are
allowed to mix are ScaledDouble and Fixed-point.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
add | divide | fi | fimath | mrdivide | numerictype | sub | sum

Introduced in R2009a

 rdivide, ./

4-649

realmax
Largest positive fixed-point value or quantized number

Syntax
realmax(a)
realmax(q)

Description
realmax(a) is the largest real-world value that can be represented in the data type of fi object a.
Anything larger overflows.

realmax(q) is the largest quantized number that can be represented where q is a quantizer
object. Anything larger overflows.

Examples
q = quantizer('float',[6 3]);
x = realmax(q)

x =

 14

Algorithms
If q is a floating-point quantizer object, the largest positive number, x, is

x = 2Emax ⋅ (2 − eps(q))

If q is a signed fixed-point quantizer object, the largest positive number, x, is

x = 2w− 1− 1
2f

If q is an unsigned fixed-point quantizer object (datamode = 'ufixed'), the largest positive
number, x, is

x = 2w− 1
2f

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

4 Functions

4-650

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
quantizer | range | realmin | upperbound

Introduced before R2006a

 realmax

4-651

realmin
Smallest positive normalized fixed-point value or quantized number

Syntax
x=realmin(a)
x=realmin(q)

Description
x=realmin(a) is the smallest positive real-world value that can be represented in the data type of
fi object a. Anything smaller than x underflows or is an IEEE “denormal” number.

x=realmin(q) is the smallest positive normal quantized number where q is a quantizer object.
Anything smaller than x underflows or is an IEEE “denormal” number.

Examples
q = quantizer('float',[6 3]);
x = realmin(q)

x =

 0.25

Algorithms

If q is a floating-point quantizer object, x = 2Emin where Emin = exponentmin(q) is the minimum
exponent.

If q is a signed or unsigned fixed-point quantizer object, x = 2− f = ε where f is the fraction length.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | exponentmax | exponentmin | fractionlength | intmax | intmin | lowerbound | lsb |
range | realmax | upperbound

Introduced before R2006a

4 Functions

4-652

reinterpretcast
Convert fixed-point data types without changing underlying data

Syntax
c = reinterpretcast(a, T)

Description
c = reinterpretcast(a, T) converts the input a to the data type specified by numerictype
object T without changing the underlying data. The result is returned in fi object c.

The input a must be a built-in integer or a fi object with a fixed-point data type. T must be a
numerictype object with a fully specified fixed-point data type. The word length of inputs a and T
must be the same.

The reinterpretcast function differs from the MATLAB typecast and cast functions in that it
only operates on fi objects and built-in integers, and it does not allow the word length of the input to
change.

Examples
In the following example, a is a signed fi object with a word length of 8 bits and a fraction length of
7 bits. The reinterpretcast function converts a into an unsigned fi object c with a word length of
8 bits and a fraction length of 0 bits. The real-world values of a and c are different, but their binary
representations are the same.

a = fi([-1 pi/4],1,8,7)
T = numerictype(0,8,0);
c = reinterpretcast(a,T)

a =

 -1 0.7890625
 numerictype(1,8,7)

c =

 128 101
 numerictype(0,8,0)

To verify that the underlying data has not changed, compare the binary representations of a and c:

binary_a = bin(a)
binary_c = bin(c)

binary_a =

 '10000000 01100101'

binary_c =

 reinterpretcast

4-653

 '10000000 01100101'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
cast | fi | numerictype | typecast

Introduced in R2008b

4 Functions

4-654

removefimath
Remove fimath object from fi object

Syntax
y = removefimath(x)

Description
y = removefimath(x) returns a fi object y with x’s numerictype and value, and no fimath
object attached. You can use this function as y = removefimath(y), which gives you localized
control over the fimath settings. This function also is useful for preventing errors about
embedded.fimath of both operands needing to be equal.

Examples

Remove fimath Object from fi Object

This example shows how to define a fi object, define a fimath object, attach the fimath object to the
fi object and then, remove the attached fimath object.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

f = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = setfimath(a,f)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

b = removefimath(a)

b =
 3.1416

 removefimath

4-655

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Set and Remove fimath for Code Generation

Use the pattern x = setfimath(x,f) and y = removefimath(y) to insulate variables from
fimath settings outside the function. This pattern does not create copies of the data in generated
code.

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
 f = fimath('OverflowAction','Wrap',...
 'RoundingMethod','Floor',...
 'SumMode','KeepLSB',...
 'SumWordLength',32);
 a = setfimath(a,f);
 b = setfimath(b,f);
 y = a + b;
 y = removefimath(y);
end

If you have the MATLAB Coder product, you can generate C code. This example generates C code on
a computer with 32-bit, native integer type.

a = fi(0,1,16,15);
b = fi(0,1,16,15);
codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport

int fixed_point_32bit_KeepLSB_plus_example(short a, short b)
{
 return a + b;
}

Input Arguments
x — Input data
fi object | built-in integer | double | single

Input data, specified as a fi object or built-in integer, from which to copy the data type and value to
the output. x must be a fi object or an integer data type (int8, int16, int32, int64, uint8,
uint16, uint32, or uint64). If x is not a fi object or integer data type, then y = x.

Output Arguments
y — Output fi object
fi object | built-in integer | double | single

Output fi object, returned as a fi object with no fimath object attached. The data type and value of
the output match the input. If the input, x, is not a fi object y = x.

4 Functions

4-656

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | fimath | setfimath

Introduced in R2012b

 removefimath

4-657

rescale
Change scaling of fi object

Syntax
b = rescale(a, fractionlength)

b = rescale(a, slope, bias)

b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)

b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description
The rescale function acts similarly to the fi copy function with the following exceptions:

• The fi copy constructor preserves the real-world value, while rescale preserves the stored
integer value.

• rescale does not allow the Signed and WordLength properties to be changed.

Examples
In the following example, fi object a is rescaled to create fi object b. The real-world values of a and
b are different, while their stored integer values are the same:

p = fipref('FimathDisplay','none',...
 'NumericTypeDisplay','short');
a = fi(10, 1, 8, 3)

a =

 10
 numerictype(1,8,3)

b = rescale(a,1)

b =

 40
 numerictype(1,8,1)

stored_integer_a = storedInteger(a);
stored_integer_b = storedInteger(b);
isequal(stored_integer_a,stored_integer_b)

ans =

 logical

 1

4 Functions

4-658

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi

Introduced before R2006a

 rescale

4-659

reset
Reset objects to initial conditions

Syntax
reset(P)
reset(q)

Description
reset(P) resets the fipref object P to its initial conditions.

reset(q) resets the following quantizer object properties to their initial conditions:

• minlog
• maxlog
• noverflows
• nunderflows
• noperations

See Also
resetlog

Introduced before R2006a

4 Functions

4-660

resetglobalfimath
Set global fimath to MATLAB factory default

Syntax
resetglobalfimath

Description
resetglobalfimath sets the global fimath to the MATLAB factory default in your current MATLAB
session. The MATLAB factory default has the following properties:

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

Examples
In this example, you create your own fimath object F and set it as the global fimath. Then, using the
resetglobalfimath command, reset the global fimath to the MATLAB factory default setting.

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
globalfimath(F);
F1 = fimath
a = fi(pi)

F1 =

 RoundingMethod: Floor
 OverflowAction: Wrap
 ProductMode: FullPrecision
 SumMode: FullPrecision

a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Now, set the global fimath back to the factory default setting using resetglobalfimath:

resetglobalfimath;
F2 = fimath
a = fi(pi)

F2 =

 resetglobalfimath

4-661

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision
a =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

You've now set the global fimath in your current MATLAB session back to the factory default setting.
To use the factory default setting of the global fimath in future MATLAB sessions, you must use the
removeglobalfimathpref command.

Alternatives
reset(G) — If G is a handle to the global fimath, reset(G) is equivalent to using the
resetglobalfimath command.

See Also
fimath | globalfimath | removeglobalfimathpref

Introduced in R2010a

4 Functions

4-662

removeglobalfimathpref
Remove global fimath preference

Syntax
removeglobalfimathpref

Description
removeglobalfimathpref removes your global fimath from the MATLAB preferences. Once you
remove the global fimath from your preferences, you cannot save it to them again. It is best practice
to remove global fimath from the MATLAB preferences so that you start each MATLAB session using
the default fimath settings.

The removeglobalfimathpref function does not change the global fimath for your current
MATLAB session. To revert back to the factory default setting of the global fimath in your current
MATLAB session, use the resetglobalfimath command.

Examples
Example 4.4. Removing Your Global fimath from the MATLAB Preferences

Typing

removeglobalfimathpref;

at the MATLAB command line removes your global fimath from the MATLAB preferences. Using the
removeglobalfimathpref function allows you to:

• Continue using your global fimath in the current MATLAB session
• Use the MATLAB factory default setting of the global fimath in all future MATLAB sessions

To revert back to the MATLAB factory default setting of the global fimath in both your current and
future MATLAB sessions, use both the resetglobalfimath and the removeglobalfimathpref
commands:

resetglobalfimath;
removeglobalfimath;

See Also
fimath | globalfimath | resetglobalfimath

Introduced in R2010a

 removeglobalfimathpref

4-663

resetlog
Clear log for fi or quantizer object

Syntax
resetlog(a)
resetlog(q)

Description
resetlog(a) clears the log for fi object a.

resetlog(q) clears the log for quantizer object q.

Turn logging on or off by setting the fipref property LoggingMode.

See Also
fipref | maxlog | minlog | noperations | noverflows | nunderflows | reset

Introduced before R2006a

4 Functions

4-664

round
Round fi object toward nearest integer or round input data using quantizer object

Syntax
y = round(a)
y = round(q,x)

Description
y = round(a) rounds fi object a to the nearest integer. In the case of a tie, round rounds values to
the nearest integer with greater absolute value. The rounded value is returned in fi object y.

y = round(q,x) uses the RoundingMethod and FractionLength settings of quantizer object q
to round the numeric data x, but does not check for overflows during the operation. Input x must be a
built-in numeric variable. Use the cast function to work with fi objects.

Examples

Use round on a Signed fi Object

The following example demonstrates how the round function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 3.

a = fi(pi,1,8,3)

a =
 3.1250

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 3

y = round(a)

y =
 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

The following example demonstrates how the round function affects the numerictype properties of
a signed fi object with a word length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =
 0.0249

 round

4-665

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 12

y = round(a)

y =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 2
 FractionLength: 0

Use quantizer Object to Round Numeric Data

This example shows how to use the rounding method and fraction length specified by quantizer
object q to round the numeric data in x.

q = quantizer('fixed','convergent','wrap',[3 2])

q =

 DataMode = fixed
 RoundMode = convergent
 OverflowMode = wrap
 Format = [3 2]

x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square

4 Functions

4-666

Compare Rounding Methods

The functions convergent, nearest, and round differ in the way they treat values whose least
significant digit is 5.

• The convergent function rounds ties to the nearest even integer.
• The nearest function rounds ties to the nearest integer toward positive infinity.
• The round function rounds ties to the nearest integer with greater absolute value.

This example illustrates these differences for a given input, a.

a = fi([-3.5:3.5]');
y = [a convergent(a) nearest(a) round(a)]

y=8×4 object
 -3.5000 -4.0000 -3.0000 -4.0000
 -2.5000 -2.0000 -2.0000 -3.0000
 -1.5000 -2.0000 -1.0000 -2.0000
 -0.5000 0 0 -1.0000
 0.5000 0 1.0000 1.0000
 1.5000 2.0000 2.0000 2.0000
 2.5000 2.0000 3.0000 3.0000
 3.5000 3.9999 3.9999 3.9999

 round

4-667

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
a — Input fi array
scalar | vector | matrix | multidimensional array

Input fi array, specified as scalar, vector, matrix, or multidimensional array.

For complex fi objects, the imaginary and real parts are rounded independently.

round does not support fi objects with nontrivial slope and bias scaling. Slope and bias scaling is
trivial when the slope is an integer power of 2 and the bias is 0.
Data Types: fi
Complex Number Support: Yes

q — RoundingMethod and FractionLength settings
quantizer object

RoundingMethod and FractionLength settings, specified as a quantizer object.
Example: q = quantizer('fixed', 'round', [3 2]);

x — Input array
scalar | vector | matrix | multidimensional array

Input array to quantize using the quantizer object q, specified as a scalar, vector, matrix, or
multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes

Algorithms
• y and a have the same fimath object and DataType property.
• When the DataType property of a is single, double, or boolean, the numerictype of y is the

same as that of a.
• When the fraction length of a is zero or negative, a is already an integer, and the numerictype of

y is the same as that of a.
• When the fraction length of a is positive, the fraction length of y is 0, its sign is the same as that

of a, and its word length is the difference between the word length and the fraction length of a,
plus one bit. If a is signed, then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

4 Functions

4-668

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
ceil | convergent | fix | floor | nearest | quantize | quantizer

Introduced before R2006a

 round

4-669

rsqrt
Reciprocal square root

Syntax
Y = rsqrt(X)

Description
Y = rsqrt(X) returns the reciprocal square root of each element of the half-precision input array,
X.

Note This function supports only half-precision inputs.

Examples

Reciprocal Square Root of Matrix Elements

Create a matrix of half-precision values.

X = half(magic(3))

X =

 3x3 half matrix

 8 1 6
 3 5 7
 4 9 2

Compute the reciprocal square root of each element of X.

y = rsqrt(X)

y =

 3x3 half matrix

 0.3535 1.0000 0.4082
 0.5771 0.4473 0.3779
 0.5000 0.3333 0.7070

Input Arguments
X — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a half-precision numeric scalar, vector, matrix, or multidimensional array

4 Functions

4-670

Data Types: Half

See Also
half

Introduced in R2018b

 rsqrt

4-671

savefipref
Save fi preferences for next MATLAB session

Syntax
savefipref

Description
savefipref saves the settings of the current fipref object for the next MATLAB session.

See Also
fipref

Introduced before R2006a

4 Functions

4-672

sdec
Signed decimal representation of stored integer of fi object

Syntax
sdec(a)

Description
Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

sdec(a) returns the stored integer of fi object a in signed decimal format.

Examples
The code

a = fi([-1 1],1,8,7);
sdec(a)

returns

-128 127

See Also
bin | dec | hex | oct | storedInteger

Introduced before R2006a

 sdec

4-673

set
Set or display property values for quantizer objects

Syntax
set(q, PropertyValue1, PropertyValue2,...)

set(q,s)

set(q,pn,pv)

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)

q.PropertyName = Value

s = set(q)

Description
set(q, PropertyValue1, PropertyValue2,...) sets the properties of quantizer object q. If
two property values conflict, the last value in the list is the one that is set.

set(q,s), where s is a structure whose field names are object property names, sets the properties
named in each field name with the values contained in the structure.

set(q,pn,pv) sets the named properties specified in the cell array of strings pn to the
corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2', PropertyValue2,...) sets
multiple property values with a single statement.

Note You can use property name/property value string pairs, structures, and property name/property
value cell array pairs in the same call to set.

q.PropertyName = Value uses dot notation to set property PropertyName to Value.

set(q) displays the possible values for all properties of quantizer object q.

s = set(q) returns a structure containing the possible values for the properties of quantizer
object q.

Note The set function operates on quantizer objects. To learn about setting the properties of
other objects, see properties of fi, fimath, fipref, and numerictype objects.

See Also
get

4 Functions

4-674

Introduced before R2006a

 set

4-675

setfimath
Attach fimath object to fi object

Syntax
y = setfimath(x,f)

Description
y = setfimath(x,f) returns a fi object, y, with x’s numerictype and value, and attached fimath
object, f. This function and the related removefimath function are useful for preventing errors
about embedded.fimath of both operands needing to be equal.

The y = setfimath(x,f) syntax does not modify the input, x. To modify x, use x = setfimath(x,f).
If you use setfimath in an expression, such as, a*setfimath(b,f), the fimath object is used in
the temporary variable, but b is not modified.

Examples

Add fimath object to fi Object

Define a fi object, define a fimath object, and use setfimath to attach the fimath object to the
fi object.

Create a fi object without a fimath object.

a = fi(pi)

a =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Create a fimath object and attach it to the fi object.

f = fimath('OverflowAction','Wrap','RoundingMethod','Floor');
b = setfimath(a,f)

b =
 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Floor
 OverflowAction: Wrap

4 Functions

4-676

 ProductMode: FullPrecision
 SumMode: FullPrecision

Set and Remove fimath for Code Generation

Use the pattern x = setfimath(x,f) and y = removefimath(y) to insulate variables from
fimath settings outside the function. This pattern does not create copies of the data in generated
code.

function y = fixed_point_32bit_KeepLSB_plus_example(a,b)
 f = fimath('OverflowAction','Wrap',...
 'RoundingMethod','Floor',...
 'SumMode','KeepLSB',...
 'SumWordLength',32);
 a = setfimath(a,f);
 b = setfimath(b,f);
 y = a + b;
 y = removefimath(y);
end

If you have the MATLAB Coder product, you can generate C code. This example generates C code on
a computer with 32-bit, native integer type.

a = fi(0,1,16,15);
b = fi(0,1,16,15);
codegen -config:lib fixed_point_32bit_KeepLSB_plus_example...
 -args {a,b} -launchreport

int fixed_point_32bit_KeepLSB_plus_example(short a, short b)
{
 return a + b;
}

Input Arguments
x — Input data
fi object | built-in integer | double | single

Input data, specified as a fi object or built-in integer value, from which to copy the data type and
value to the output. x must be a fi object or an integer data type (int8, int16, int32, int64,
uint8, uint16, uint32, or uint64). Otherwise, the fimath object is not applied. If x is not a fi
object or integer data type, y = x.

f — Input fimath object
fimath object

Input fimath object, specified as an existing fimath object to attach to the output. An error occurs if
f is not a fimath object.

 setfimath

4-677

Output Arguments
y — Output fi object
fi object

Output fi object, returned as a fi object with the same data type and value as the x input. y also has
attached fimath object, f. If the input, x, is not a fi object or integer data type, then y = x.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fi | fimath | removefimath

Introduced in R2012b

4 Functions

4-678

sfi
Construct signed fixed-point numeric object

Syntax
a = sfi
a = sfi(v)
a = sfi(v,w)
a = sfi(v,w,f)
a = sfi(v,w,slope,bias)
a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description
You can use the sfi constructor function in the following ways:

• a = sfi is the default constructor and returns a signed fi object with no value, 16-bit word
length, and 15-bit fraction length.

• a = sfi(v) returns a signed fixed-point object with value v, 16-bit word length, and best-
precision fraction length.

• a = sfi(v,w) returns a signed fixed-point object with value v, word length w, and best-precision
fraction length.

• a = sfi(v,w,f) returns a signed fixed-point object with value v, word length w, and fraction
length f.

• a = sfi(v,w,slope,bias) returns a signed fixed-point object with value v, word length w,
slope, and bias.

• a = sfi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns a signed fixed-point
object with value v, word length w, slopeadjustmentfactor, fixedexponent, and bias.

fi objects created by the sfi constructor function have the following general types of properties:

• “Data Properties” on page 4-728
• “fimath Properties” on page 4-680
• “numerictype Properties” on page 4-730

These properties are described in detail in “fi Object Properties” on page 3-2 in the Properties
Reference.

Note fi objects created by the sfi constructor function have no local fimath.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

 sfi

4-679

• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can

also use int8, int16, int32, int64, uint8, uint16, uint32, and uint64 to get the stored
integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties” on page 3-2.

fimath Properties

When you create a fi object with the sfi constructor function, that fi object does not have a local
fimath object. You can attach a fimath object to that fi object if you do not want to use the default
fimath settings. For more information, see “fimath Object Construction”.

• fimath — fixed-point math object

The following fimath properties are always writable and, by transitivity, are also properties of a fi
object.

• CastBeforeSum — Whether both operands are cast to the sum data type before addition

Note This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.

4 Functions

4-680

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of
the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink signal or
model parameter

The following numerictype properties are, by transitivity, also properties of a fi object. The
properties of the numerictype object become read only after you create the fi object. However, you
can create a copy of a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi objects must be Signed
or Unsigned. If a numerictype object with Auto Signedness is used to create a fi object, the
Signedness property of the fi object automatically defaults to Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.

Examples

Note For information about the display format of fi objects, refer to Display Settings.

For examples of casting, see “Cast fi Objects”.

Example 1

For example, the following creates a signed fi object with a value of pi, a word length of 8 bits, and
a fraction length of 3 bits:

a = sfi(pi,8,3)

a =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling

 sfi

4-681

 Signedness: Signed
 WordLength: 8
 FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local fimath
object, no fimath object properties are displayed in its output. To determine whether a fi object has
a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =
 0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

Example 2

The value v can also be an array:

a = sfi((magic(3)/10),16,12)

a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision possible:

a = sfi(pi,8)

a =

 3.1563

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 5

Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively:

a = sfi(pi)

a =

 3.1416

4 Functions

4-682

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All properties related to data type must be constant for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | fipref | isfimathlocal | numerictype | quantizer | ufi

Introduced in R2009b

 sfi

4-683

shiftdata
Shift data to operate on specified dimension

Syntax
[x,perm,nshifts] = shiftdata(x,dim)

Description
[x,perm,nshifts] = shiftdata(x,dim) shifts data x to permute dimension dim to the first
column using the same permutation as the built-in filter function. The vector perm returns the
permutation vector that is used.

If dim is missing or empty, then the first non-singleton dimension is shifted to the first column, and
the number of shifts is returned in nshifts.

shiftdata is meant to be used in tandem with unshiftdata, which shifts the data back to its
original shape. These functions are useful for creating functions that work along a certain dimension,
like filter, goertzel, sgolayfilt, and sosfilt.

Examples

Example 1

1 Create a 3-x-3 magic square:

x = fi(magic(3))

x =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

2 Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

x =

 8 3 4
 1 5 9
 6 7 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16

4 Functions

4-684

 FractionLength: 11

perm =

 2 1

nshifts =

 []

The permutation vector, perm, and the number of shifts, nshifts, are returned along with the
shifted matrix, x.

3 Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Example 2

1 Define x as a row vector:

x = 1:5

x =

 1 2 3 4 5
2 Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x =

 1
 2
 3
 4
 5

perm =

 []

nshifts =

 shiftdata

4-685

 1

x is returned as a column vector, along with perm, the permutation vector, and nshifts, the
number of shifts.

3 Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 1 2 3 4 5

See Also
unshiftdata

Introduced in R2008a

4 Functions

4-686

showfixptsimerrors
Show overflows from most recent fixed-point simulation

Compatibility

Note showfixptsimerrors will be removed in a future release. Use fxptdlg instead.

Syntax
showfixptsimerrors

Description
The showfixptsimerrors script displays any overflows from the most recent fixed-point simulation.
This information is also visible in the Fixed-Point Tool.

See Also
autofixexp | fxptdlg

Introduced before R2006a

 showfixptsimerrors

4-687

showfixptsimranges
Show logged maximum values, minimum values, and overflow data from fixed-point simulation

Compatibility

Note showfixptsimranges will be removed in a future release. Use fxptdlg instead.

Syntax
showfixptsimranges
showfixptsimranges(action)

Description
showfixptsimranges displays the logged maximum values, minimum values, and overflow data
from the most recent fixed-point simulation in the MATLAB Command Window.

showfixptsimranges(action) stores the logged maximum values, minimum values, and overflow
data from the most recent fixed-point simulation in the workspace variable FixPtSimRanges. If
action is 'verbose', the logged data also appears in the MATLAB Command Window. If action is
'quiet', no data appears.

See Also
autofixexp | fxptdlg

Introduced before R2006a

4 Functions

4-688

showInstrumentationResults
Results logged by instrumented, compiled C code function

Syntax
showInstrumentationResults('mex_fcn')
showInstrumentationResults ('mex_fcn' '-options')
showInstrumentationResults mex_fcn
showInstrumentationResults mex_fcn -options

Description
showInstrumentationResults('mex_fcn') opens the Code Generation Report, showing results
from calling the instrumented MEX function mex_fcn. Hovering over variables and expressions in
the report displays the logged information. The logged information includes minimum and maximum
values, proposed fraction or word lengths, percent of current range, and whether the value is always
a whole number, depending on which options you specify. If you specify to include them in the
buildInstrumentedMex function, histograms are also included. The same information is displayed
in a summary table in the Variables tab.

showInstrumentationResults ('mex_fcn' '-options') specifies options for the
instrumentation results section of the Code Generation Report.

showInstrumentationResults mex_fcn and showInstrumentationResults mex_fcn -
options are alternative syntaxes for opening the Code Generation Report.

When you call showInstrumentationResults, a file named instrumentation/mex_fcn/html/
index.html is created. mex_fcn is the name of the corresponding instrumented MEX function.
Selecting this file opens a web-based version of the Code Generation Report. To open this file from
within MATLAB, right-click on the file and select Open Outside MATLAB.
showInstrumentationResults returns an error if the instrumented mex_fcn has not yet been
called.

Input Arguments
mex_fcn

Instrumented MEX function created using buildInstrumentedMex.

options

Instrumentation results options.

 showInstrumentationResults

4-689

-defaultDT T Default data type to propose for double or single
data type inputs, where T is either a numerictype
object or one of the following: 'remainFloat',
'double', 'single', 'int8', 'int16',
'int32', 'int64', 'uint8', 'uint16',
'uint32', or 'uint64'. If you specify an int or
uint, the signedness and word length are that
int or uint value and a fraction length is
proposed. The default is remainFloat, which
does not propose any data types.

-nocode Do not display MATLAB code in the printable
report. Display only the tables of logged
variables. This option only has effect in
combination with the -printable option.

-optimizeWholeNumbers Optimize the word length of variables whose
simulation min/max logs indicate that they are
always whole numbers.

-percentSafetyMargin N Safety margin for simulation min/max, where N is
a percent value.

-printable Create and open a printable HTML report. The
report opens in the system browser.

-proposeFL Propose fraction lengths for specified word
lengths.

-proposeWL Propose word lengths for specified fraction
lengths.

Examples
Generate an instrumented MEX function, then run a test bench. Call
showInstrumentationResults to open the Code Generation Report.

Note The logged results from showInstrumentationResults are an accumulation of all previous
calls to the instrumented MEX function. To clear the log, see clearInstrumentationResults.

1 Create a temporary directory, then import an example function from Fixed-Point Designer.

tempdirObj=fidemo.fiTempdir('showInstrumentationResults')
copyfile(fullfile(matlabroot,'toolbox','fixedpoint',...
 'fidemos','fi_m_radix2fft_withscaling.m'),...
 'testfft.m','f')

2 Define prototype input arguments.

T = numerictype('DataType','ScaledDouble','Scaling',...
 'Unspecified');

n = 128;
x = complex(fi(zeros(n,1),T));
W = coder.Constant(fi(fidemo.fi_radix2twiddles(n),T));

4 Functions

4-690

3 Generate an instrumented MEX function. Use the -o option to specify the MEX function name.

buildInstrumentedMex testfft -o testfft_instrumented...
 -args {x,W} -histogram

4 Run a test bench to record instrumentation results. Call showInstrumentationResults to
open a report. View the simulation minimum and maximum values, proposed fraction length,
percent of current range, and whole number status by pausing over a variable in the report.

for i=1:20
 x(:) = 2*rand(size(x))-1;
 y = testfft_instrumented(x);
end

showInstrumentationResults testfft_instrumented...
 -proposeFL -percentSafetyMargin 10

1
View the histogram for a variable by clicking in the Variables tab.

 showInstrumentationResults

4-691

For information on the figure, refer to the NumericTypeScope reference page.
2 Close the histogram display and then, clear the results log.

clearInstrumentationResults testfft_instrumented
3 Clear the MEX function, then delete temporary files.

clear testfft_instrumented;
tempdirObj.cleanUp;

See Also
NumericTypeScope | buildInstrumentedMex | clearInstrumentationResults | codegen |
fiaccel | mex

Introduced in R2011b

4 Functions

4-692

sin
Sine of fixed-point values

Syntax
y = sin(theta)

Description
y = sin(theta) returns the sine of fi input theta using a lookup table algorithm.

Examples

Calculate the Sine of Fixed-Point Input Values

theta = fi([-pi/2,-pi/3,-pi/4,0,pi/4,pi/3,pi/2]);
y = sin(theta)

y=1×7 object
 -1.0000 -0.8661 -0.7072 0 0.7070 0.8659 0.9999

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Input Arguments
theta — Input angle in radians
real-valued fi object

Input angle in radians, specified as a real-valued fi object. theta can be a signed or unsigned scalar,
vector, matrix, or multidimensional array containing the fixed-point angle values in radians. Valid data
types of theta are:

• fi single
• fi double
• fi fixed-point with binary point scaling
• fi scaled double with binary point scaling

Data Types: fi

Output Arguments
y — Sine of input angle
scalar | vector | matrix | multidimensional array

 sin

4-693

Sine of input angle, returned as a scalar, vector, matrix, or multidimensional array. y is a signed,
fixed-point number in the range [-1,1].

If the DataTypeMode property of theta is Fixed-point: binary point scaling, then y is
returned as a signed fixed-point data type with binary point scaling, a 16-bit word length, and a 15-bit
fraction length (numerictype(1,16,15)). If theta is a fi single, fi double, or fi scaled double
with binary point scaling, then y is returned with the same data type as theta.

More About
Sine

The sine of angle Θ is defined as

sin(θ) = eiθ− e−iθ

2i

Algorithms
The sin function computes the sine of fixed-point input using an 8-bit lookup table as follows:

1 Perform a modulo 2π, so the input is in the range [0,2π) radians.
2 Cast the input to a 16-bit stored integer value, using the 16 most-significant bits.
3 Compute the table index, based on the 16-bit stored integer value, normalized to the full uint16

range.
4 Use the 8 most-significant bits to obtain the first value from the table.
5 Use the next-greater table value as the second value.
6 Use the 8 least-significant bits to interpolate between the first and second values, using nearest-

neighbor linear interpolation.

fimath Propagation Rules

The sin function ignores and discards any fimath attached to the input, theta. The output, y, is
always associated with the default fimath.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
angle | atan2 | cordiccos | cordicsin | cos | sin

Topics
“Calculate Fixed-Point Sine and Cosine”

Introduced in R2012a

4 Functions

4-694

sign
Perform sign function (signum function) on array

Syntax
c = sign(a)

Description
c = sign(a) returns an array c the same size as a, where each element of c is:

• 1 if the corresponding element of a is greater than 0.
• 0 if the corresponding element of a is 0.
• -1 if the corresponding element of a is less than 0.

The elements of c are of data type int8.

Examples

Find Sign Function

Find the sign function of a fi object.

sign(fi(2))

ans =

 int8

 1

Find the sign function of a signed fi vector.

v = fi([-11 0 1.5],1);
sign(v)

ans =

 1×3 int8 row vector

 -1 0 1

Find the sign function of an unsigned fi vector.

u = fi([-11 0 1.5],0);
sign(u)

ans =

 1×3 int8 row vector

 sign

4-695

 0 0 1

Input Arguments
a — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a fi scalar, vector, matrix, or multidimensional array.

sign does not support complex fi inputs.
Data Types: fi

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
abs | complex | conj

Introduced before R2006a

4 Functions

4-696

single
Single-precision floating-point real-world value of fi object

Syntax
single(a)

Description
Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

single(a) returns the real-world value of a fi object in single-precision floating point.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm
to insulate functions that do not support fixed-point data types. The automated conversion tool
does not support these casts. Instead of using casts, supply a replacement function. For more
information, see “Function Replacements”.

See Also
double

Introduced before R2006a

 single

4-697

sort
Sort elements of real-valued fi object in ascending or descending order

Syntax
B = sort(A)
B = sort(A,dim)
B = sort(___ ,direction)
[B,I] = sort(___)

Description
B = sort(A) sorts the elements of the real-valued fi object A in ascending order.

• If A is a vector, then sort(A) sorts the vector elements.
• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column.
• If A is a multidimensional array, then sort(A) operates along the first array dimension whose size

does not equal 1, treating the elements as vectors.

B = sort(A,dim) returns the sorted elements of A along dimension dim.

B = sort(___ ,direction) returns sorted elements of A in the order specified by direction.

[B,I] = sort(___) also returns a collection of index vectors for any of the previous syntaxes.

Examples

Sort fi Vector in Ascending Order

Create a fi row vector and sort its elements in ascending order.

A = fi([9 0 -7 5 3 8 -10 4 2]);
B = sort(A)

B =

 -10 -7 0 2 3 4 5 8 9

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Sort fi Matrix Columns in Descending Order

Create a matrix of fi values and sort its columns in descending order.

4 Functions

4-698

A = fi([10 -12 4 8; 6 -9 8 0; 2 3 11 -2; 1 1 9 3]);
B = sort(A,'descend')

B =

 10 3 11 8
 6 1 9 3
 2 -9 8 0
 1 -12 4 -2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Sort and Index a fi Matrix

Create a matrix of fi values and sort each of its rows in ascending order.

A = fi([3 6 5; 7 -2 4; 1 0 -9]);
[B,I] = sort(A,2)

B =

 3 5 6
 -2 4 7
 -9 0 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

I =

 3×3 int32 matrix

 1 3 2
 2 3 1
 3 2 1

B contains the sorted values and I is a collection of 1-by-3 row index vectors describing the
rearrangement of each row of A.

Input Arguments
A — Input array
real-valued fi object

Input array, specified as a real-valued fi object.

• If A is a scalar, then sort(A) returns A.
• If A is a vector, then sort(A) sorts the vector elements.
• If A is a matrix, then sort(A) treats the columns of A as vectors and sorts each column.

 sort

4-699

• If A is a multidimensional array, then sort(A) operates along the first array dimension whose size
does not equal 1, treating the elements as vectors.

sort does not support complex fixed-point inputs, or pairs of Name,Value arguments. Refer to the
MATLAB sort reference page for more information.
Data Types: fi

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

The dimensions argument must be a built-in data type; it cannot be a fi object.
Example: Consider a matrix A. sort(A,1) sorts the elements in the columns of A.
Example: sort(A,2) sorts the elements in the rows of A.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

direction — Sorting direction
'ascend' (default) | 'descend'

Sorting direction, specified as 'ascend' or 'descend'.
Data Types: char

Output Arguments
B — Sorted array
scalar | vector | matrix | multidimensional array

Sorted array, returned as a scalar, vector, matrix, or multidimensional array. B is the same size and
type as A. The order of the elements in B preserves the order of any equal elements in A.

I — Sort index
scalar | vector | matrix | multidimensional array

Sort index, returned as a scalar, vector, matrix, or multidimensional array. I is the same size as A. The
index vectors are oriented along the same dimension that sort operates on.
Example: If A is a vector, then B = A(I).
Example: If A is a 2-by-3 matrix, then [B,I] = sort(A,2) sorts the elements in each row of A. The
output I is a collection of 1-by-3 row index vectors describing the rearrangement of each row of A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The dimensions argument must be a built-in type; it cannot be a fi object.

4 Functions

4-700

See Also
sort

Topics
“Reshaping and Rearranging Arrays”

Introduced in R2008b

 sort

4-701

sqrt
Square root of fi object

Syntax
c = sqrt(a)
c = sqrt(a,T)
c = sqrt(a,F)
c = sqrt(a,T,F)

Description
This function computes the square root of a fi object using a bisection algorithm.

c = sqrt(a) returns the square root of fi object a. Intermediate quantities are calculated using
the fimath associated with a. The numerictype object of c is determined automatically for you
using an internal rule on page 4-702.

c = sqrt(a,T) returns the square root of fi object a with numerictype object T. Intermediate
quantities are calculated using the fimath associated with a. See “Data Type Propagation Rules” on
page 4-702.

c = sqrt(a,F) returns the square root of fi object a. Intermediate quantities are calculated using
the fimath object F. The numerictype object of c is determined automatically for you using an
internal rule on page 4-702. When a is a built-in double or single data type, this syntax is
equivalent to c = sqrt(a) and the fimath object F is ignored.

c = sqrt(a,T,F) returns the square root fi object a with numerictype object T. Intermediate
quantities are also calculated using the fimath object F. See “Data Type Propagation Rules” on page
4-702.

sqrt does not support complex, negative-valued, or [Slope Bias] inputs.

Internal Rule

For syntaxes where the numerictype object of the output is not specified as an input to the sqrt
function, it is automatically calculated according to the following internal rule:

signc = signa

WLc = ceil(
WLa

2)

FLc = WLc− ceil(
WLa− FLa

2)

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the sqrt function follows the data type
propagation rules listed in the following table. In general, these rules can be summarized as “floating-

4 Functions

4-702

point data types are propagated.” This allows you to write code that can be used with both fixed-point
and floating-point inputs.

Data Type of Input fi Object a Data Type of numerictype
object T

Data Type of Output c

Built-in double Any Built-in double
Built-in single Any Built-in single
fi Fixed fi Fixed Data type of numerictype

object T
fi ScaledDouble fi Fixed ScaledDouble with properties

of numerictype object T
fi double fi Fixed fi double
fi single fi Fixed fi single
Any fi data type fi double fi double
Any fi data type fi single fi single

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Complex and [Slope Bias] inputs error out.
• Negative inputs yield a 0 result.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Introduced in R2006b

 sqrt

4-703

storedInteger
Stored integer value of fi object

Syntax
st_int = storedInteger(f)

Description
st_int = storedInteger(f) returns the stored integer value of fi object f.

Fixed-point numbers can be represented as

real‐worldvalue = 2− f ractionlength × storedinteger

or, equivalently as

real‐worldvalue = (slope × storedinteger) + bias

The stored integer is the raw binary number, in which the binary point is assumed to be at the far
right of the word.

Input Arguments
f — Fixed-point numeric object
fi object

Fixed-point numeric object from which you want to get the stored integer value.

Output Arguments
st_int — Stored integer value of fi object
integer

Stored integer value of fi object, specified as an integer.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

The returned stored integer value is the smallest built-in integer data type in which the stored integer
value f fits. Signed fi values return stored integers of type int8, int16, int32, or int64.
Unsigned fi values return stored integers of type uint8, uint16, uint32, or uint64. The return
type is determined based on the stored integer word length (WL):

• WL ≤ 8 bits, the return type is int8 or uint8.
• 8 bits < WL ≤ 16 bits, the return type is int16 or uint16.
• 16 bits < WL ≤ 32 bits, the return type is int32 or uint32.
• 32 bits < WL ≤ 64 bits, the return type is int64 or uint64.

4 Functions

4-704

Note When the word length is greater than 64 bits, the storedInteger function errors. For bit-true
integer representation of very large word lengths, use bin, oct, dec, hex, or sdec.

Examples
Stored Integer Value of fi Objects

Find the stored integer values for two fi objects. Use the class function to display the stored integer
data types.

x = fi([0.2 0.3 0.5 0.3 0.2]);
in_x = storedInteger(x);
c1 = class(in_x)

numtp = numerictype('WordLength',17);
x_n = fi([0.2 0.3 0.5 0.3 0.2],'numerictype',numtp);
in_xn = storedInteger(x_n);
c2 = class(in_xn)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
int16 | int32 | int64 | int8 | storedIntegerToDouble | uint16 | uint32 | uint64 | uint8

Introduced in R2012a

 storedInteger

4-705

storedIntegerToDouble
Convert stored integer value of fi object to built-in double value

Syntax
d = storedIntegerToDouble(f)

Description
d = storedIntegerToDouble(f) converts the stored integer value of fi object, f, to a double-
precision floating-point value, d.

If the input word length is greater than 52 bits, a quantization error may occur. INF is returned if the
stored integer value of the input fi object is outside the representable range of built-in double
values.

Input Arguments
f

fi object

Examples

Convert Stored Integer Value of fi Object to Double-Precision Value

Convert the stored integer of a fi value to a double-precision value. Use the class function to verify
that the stored integer is a double-precision value.

f = fi(pi,1,16,12);
d = storedIntegerToDouble(f);
dtype = class(d)

dtype =
'double'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
class | fi | storedInteger

Introduced in R2012a

4 Functions

4-706

stripscaling
Stored integer of fi object

Syntax
I = stripscaling(a)

Description
I = stripscaling(a) returns the stored integer of a as a fi object with binary-point scaling, zero
fraction length and the same word length and sign as a.

Examples
stripscaling is useful for converting the value of a fi object to its stored integer value.

fipref('NumericTypeDisplay','short', ...
 'FimathDisplay','none');
format long g
a = fi(0.1,true,48,47)

a =

 0.100000000000001
 numerictype(1,48,47)

b = stripscaling(a)

b =

 14073748835533
 numerictype(1,48,0)

bin(a)

ans =

 '000011001100110011001100110011001100110011001101'

bin(b)

ans =

 '000011001100110011001100110011001100110011001101'

Notice that the stored integer values of a and b are identical, while their real-world values are
different.

Introduced before R2006a

 stripscaling

4-707

sub
Subtract two fi objects using fimath object

Syntax
c = sub(F,a,b)

Description
c = sub(F,a,b) subtracts fi objects a and b using fimath object F. This is helpful in cases when
you want to override the fimath objects of a and b, or if the fimath properties associated with a
and b are different. The output of fi object c has no local fimath.

Examples

Subtract Two fi Objects Overriding Their fimath

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',16);
c = sub(F,a,b)

c =
 0.4233

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 16

c is the 32-bit difference of a and b, with fraction length 16.

Input Arguments
F — fimath
fimath object

fimath object to use for subtraction, specified as a fimath object.

a,b — Operands
scalars | vectors | matrices | multidimensional arrays

Operands, specified as scalars, vectors, matrices, or multidimensional arrays.

a and b must both be fi objects and must have the same dimensions unless one is a scalar. If either a
or b is scalar, then c has the dimensions of the nonscalar object.
Data Types: fi

4 Functions

4-708

Complex Number Support: Yes

Algorithms
C = sub(F,A,B)

or

C = F.sub(A,B)

is equivalent to

A.fimath = F;
B.fimath = F;
C = A - B;

except that the fimath properties of A and B are not modified when you use the functional form.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax F.sub(a,b). You must use the syntax sub(F,a,b).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
add | divide | fi | fimath | mpy | mrdivide | numerictype | rdivide

Introduced before R2006a

 sub

4-709

subsasgn
Subscripted assignment

Syntax
a(I) = b
a(I,J) = b
a(I,:) = b
a(:,I) = b
a(I,J,K,...) = b
a = subsasgn(a,S,b)

Description
a(I) = b assigns the values of b into the elements of a specified by the subscript vector I. b must
have the same number of elements as I or be a scalar value.

a(I,J) = b assigns the values of b into the elements of the rectangular submatrix of a specified by
the subscript vectors I and J. b must have LENGTH(I) rows and LENGTH(J) columns.

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates the entire column or row.

For multidimensional arrays, a(I,J,K,...) = b assigns b to the specified elements of a. b must be
length(I)-by-length(J)-by-length(K)-... or be shiftable to that size by adding or removing
singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b when a is an object. S is
a structure array with the following fields:

• type — One of the following: '()', '{}', or '.' specifying the subscript type
• subs — Cell array or character vector containing the actual subscripts

For instance, the syntax a(1:2,:) = b calls a=subsasgn(a,S,b) where S is a 1-by-1 structure
with S.type='()' and S.subs = {1:2,':'}. A colon used as a subscript is passed as ':'.

You can use fixed-point assignment, for example a(:) = b, to cast a value with one numerictype
object into another numerictype object. This subscripted assignment statement assigns the value of
b into a while keeping the numerictype object of a. Subscripted assignment works the same way for
integer data types.

Examples

Cast a 16-bit Number into an 8-bit Number

For fi objects a and b, there is a difference between

a = b

and

4 Functions

4-710

a(:) = b

In the first case, a = b replaces a with b while a assumes the value, numerictype object and
fimath object associated with b. In the second case, a(:) = b assigns the value of b into a while
keeping the numerictype object of a. You can use this to cast a value with one numerictype object
into another numerictype object.

For example, cast a 16-bit number into an 8-bit number.

a = fi(0, 1, 8, 7)

a =
 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

b = fi(pi/4, 1, 16, 15)

b =
 0.7854

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

a(:) = b

a =
 0.7891

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 8
 FractionLength: 7

Emulate a 40-bit Accumulator of a DSP

This example defines a variable acc to emulate a 40-bit accumulator of a DSP. The products and sums
in this example are assigned into the accumulator using the syntax acc(1)=... Assigning values
into the accumulator is like storing a value in a register. To begin, turn the logging mode on and
define the variables. In this example, n is the number of points in the input data x and output data y,
and t represents time. The remaining variables are all defined as fi objects. The input data x is a
high-frequency sinusoid added to a low-frequency sinusoid.

fipref('LoggingMode', 'on');
n = 100;
t = (0:n-1)/n;
x = fi(sin(2*pi*t) + 0.2*cos(2*pi*50*t));
b = fi([.5 .5]);
y = fi(zeros(size(x)), numerictype(x));
acc = fi(0.0, true, 40, 30);

 subsasgn

4-711

The following loop takes a running average of the input x using the coefficients in b . Notice that acc
is assigned into acc(1)=... versus using acc=..., which would overwrite and change the data
type of acc .

for k = 2:n
 acc(1) = b(1)*x(k);
 acc(1) = acc + b(2)*x(k-1);
 y(k) = acc;
end

By averaging every other sample, the loop shown above passes the low-frequency sinusoid through
and attenuates the high-frequency sinusoid.

plot(t,x,'x-',t,y,'o-')
legend('input data x','output data y')

The log report shows the minimum and maximum logged values and ranges of the variables used.
Because acc is assigned into, rather than overwritten, these logs reflect the accumulated minimum
and maximum values.

logreport(x, y, b, acc)

 minlog maxlog lowerbound upperbound noverflows nunderflows
 x -1.200012 1.197998 -2 1.999939 0 0
 y -0.9990234 0.9990234 -2 1.999939 0 0
 b 0.5 0.5 -1 0.9999695 0 0
 acc -0.9990234 0.9989929 -512 512 0 0

4 Functions

4-712

Display acc to verify that its data type did not change.

acc

acc =
 -0.0941

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 40
 FractionLength: 30

Reset the fipref object to restore its default values.

reset(fipref)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Supported data types for HDL code generation are listed in “Supported MATLAB Data Types,
Operators, and Control Flow Statements” (HDL Coder).

See Also
subsref

Topics
“Cast fi Objects”

Introduced before R2006a

 subsasgn

4-713

subsref
Subscripted reference

Description
This function accepts fi objects as inputs.

Refer to the MATLAB subsref reference page for more information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

Supported data types for HDL code generation are listed in “Supported MATLAB Data Types,
Operators, and Control Flow Statements” (HDL Coder).

Introduced before R2006a

4 Functions

4-714

sum
Sum of fi array elements

Syntax
S = sum(A)
S = sum(A,dim)
S = sum(___ ,type)

Description
S = sum(A) returns the sum along different dimensions of the fi array A.

• If A is a vector, sum(A) returns the sum of the elements.
• If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the sums of

each column.
• If A is a multidimensional array, sum(A) treats the values along the first non-singleton dimension

as vectors, returning an array of row vectors.

S = sum(A,dim) sums along the dimension dim of A.

S = sum(___ ,type) returns an array in the class specified by type.

Examples

Sum of Vector Elements

Create a fi vector, and specify fimath properties in the constructor.

A=fi([1 2 5 8 5], 'SumMode', 'KeepLSB', 'SumWordLength', 32)

A=1×5 object
 1 2 5 8 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true

Compute the sum of the elements of A.

S=sum(A)

 sum

4-715

S =
 21

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 11

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: KeepLSB
 SumWordLength: 32
 CastBeforeSum: true

The output S is a scalar with the specified SumWordLength of 32. The FractionLength of S is 11
because SumMode was set to KeepLSB.

Sum of Elements in Each Column

Create a fi array, and compute the sum of the elements in each column.

A=fi([1 2 8;3 7 0;1 2 2])

A=3×3 object
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

S=sum(A)

S=1×3 object
 5 11 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11

MATLAB® returns a row vector with the sums of each column of A. The WordLength of S has
increased by two bits because ceil(log2(size(A,1)))=2. The FractionLength remains the
same because the default setting of SumMode is FullPrecision.

Sum of Elements in Each Row

Compute the sum along the second dimension (dim=2) of 3-by-3 matrix A.

4 Functions

4-716

A=fi([1 2 8;3 7 0;1 2 2])

A=3×3 object
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

S=sum(A, 2)

S=3×1 object
 11
 10
 5

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 18
 FractionLength: 11

MATLAB® returns a column vector of the sums of the elements in each row. The WordLength of S is
18 because ceil(log2(size(A,2)))=2.

Sum of Elements Preserving Data Type

Compute the sums of the columns of A so that the output array, S, has the same data type.

A=fi([1 2 8;3 7 0;1 2 2]), class(A)

A=3×3 object
 1 2 8
 3 7 0
 1 2 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

ans =
'embedded.fi'

S=sum(A, 'native'), class(S)

S=1×3 object
 5 11 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

 sum

4-717

 WordLength: 18
 FractionLength: 11

ans =
'embedded.fi'

MATLAB® preserves the data type of A and returns a row vector S of type embedded.fi.

Input Arguments
A — Input fi array
fi object | numeric variable

fi input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. dim can also be a fi object. If no
value is specified, the default is the first array dimension whose size does not equal 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

type — Output class
'double' | 'native'

Output class, specified as 'double' or 'native'. The output class defines the data type that the
operation is performed in and returned in.

• If type is 'double', then sum returns a double-precision array, regardless of the input data type.
• If type is 'native', then sum returns an array with the same class as input array A.

Data Types: char

Output Arguments
S — Sum array
scalar | vector | matrix | multidimensional array

Sum array, returned as a scalar, vector, matrix, or multidimensional array.

Note The fimath object is used in the calculation of the sum. If SumMode is set to FullPrecision,
KeepLSB, or KeepMSB, then the number of integer bits of growth for sum(A) is
ceil(log2(size(A,dim))).

4 Functions

4-718

Limitations
• sum does not support fi objects of data type Boolean.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-sized inputs are only supported when the SumMode property of the governing fimath
object is set to SpecifyPrecision or KeepLSB.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
add | divide | fi | fimath | mpy | mrdivide | numerictype | rdivide | sub | sum

Introduced before R2006a

 sum

4-719

times, .*
Element-by-element multiplication of fi objects

Syntax
C = A.*B
C = times(A,B)

Description
C = A.*B performs element-by-element multiplication of A and B, and returns the result in C.

C = times(A,B) is an alternate way to execute A.*B.

Examples

Multiply a fi Object by a Scalar

Use the times function to perform element-by-element multiplication of a fi object and a scalar.

a=4;
b=fi([2 4 7; 9 0 2])

b=2×3 object
 2 4 7
 9 0 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

a is a scalar double, and b is a matrix of fi objects. When doing arithmetic between a fi and a
double, the double is cast to a fi with the same word length and signedness of the fi, and best-
precision fraction length. The result of the operation is a fi.

c=a.*b

c=2×3 object
 8 16 28
 36 0 8

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 23

During the operation, a was cast to a fi object with wordlength 16. The output, c, is a fi object with
word length 32, the sum of the word lengths of the two multiplicands, a and b. This is because the
default setting of ProductMode in fimath is FullPrecision.

4 Functions

4-720

Multiply Two fi Objects

Use the times function to perform element-by-element multiplication of two fi objects.

a=fi([5 9 9; 1 2 -3], 1, 16, 3)

a=2×3 object
 5 9 9
 1 2 -3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

b=fi([2 4 7; 9 0 2], 1, 16, 3)

b=2×3 object
 2 4 7
 9 0 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 3

c=a.*b

c=2×3 object
 10 36 63
 9 0 -6

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 32
 FractionLength: 6

The word length and fraction length of c are equal to the sums of the word lengths and fraction
lengths of a and b. This is because the default setting of ProductMode in fimath is
FullPrecision.

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. A and B must have the same dimensions unless one is a scalar value.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

 times, .*

4-721

Complex Number Support: Yes

B — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array of fi objects or built-in
data types. A and B must have the same dimensions unless one is a scalar value.

Data Types: fi |single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

Complex Number Support: Yes

Output Arguments
C — Output array
scalar | vector | matrix | multidimensional array

Output array, returned as a scalar, vector, matrix, or multidimensional array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any non-fi input must be constant; that is, its value must be known at compile time so that it can
be cast to a fi object.

• When you provide complex inputs to the times function inside of a MATLAB Function block, you
must declare the input as complex before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known complex inputs to On.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
minus | mtimes | plus | uminus

Introduced before R2006a

4 Functions

4-722

toeplitz
Create Toeplitz matrix

Syntax
t = toeplitz(a,b)
t = toeplitz(b)

Description
t = toeplitz(a,b) returns a nonsymmetric Toeplitz matrix with a as its first column and b as its
first row. b is cast to the numerictype of a. If one of the arguments of toeplitz is a built-in data
type, it is cast to the data type of the fi object. If the first elements of a and b differ, toeplitz
issues a warning and uses the column element for the diagonal.

t = toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix formed from vector b, where
b is the first row of the matrix.

Examples

Create Symmetric Toeplitz Matrix

r = fi([1 2 3]);
toeplitz(r)

 1 2 3

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

 RoundingMethod: Nearest
 OverflowAction: Saturate
 ProductMode: FullPrecision
 SumMode: FullPrecision

 Tag:

ans =

 1 2 3
 2 1 2
 3 2 1
 numerictype(1,16,13)

 toeplitz

4-723

Create Nonsymmetric Toeplitz Matrix

Create a nonsymmetric Toeplitz matrix with a specified column and row vector.

toeplitz(a,b) casts b into the data type of a. In this example, overflow occurs:

fipref('NumericTypeDisplay','short');
format short g
a = fi([1 2 3],true,8,5)
b = fi([1 4 8],true,16,10)
toeplitz(a,b)

a =

 1 2 3
 numerictype(1,8,5)

b =

 1 4 8
 numerictype(1,16,10)

ans =

 1 3.9688 3.9688
 2 1 3.9688
 3 2 1
 numerictype(1,8,5)

toeplitz(b,a) casts a into the data type of b. In this example, overflow does not occur:

toeplitz(b,a)

ans =

 1 2 3
 4 1 2
 8 4 1
 numerictype(1,16,10)

If one of the arguments of toeplitz is a built-in data type, it is cast to the data type of the fi object.

x = double([1 exp(1) pi]);
toeplitz(a,x)

ans =

 1 2.7188 3.1563
 2 1 2.7188
 3 2 1
 numerictype(1,8,5)

Input Arguments
a — Column of Toeplitz matrix
scalar | vector

4 Functions

4-724

Column of Toeplitz matrix, specified as a scalar or vector. If the first elements of a and b differ,
toeplitz uses the column element for the diagonal.
Data Types: fi
Complex Number Support: Yes

b — Row of Toeplitz matrix
scalar | vector

Row of Toeplitz matrix, specified as a scalar or vector. If the first elements of a and b differ,
toeplitz uses the column element for the diagonal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi
Complex Number Support: Yes

Output Arguments
t — Toeplitz matrix
fi object

Toeplitz matrix, returned as a fi object.

The output fi object, t, has the same numerictype properties as the leftmost fi object input. If the
leftmost fi object input has a local fimath, the output fi object is assigned the same local fimath.
Otherwise, the output fi object, t, has no local fimath.

See Also
Blocks
Toeplitz

Functions
toeplitz

Introduced before R2006a

 toeplitz

4-725

tostring
Convert numerictype or quantizer object to string

Syntax
s = tostring(f)
s = tostring(F)
s = tostring(T)
s = tostring(q)

Description
s = tostring(f) converts fi object f to a character vector s such that eval(s) would create a
fi object with the same properties as f.

s = tostring(F) converts fimath object F to a character vector s such that eval(s) would
create a fimath object with the same properties as F.

s = tostring(T) converts numerictype object T to a character vector s such that eval(s)
would create a numerictype object with the same properties as T.

s = tostring(q) converts quantizer object q to a character vector s. After converting q, the
function eval(s) can use s to create a quantizer object with the same properties as q.

Examples
Convert a numerictype Object to a String

This example uses the tostring function to convert a numerictype object T to a string s.

T = numerictype(1,16,15);
s = tostring(T);
T1 = eval(s);
isequal(T,T1)

ans =

 1

Convert a fi Object to a character vector

This example uses the tostring function to convert a fi object f to a character vector s.

f = fi(pi,1,16,10);
s = tostring(f);
f1 = eval(s);
isequal(f,f1)

ans =

 1

4 Functions

4-726

See Also
eval | fi | fimath | numerictype | quantizer

Introduced before R2006a

 tostring

4-727

ufi
Construct unsigned fixed-point numeric object

Syntax
a = ufi
a = ufi(v)
a = ufi(v,w)
a = ufi(v,w,f)
a = ufi(v,w,slope,bias)
a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias)

Description
You can use the ufi constructor function in the following ways:

• a = ufi is the default constructor and returns an unsigned fi object with no value, 16-bit word
length, and 15-bit fraction length.

• a = ufi(v) returns an unsigned fixed-point object with value v, 16-bit word length, and best-
precision fraction length.

• a = ufi(v,w) returns an unsigned fixed-point object with value v, word length w, and best-
precision fraction length.

• a = ufi(v,w,f) returns an unsigned fixed-point object with value v, word length w, and fraction
length f.

• a = ufi(v,w,slope,bias) returns an unsigned fixed-point object with value v, word length w,
slope, and bias.

• a = ufi(v,w,slopeadjustmentfactor,fixedexponent,bias) returns an unsigned fixed-
point object with value v, word length w, slopeadjustmentfactor, fixedexponent, and bias.

fi objects created by the ufi constructor function have the following general types of properties:

• “Data Properties” on page 4-728
• “fimath Properties” on page 4-729
• “numerictype Properties” on page 4-730

These properties are described in detail in “fi Object Properties” on page 3-2 in the Properties
Reference.

Note fi objects created by the ufi constructor function have no local fimath.

Data Properties

The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

4 Functions

4-728

• data — Numerical real-world value of a fi object
• dec — Stored integer value of a fi object in decimal
• double — Real-world value of a fi object, stored as a MATLAB double
• hex — Stored integer value of a fi object in hexadecimal
• int — Stored integer value of a fi object, stored in a built-in MATLAB integer data type. You can

also use int8, int16, int32, int64, uint8, uint16, uint32, and uint64 to get the stored
integer value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties” on page 3-2.

fimath Properties

When you create a fi object with the ufi constructor function, that fi object does not have a local
fimath object. You can attach a fimath object to that fi object if you do not want to use the default
fimath settings. For more information, see “fimath Object Construction”.

• fimath — fixed-point math object

The following fimath properties are always writable and, by transitivity, are also properties of a fi
object.

• CastBeforeSum — Whether both operands are cast to the sum data type before addition

Note This property is hidden when the SumMode is set to FullPrecision.
• OverflowAction — Action to take on overflow
• ProductBias — Bias of the product data type
• ProductFixedExponent — Fixed exponent of the product data type
• ProductFractionLength — Fraction length, in bits, of the product data type
• ProductMode — Defines how the product data type is determined
• ProductSlope — Slope of the product data type
• ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data type
• ProductWordLength — Word length, in bits, of the product data type
• RoundingMethod — Rounding method
• SumBias — Bias of the sum data type
• SumFixedExponent — Fixed exponent of the sum data type
• SumFractionLength — Fraction length, in bits, of the sum data type
• SumMode — Defines how the sum data type is determined
• SumSlope — Slope of the sum data type
• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type
• SumWordLength — The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”.

 ufi

4-729

numerictype Properties

When you create a fi object, a numerictype object is also automatically created as a property of
the fi object.

numerictype — Object containing all the data type information of a fi object, Simulink signal or
model parameter

The following numerictype properties are, by transitivity, also properties of a fi object. The
properties of the numerictype object become read only after you create the fi object. However, you
can create a copy of a fi object with new values specified for the numerictype properties.

• Bias — Bias of a fi object
• DataType — Data type category associated with a fi object
• DataTypeMode — Data type and scaling mode of a fi object
• FixedExponent — Fixed-point exponent associated with a fi object
• SlopeAdjustmentFactor — Slope adjustment associated with a fi object
• FractionLength — Fraction length of the stored integer value of a fi object in bits
• Scaling — Fixed-point scaling mode of a fi object
• Signed — Whether a fi object is signed or unsigned
• Signedness — Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi objects must be Signed
or Unsigned. If a numerictype object with Auto Signedness is used to create a fi object, the
Signedness property of the fi object automatically defaults to Signed.

• Slope — Slope associated with a fi object
• WordLength — Word length of the stored integer value of a fi object in bits

For further details on these properties, see “numerictype Object Properties”.

Examples

Note For information about the display format of fi objects, refer to “View Fixed-Point Data”.

For examples of casting, see “Cast fi Objects”.

Example 1

For example, the following creates an unsigned fi object with a value of pi, a word length of 8 bits,
and a fraction length of 3 bits:

a = ufi(pi,8,3)

a =

 3.1250

 DataTypeMode: Fixed-point: binary point scaling

4 Functions

4-730

 Signedness: Unsigned
 WordLength: 8
 FractionLength: 3

Default fimath properties are associated with a. When a fi object does not have a local fimath
object, no fimath object properties are displayed in its output. To determine whether a fi object has
a local fimath object, use the isfimathlocal function.

isfimathlocal(a)

ans =
 0

A returned value of 0 means the fi object does not have a local fimath object. When the
isfimathlocal function returns a 1, the fi object has a local fimath object.

Example 2

The value v can also be an array:

a = ufi((magic(3)/10),16,12)

a =

 0.8000 0.1001 0.6001
 0.3000 0.5000 0.7000
 0.3999 0.8999 0.2000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 12
>>

Example 3

If you omit the argument f, it is set automatically to the best precision possible:

a = ufi(pi,8)

a =

 3.1406

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 8
 FractionLength: 6

Example 4

If you omit w and f, they are set automatically to 16 bits and the best precision possible, respectively:

a = ufi(pi)

a =

 3.1416

 ufi

4-731

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 16
 FractionLength: 14

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All properties related to data type must be constant for code generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
fi | fimath | fipref | isfimathlocal | numerictype | quantizer | sfi

Introduced in R2009b

4 Functions

4-732

uint8
Convert fi object to unsigned 8-bit integer

Syntax
c = uint8(a)

Description
c = uint8(a) returns the built-in uint8 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint8.

Examples
This example shows the uint8 values of a fi object.

a = fi([-pi 0.5 pi],0,8);
c = uint8(a)

c =

 0 1 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int16 | int32 | int64 | int8 | storedInteger | uint16 | uint32 | uint64

Introduced before R2006a

 uint8

4-733

uint16
Convert fi object to unsigned 16-bit integer

Syntax
c = uint16(a)

Description
c = uint16(a) returns the built-in uint16 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint16.

Examples
This example shows the uint16 values of a fi object.

a = fi([-pi 0.5 pi],0,16);
c = uint16(a)

c =

 0 1 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int16 | int32 | int64 | int8 | storedInteger | uint32 | uint64 | uint8

Introduced before R2006a

4 Functions

4-734

uint32
Stored integer value of fi object as built-in uint32

Syntax
c = uint32(a)

Description
c = uint32(a) returns the built-in uint32 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint32.

Examples
This example shows the uint32 values of a fi object.

a = fi([-pi 0.5 pi],0,32);
c = uint32(a)

c =

 0 1 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
int16 | int32 | int64 | int8 | storedInteger | uint16 | uint64 | uint8

Introduced before R2006a

 uint32

4-735

uint64
Convert fi object to unsigned 64-bit integer

Syntax
c = uint64(a)

Description
c = uint64(a) returns the built-in uint64 value of fi object a, based on its real world value. If
necessary, the data is rounded-to-nearest and saturated to fit into an uint64.

Examples
This example shows the uint64 values of a fi object.

a = fi([-pi 0.5 pi],0,64);
c = uint64(a)

c =

 0 1 3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
int16 | int32 | int64 | int8 | storedInteger | uint16 | uint32 | uint8

Introduced in R2008b

4 Functions

4-736

uminus
Negate elements of fi object array

Syntax
uminus(a)

Description
uminus(a) is called for the syntax -a when a is an object. -a negates the elements of a.

uminus does not support fi objects of data type Boolean.

Examples
When wrap occurs, -(-1) = -1 :

fipref('NumericTypeDisplay','short', ...
 'fimathDisplay','none');
format short g
a = fi(-1,true,8,7,'OverflowMode','wrap')

a =

 -1
 numerictype(1,8,7)

-a

ans =

 -1
 numerictype(1,8,7)

b = fi([-1-i -1-i],true,8,7,'OverflowMode','wrap')

b =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

-b

ans =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

b'

ans =

 -1 - 1i

 uminus

4-737

 -1 - 1i
 numerictype(1,8,7)

When saturation occurs, -(-1) = 0.99... :

c = fi(-1,true,8,7,'OverflowMode','saturate')

c =

 -1
 numerictype(1,8,7)

-c

ans =

 0.99219
 numerictype(1,8,7)

d = fi([-1-i -1-i],true,8,7,'OverflowMode','saturate')

d =

 -1 - 1i -1 - 1i
 numerictype(1,8,7)

-d

ans =

 0.99219 + 0.99219i 0.99219 + 0.99219i
 numerictype(1,8,7)

d'

ans =

 -1 + 0.99219i
 -1 + 0.99219i
 numerictype(1,8,7)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
minus | mtimes | plus | times

Introduced before R2006a

4 Functions

4-738

unitquantize
Quantize except numbers within eps of +1

Syntax
y = unitquantize(q, x)
[y1,y2,...] = unitquantize(q,x1,x2,...)

Description
y = unitquantize(q, x) works the same as quantize except that numbers within eps(q) of +1
are made exactly equal to +1 .

[y1,y2,...] = unitquantize(q,x1,x2,...) is equivalent to y1 = unitquantize(q,x1),
y2 = unitquantize(q,x2),...

Examples
This example demonstrates the use of unitquantize with a quantizer object q and a vector x.

q = quantizer('fixed','floor','saturate',[4 3]);
x = (0.8:.1:1.2)';
y = unitquantize(q,x);
z = [x y]
e = eps(q)

This quantization outputs an array containing the original values of x and the quantized values of x,
followed by the value of eps(q):

z =

 0.8000 0.7500
 0.9000 1.0000
 1.0000 1.0000
 1.1000 1.0000
 1.2000 1.0000

e =

 0.1250

See Also
eps | quantize | quantizer | unitquantizer

Introduced in R2008a

 unitquantize

4-739

unitquantizer
Constructor for unitquantizer object

Syntax
q = unitquantizer(...)

Description
q = unitquantizer(...) constructs a unitquantizer object, which is the same as a
quantizer object in all respects except that its quantize method quantizes numbers within
eps(q) of +1 to exactly +1.

See quantizer for parameters.

Examples
In this example, a vector x is quantized by a unitquantizer object u .

u = unitquantizer([4 3]);
x = (0.8:.1:1.2)';
y = quantize(u,x);
z = [x y]
e = eps(u)

This quantization outputs an array containing the original values of x and the values of x that were
quantized by the unitquantizer object u. The output also includes e, the value of eps(u).

z =

 0.8000 0.7500
 0.9000 1.0000
 1.0000 1.0000
 1.1000 1.0000
 1.2000 1.0000

e =

 0.1250

See Also
quantize | quantizer | unitquantize

Introduced in R2008a

4 Functions

4-740

unshiftdata
Inverse of shiftdata

Syntax
y = unshiftdata(x,perm,nshifts)

Description
y = unshiftdata(x,perm,nshifts) restores the orientation of the data that was shifted with
shiftdata. The permutation vector is given by perm, and nshifts is the number of shifts that was
returned from shiftdata.

unshiftdata is meant to be used in tandem with shiftdata. These functions are useful for
creating functions that work along a certain dimension, like filter, goertzel, sgolayfilt, and
sosfilt.

Examples

Example 1

1 Create a 3-by-3 magic square:

x = fi(magic(3))

x =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

2 Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

x =

 8 3 4
 1 5 9
 6 7 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

perm =

 unshiftdata

4-741

 2 1

nshifts =

 []

This command returns the permutation vector, perm, and the number of shifts, nshifts, are
returned along with the shifted matrix, x.

3 Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 8 1 6
 3 5 7
 4 9 2

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 11

Example 2

1 Define x as a row vector:

x = 1:5

x =

 1 2 3 4 5
2 Define dim as empty to shift the first non-singleton dimension of x to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x =

 1
 2
 3
 4
 5

perm =

 []

nshifts =

 1

4 Functions

4-742

This command returns x as a column vector, along with perm, the permutation vector, and
nshifts, the number of shifts.

3 Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

 1 2 3 4 5

See Also
shiftdata

Introduced in R2008a

 unshiftdata

4-743

upperbound
Upper bound of range of fi object

Syntax
upperbound(a)

Description
upperbound(a) returns the upper bound of the range of fi object a. If L = lowerbound(a) and U
= upperbound(a), then [L,U] = range(a).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
eps | intmax | intmin | lowerbound | lsb | range | realmax | realmin

Introduced before R2006a

4 Functions

4-744

vertcat
Vertically concatenate multiple fi objects

Syntax
c = vertcat(a,b,...)
[a; b; ...]
[a;b]

Description
c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any of a, b, ... , is a fi
object.

[a;b] is the vertical concatenation of matrices a and b. a and b must have the same number of
columns. Any number of matrices can be concatenated within one pair of brackets. N-D arrays are
vertically concatenated along the first dimension. The remaining dimensions must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of rows of b, and if the number of
columns of a plus the number of columns of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed via a concatenation, as in [a
b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of fi objects c are taken from
the leftmost fi object in the list (a,b,...).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

See Also
horzcat

Introduced before R2006a

 vertcat

4-745

wordlength
Word length of quantizer object

Syntax
wordlength(q)

Description
wordlength(q) returns the word length of the quantizer object q.

Examples
q = quantizer([16 15]);
wordlength(q)

ans =

 16

See Also
exponentlength | fi | fractionlength | numerictype | quantizer

Introduced before R2006a

4 Functions

4-746

zeros
Create array of all zeros with fixed-point properties

Syntax
X = zeros('like',p)
X = zeros(n,'like',p)
X = zeros(sz1,...,szN,'like',p)
X = zeros(sz,'like',p)

Description
X = zeros('like',p) returns a scalar 0 with the same numerictype, complexity (real or
complex), and fimath as p.

X = zeros(n,'like',p) returns an n-by-n array of zeros like p.

X = zeros(sz1,...,szN,'like',p) returns an sz1-by-...-by-szN array of zeros like p.

X = zeros(sz,'like',p) returns an array of zeros like p. The size vector, sz, defines size(X).

Examples

2-D Array of Zeros With Fixed-Point Attributes

Create a 2-by-3 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 2-by-3 array of zeros that has the same numerictype properties as p.

X = zeros(2,3,'like',p)

X=2×3 object
 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Size Defined by Existing Array

Define a 3-by-2 array A.

 zeros

4-747

A = [1 4 ; 2 5 ; 3 6];

sz = size(A)

sz = 1×2

 3 2

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create an array of zeros that is the same size as A and has the same numerictype properties as p.

X = zeros(sz,'like',p)

X=3×2 object
 0 0
 0 0
 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Square Array of Zeros With Fixed-Point Attributes

Create a 4-by-4 array of zeros with specified numerictype and fimath properties.

Create a signed fi object with word length of 24 and fraction length of 12.

p = fi([],1,24,12);

Create a 4-by-4 array of zeros that has the same numerictype properties as p.

X = zeros(4, 'like', p)

X=4×4 object
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

4 Functions

4-748

Complex Fixed-Point Zero

Create a scalar fixed-point 0 that is not real valued, but instead is complex like an existing array.

Define a complex fi object.

p = fi([1+2i 3i],1,24,12);

Create a scalar 1 that is complex like p.

X = zeros('like',p)

X =
 0.0000 + 0.0000i

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

Write MATLAB Code That Is Independent of Data Types

Write a MATLAB algorithm that you can run with different data types without changing the algorithm
itself. To reuse the algorithm, define the data types separately from the algorithm.

This approach allows you to define a baseline by running the algorithm with floating-point data types.
You can then test the algorithm with different fixed-point data types and compare the fixed-point
behavior to the baseline without making any modifications to the original MATLAB code.

Write a MATLAB function, my_filter, that takes an input parameter, T, which is a structure that
defines the data types of the coefficients and the input and output data.

function [y,z] = my_filter(b,a,x,z,T)
 % Cast the coefficients to the coefficient type
 b = cast(b,'like',T.coeffs);
 a = cast(a,'like',T.coeffs);
 % Create the output using zeros with the data type
 y = zeros(size(x),'like',T.data);
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

Write a MATLAB function, zeros_ones_cast_example, that calls my_filter with a floating-point
step input and a fixed-point step input, and then compares the results.

function zeros_ones_cast_example

 % Define coefficients for a filter with specification
 % [b,a] = butter(2,0.25)
 b = [0.097631072937818 0.195262145875635 0.097631072937818];
 a = [1.000000000000000 -0.942809041582063 0.333333333333333];

 zeros

4-749

 % Define floating-point types
 T_float.coeffs = double([]);
 T_float.data = double([]);

 % Create a step input using ones with the
 % floating-point data type
 t = 0:20;
 x_float = ones(size(t),'like',T_float.data);

 % Initialize the states using zeros with the
 % floating-point data type
 z_float = zeros(1,2,'like',T_float.data);

 % Run the floating-point algorithm
 y_float = my_filter(b,a,x_float,z_float,T_float);

 % Define fixed-point types
 T_fixed.coeffs = fi([],true,8,6);
 T_fixed.data = fi([],true,8,6);

 % Create a step input using ones with the
 % fixed-point data type
 x_fixed = ones(size(t),'like',T_fixed.data);

 % Initialize the states using zeros with the
 % fixed-point data type
 z_fixed = zeros(1,2,'like',T_fixed.data);

 % Run the fixed-point algorithm
 y_fixed = my_filter(b,a,x_fixed,z_fixed,T_fixed);

 % Compare the results
 coder.extrinsic('clf','subplot','plot','legend')
 clf
 subplot(211)
 plot(t,y_float,'co-',t,y_fixed,'kx-')
 legend('Floating-point output','Fixed-point output')
 title('Step response')
 subplot(212)
 plot(t,y_float - double(y_fixed),'rs-')
 legend('Error')
 figure(gcf)
end

Input Arguments
n — Size of square matrix
integer value

Size of square matrix, specified as an integer value, defines the output as a square, n-by-n matrix of
ones.

• If n is zero, X is an empty matrix.
• If n is negative, it is treated as zero.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 Functions

4-750

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values, defines X as a sz1-by...-by-szN array.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of this vector indicates the size
of the corresponding dimension.

• If the size of any dimension is zero, X is an empty array.
• If the size of any dimension is negative, it is treated as zero.
• If any trailing dimensions greater than two have a size of one, the output, X, does not include

those dimensions.

Example: sz = [2,3,4] defines X as a 2-by-3-by-4 array.
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

p — Prototype
fi object | numeric variable

Prototype, specified as a fi object or numeric variable. To use the prototype to specify a complex
object, you must specify a value for the prototype. Otherwise, you do not need to specify a value.

Complex Number Support: Yes

Tips
Using the b = cast(a,'like',p) syntax to specify data types separately from algorithm code
allows you to:

• Reuse your algorithm code with different data types.
• Keep your algorithm uncluttered with data type specifications and switch statements for different

data types.
• Improve readability of your algorithm code.
• Switch between fixed-point and floating-point data types to compare baselines.
• Switch between variations of fixed-point settings without changing the algorithm code.

See Also
cast | ones | zeros

Topics
“Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros”

 zeros

4-751

“Manual Fixed-Point Conversion Workflow”
“Manual Fixed-Point Conversion Best Practices”

Introduced in R2013a

4 Functions

4-752

Classes

5

coder.CellType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB cell arrays

Description
Specifies the set of cell arrays that the generated code accepts. Use only with the fiaccel -args
option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.typeof(cells) creates a coder.CellType object for a cell array that has the same
cells and cell types as cells. The cells in cells are type objects or example values.

t = coder.typeof(cells,sz,variable_dims) creates a coder.CellType object that has
upper bounds specified by sz and variable dimensions specified by variable_dims. If sz specifies
inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size.
When sz is [], the upper bounds do not change. If you do not specify the variable_dims input
parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar
variable_dims applies to the bounded dimensions that are not 1 or 0.

When cells specifies a cell array whose elements have different classes, you cannot use
coder.typeof to create a coder.CellType object for a variable-size cell array.

t = coder.newtype('cell',cells) creates a coder.CellType object for a cell array that has
the cells and cell types specified by cells. The cells in cells must be type objects.

t = coder.newtype('cell',cells,sz,variable_dims) creates a coder.CellType that has
upper bounds specified by sz and variable dimensions specified by variable_dims. If sz specifies
inf for a dimension, then the size of the dimension is unbounded and the dimension is variable size.
When sz is [], the upper bounds do not change. If you do not specify the variable_dims input
parameter, except for the unbounded dimensions, the dimensions of the type are fixed. A scalar
variable_dims applies to the bounded dimensions that are not 1 or 0.

When cells specifies a cell array whose elements have different classes, you cannot use
coder.newtype to create a coder.CellType object for a variable-size cell array.

Input Arguments

cells — Specification of cell types
cell array

5 Classes

5-2

Cell array that specifies the cells and cell types for the output coder.CellType object. For
coder.typeof, cells can contain type objects or example values. For coder.newtype, cells
must contain type objects.

sz — Size of cell array
row vector of integer values

Specifies the upper bound for each dimension of the cell array type object. For coder.newtype, sz
cannot change the number of cells for a heterogeneous cell array.

For coder.newtype, the default is [1 1].

variable_dims — Dimensions that are variable size
row vector of logical values

Specifies whether each dimension is variable size (true) or fixed size (false).

For coder.newtype, the default is true for dimensions for which sz specifies an upper bound of
inf and false for all other dimensions.

When cells specifies a cell array whose elements have different classes, you cannot create a
coder.CellType object for a variable-size cell array.

Properties
Cells — Types of cells
cell array

A cell array that specifies the coder.Type of each cell.

ClassName — Name of class
character vector or string scalar

Class of values in this set.

SizeVector — Size of cell array
row vector of integer values

The upper bounds of dimensions of the cell array.

VariableDims — Dimensions that are variable size
row vector of logical values

A vector that specifies whether each dimension of the array is fixed or variable size. If a vector
element is true, the corresponding dimension is variable size.

Methods

isHeterogeneous Determine whether cell array type represents a heterogeneous cell array
isHomogeneous Determine whether cell array type represents a homogeneous cell array
makeHeterogeneous Make a heterogeneous copy of a cell array type
makeHomogeneous Create a homogeneous copy of a cell array type

 coder.CellType class

5-3

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create a Type for a Cell Array Whose Elements Have the Same Class

Create a type for a cell array whose first element has class char and whose second element has class
double.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

The type is homogeneous.

Create a Heterogeneous Type for a Cell Array Whose Elements Have the Same Class

To create a heterogeneous type when the elements of the example cell array type have the same
class, use the makeHeterogeneous method.

t = makeHeterogeneous(coder.typeof({1 2 3}))

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

The cell array type is heterogeneous. It is represented as a structure in the generated code.

Create a Cell Array Type for a Cell Array Whose Elements Have Different Classes

Define variables that are example cell values.

a = 'a';
b = 1;

Pass the example cell values to coder.typeof.

t = coder.typeof({a, b})

t =

coder.CellType

5 Classes

5-4

 1x2 heterogeneous cell
 f0: 1x1 char
 f1: 1x1 double

Create a Type for a Variable-Size Homogeneous Cell Array from an Example Cell Array
Whose Elements Have Different Classes

Create a type for a cell array that contains two character vectors that have different sizes.

t = coder.typeof({'aa', 'bbb'})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x2 char
 f1: 1x3 char

The cell array type is heterogeneous.

Create a type using the same cell array input. This time, specify that the cell array type has variable-
size dimensions.

t = coder.typeof({'aa','bbb'},[1,10],[0,1])

t =

coder.CellType
 1×:10 locked homogeneous cell
 base: 1×:3 char

The cell array type is homogeneous. coder.typeof determined that the base type 1x:3 char can
represent 'aa', and 'bbb'.

Create a New Cell Array Type from a Cell Array of Types

Create a type for a scalar int8.

ta = coder.newtype('int8',[1 1]);

Create a type for a :1x:2 double row vector.

tb = coder.newtype('double',[1 2],[1 1]);

Create a cell array type whose cells have the types specified by ta and ta.

t = coder.newtype('cell',{ta,tb})

t =

coder.CellType
 1x2 heterogeneous cell

 coder.CellType class

5-5

 f0: 1x1 int8
 f1: :1x:2 double

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The
makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

See Also
coder.ArrayType | coder.ClassType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.newtype | coder.resize |
coder.typeof | fiaccel

Topics
“Code Generation for Cell Arrays”
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2015b

5 Classes

5-6

coder.ClassType class
Package: coder
Superclasses: coder.ArrayType

Represent set of MATLAB classes

Description
Specifies the set of value class objects that the generated code can accept. Use only with the
fiaccel -args option. Do not pass as an input to a generated MEX function.

Construction

Note You can also create and edit coder.Type objects interactively by using the Coder Type Editor.
See “Create and Edit Input Types by Using the Coder Type Editor”.

t = coder.typeof(value_class_object) creates a coder.ClassType object for the object
value_class_object.

t = coder.newtype(value_class_name) creates a coder.ClassType object for an object of
the class value_class_name.

Input Arguments

value_class_object

Value class object from which to create the coder.ClassType object. value_class_object is an
expression that evaluates to an object of a value class. For example:

v = myValueClass;
t = coder.typeof(v);

t = coder.typeof(myValueClass(2,3));

value_class_name

Name of a value class definition file on the MATLAB path. Specify as a character vector or string
scalar. For example:

t = coder.newtype('myValueClass');

Properties
When you create a coder.ClassType object t from a value class object v by using coder.typeof,
the properties of t are the same as the properties of v with the attribute Constant set to false.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

 coder.ClassType class

5-7

Examples
Create Type Based on Example Object

Create a type based on an example object in the workspace.

Create a value class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

Create a function that takes an object of myRectangle as an input.

function z = getarea(r)
%#codegen
z = calcarea(r);
end

Create an object of myRectangle.

v = myRectangle(1,2)

v =

 myRectangle with properties:

 length: 1
 width: 2

Create a coder.ClassType object based on v.

t = coder.typeof(v)

t =

coder.ClassType
 1×1 myRectangle
 length: 1×1 double
 width : 1×1 double

coder.typeof creates a coder.ClassType object that has the same properties names and types as
v has.

5 Classes

5-8

Generate code for getarea. Specify the input type by passing the coder.ClassType object, t, to
the -args option.

codegen getarea -args {t} -report

Create Type by Using coder.newtype

Create a coder.ClassType object for an object of the value class mySquare by using
coder.newtype.

Create value class mySquare that has one property, side.

classdef mySquare
 properties
 side;
 end
 methods
 function obj = mySquare(val)
 if nargin > 0
 obj.side = val;
 end
 end
 function a = calcarea(obj)
 a = obj.side * obj.side;
 end
 end
end

Create a coder.ClassType type for mySquare.

t = coder.newtype('mySquare')

Specify the type of side.

t.Properties.side = coder.typeof(2)

Tips

• After you create a coder.ClassType, you can modify the types of the properties. For example:

t = coder.typeof(myClass)
t.Properties.prop1 = coder.typeof(int16(2));
t.Properties.prop2 = coder.typeof([1 2 3]);

• After you create a coder.ClassType, you can add properties. For example:

t = coder.typeof(myClass)
t.Properties.newprop1 = coder.typeof(int8(2));
t.Properties.newprop2 = coder.typeof([1 2 3]);

• When you generate code, the properties of the coder.ClassType object that you pass to
codegen must be consistent with the properties in the class definition file. However, if the class
definition file has properties that your code does not use, the coder.ClassType object does not
have to include those properties. The code generator removes properties that you do not use.

 coder.ClassType class

5-9

See Also
coder.ArrayType | coder.CellType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.Type | coder.newtype | coder.resize | coder.typeof |
fiaccel

Topics
“Create and Edit Input Types by Using the Coder Type Editor”

Introduced in R2017a

5 Classes

5-10

coder.MexConfig
Package: coder

Code acceleration configuration object for use with fiaccel

Description
A coder.MexConfig object contains all the configuration parameters that the fiaccel function
uses when accelerating fixed-point code via a generated MEX function. To use this object, first create
it using the lowercase coder.mexconfig function and then, pass it to the fiaccel function using
the -config option.

Construction
cfg = coder.mexconfig creates a coder.MexConfig object, cfg, for fiaccel MEX function
generation.

Properties
CompileTimeRecursionLimit

For compile-time recursion, control the number of copies of a function that are allowed in the
generated code. To disallow recursion in the MATLAB code, set CompileTimeRecursionLimit to 0.
The default compile-time recursion limit is high enough for most recursive functions that require
compile-time recursion. If code generation fails because of the compile-time recursion limit, and you
want compile-time recursion, try to increase the limit. Alternatively, change your MATLAB code so
that the code generator uses run-time recursion

Default: integer, 50

ConstantFoldingTimeout

Maximum number of constant folder instructions

Specify, as a positive integer, the maximum number of instructions to be executed by the constant
folder.

Default: 10000

DynamicMemoryAllocation

Dynamic memory allocation for variable-size data

By default, when this property is set to 'Threshold' , dynamic memory allocation is enabled for all
variable-size arrays whose size is greater than DynamicMemoryAllocationThreshold and
fiaccel allocates memory for this variable-size data dynamically on the heap. Set this property to
'Off' to allocate memory statically on the stack. Set it to'AllVariableSizeArrays' to allocate
memory for all variable-size arrays dynamically on the heap . You must use dynamic memory
allocation for all unbounded variable-size data.

 coder.MexConfig

5-11

This property, DynamicMemoryAllocation, is enabled only when EnableVariableSizing is
true. When you set DynamicMemoryAllocation to `Threshold', it enables the
DynamicMemoryAllocationThreshold property.

Default: Threshold

DynamicMemoryAllocationThreshold

Memory allocation threshold

Specify the integer size of the threshold for variable-size arrays above which fiaccel allocates
memory on the heap.

Default: 65536

EnableAutoExtrinsicCalls

Specify whether fiaccel treats common visualization functions as extrinsic functions. When this
option is enabled, fiaccel detects calls to many common visualization functions, such as plot,
disp, and figure. It calls out to MATLAB for these functions. This capability reduces the amount of
time that you spend making your code suitable for code generation. It also removes the requirement
to declare these functions extrinsic using the coder.extrinsic function.

Default: true

EchoExpressions

Show results of code not terminated with semicolons

Set this property to true to have the results of code instructions that do not terminate with a
semicolon appear in the MATLAB Command Window. If you set this property to false, code results
do not appear in the MATLAB Command Window.

Default: true

EnableRuntimeRecursion

Allow recursive functions in the generated code. If your MATLAB code requires run-time recursion
and this parameter is false, code generation fails.

Default: true

EnableDebugging

Compile generated code in debug mode

Set this property to true to compile the generated code in debug mode. Set this property to false
to compile the code in normal mode.

Default: false

EnableVariableSizing

Variable-sized arrays support

5 Classes

5-12

Set this property to true to enable support for variable-sized arrays and to enable the
DynamicMemoryAllocation property. If you set this property to false, variable-sized arrays are
not supported.

Default: true

ExtrinsicCalls

Extrinsic function calls

An extrinsic function is a function on the MATLAB path that the generated code dispatches to
MATLAB software for execution. fiaccel does not compile or generate code for extrinsic functions.
Set this property to true to have fiaccel generate code for the call to a MATLAB function, but not
generate the function's internal code. Set this property to false to have fiaccel ignore the
extrinsic function and not generate code for the call to the MATLAB function. If the extrinsic function
affects the output of fiaccel, a compiler error occurs.

ExtrinsicCalls affects how MEX functions built by fiaccel generate random numbers when
using the MATLAB rand, randi, and randn functions. If extrinsic calls are enabled, the generated
mex function uses the MATLAB global random number stream to generate random numbers. If
extrinsic calls are not enabled, the MEX function built with fiaccel uses a self-contained random
number generator.

If you disable extrinsic calls, the generated MEX function cannot display run-time messages from
error or assert statements in your MATLAB code. The MEX function reports that it cannot display
the error message. To see the error message, enable extrinsic function calls and generate the MEX
function again.

Default: true

GenerateReport

Code generation report

Set this property to true to create an HTML code generation report. Set this property to false to
not create the report.

Default: false

GlobalDataSyncMethod

MEX function global data synchronization with MATLAB global workspace

Set this property to SyncAlways so synchronize global data at MEX function entry and exit and for
all extrinsic calls to ensure maximum consistency between MATLAB and the generated MEX function.
If the extrinsic calls do not affect global data, use this option in conjunction with the
coder.extrinsic -sync:off option to turn off synchronization for these calls to maximize
performance.

If you set this property to SyncAtEntryAndExits, global data is synchronized only at MEX function
entry and exit. If your code contains extrinsic calls, but only a few affect global data, use this option
in conjunction with the coder.extrinsic -sync:on option to turn on synchronization for these
calls to maximize performance.

 coder.MexConfig

5-13

If you set this property to NoSync, no synchronization occurs. Ensure that your MEX function does
not interact with MATLAB globals before disabling synchronization otherwise inconsistencies
between MATLAB and the MEX function might occur.

Default: SyncAlways

InlineStackLimit

Stack size for inlined functions

Specify, as a positive integer, the stack size limit on inlined functions.

Default: 4000

InlineThreshold

Maximum size of functions to be inlined

Specify, as a positive integer, the maximum size of functions to be inlined.

Default: 10

InlineThresholdMax

Maximum size of functions after inlining

Specify, as a positive integer, the maximum size of functions after inlining.

Default: 200

IntegrityChecks

Memory integrity

Set this property to true to detect any violations of memory integrity in code generated for MATLAB.
When a violation is detected, execution stops and a diagnostic message displays. Set this property to
false to disable both memory integrity checks and the runtime stack.

Default: true

LaunchReport

Code generation report display

Set this property to true to open the HTML code generation report automatically when code
generation completes. Set this property to false to disable displaying the report automatically. This
property applies only if you set the GenerateReport property to true.

Default: true

ReportPotentialDifferences

Specify whether to report potential behavior differences between generated code and MATLAB code.
If ReportPotentialDifferences is true, the code generation report has a tab that lists the
potential differences. A potential difference is a difference that occurs at run time only under certain
conditions.

5 Classes

5-14

Default: true

ResponsivenessChecks

Responsiveness checks

Set this property to true to turn on responsiveness checks. Set this property to false to disable
responsiveness checks.

Default: true

SaturateOnIntegerOverflow

Integer overflow action

Overflows saturate to either the minimum or maximum value that the data type can represent. Set
this property to true to have overflows saturate. Set this property to false to have overflows wrap
to the appropriate value representable by the data type.

Default: true

StackUsageMax

Maximum stack usage per application

Specify, as a positive integer, the maximum stack usage per application in bytes. Set a limit that is
lower than the available stack size. Otherwise, a runtime stack overflow might occur. Overflows are
detected and reported by the C compiler, not by fiaccel.

Default: 200000

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Use the lowercase coder.mexconfig function to create a coder.MexConfig configuration object. Set
this object to disable run-time checks.

cfg = coder.mexconfig
% Turn off Integrity Checks, Extrinsic Calls,
% and Responsiveness Checks
cfg.IntegrityChecks = false;
cfg.ExtrinsicCalls = false;
cfg.ResponsivenessChecks = false;
% Use fiaccel to generate a MEX function for file foo.m
fiaccel -config cfg foo

See Also
coder.ArrayType | coder.Constant | coder.EnumType | coder.FiType |
coder.PrimitiveType | coder.StructType | coder.Type | coder.mexconfig |
coder.newtype | coder.resize | coder.typeof | fiaccel

 coder.MexConfig

5-15

coder.SingleConfig class
Package: coder

Double-precision to single-precision conversion configuration object

Description
A coder.SingleConfig object contains the configuration parameters that the convertToSingle
function requires to convert double-precision MATLAB code to single-precision MATLAB code. To
pass this object to the convertToSingle function, use the -config option.

Construction
scfg = coder.config('single') creates a coder.SingleConfig object for double-precision to
single-precision conversion.

Properties
OutputFileNameSuffix — Suffix for single-precision file name
'_single' (default) | character vector

Suffix that the single-conversion process uses for generated single-precision files.

LogIOForComparisonPlotting — Enable simulation data logging for comparison plotting of
input and output variables
false (default) | true

Enable simulation data logging to plot the data differences introduced by single-precision conversion.

PlotFunction — Name of function for comparison plots
'' (default) | character vector

Name of function to use for comparison plots.

To enable comparison plotting, set LogIOForComparisonPlotting to true. This option takes
precedence over PlotWithSimulationDataInspector.

The plot function must accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

PlotWithSimulationDataInspector — Specify use of Simulation Data Inspector for
comparison plots
false (default) | true

Use Simulation Data Inspector for comparison plots.

5 Classes

5-16

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

TestBenchName — Name of test file
'' (default) | character vector | cell array of character vectors

Test file name or names, specified as a character vector or cell array of character vectors. Specify at
least one test file.

If you do not explicitly specify input parameter data types, the conversion uses the first file to infer
these data types.

TestNumerics — Enable numerics testing
false (default) | true

Enable numerics testing to verify the generated single-precision code. The test file runs the single-
precision code.

Methods

addFunctionReplacement Replace double-precision function with single-precision function during
single-precision conversion

Examples

Generate Single-Precision MATLAB Code

Create a coder.SingleConfig object.

scfg= coder.config('single');

Set the properties of the doubles-to-singles configuration object. Specify the test file. In this example,
the name of the test file is myfunction_test. The conversion process uses the test file to infer input
data types and collect simulation range data. Enable numerics testing and generation of comparison
plots.

scfg.TestBenchName = 'myfunction_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

Run convertToSingle. Use the -config option to specify the coder.SingleConfig object that
you want to use. In this example, the MATLAB function name is myfunction.

convertToSingle -config scfg myfunction

See Also
coder.config | convertToSingle

Topics
“Generate Single-Precision MATLAB Code”

 coder.SingleConfig class

5-17

Introduced in R2015b

5 Classes

5-18

DataTypeWorkflow.Converter
Create fixed-point converter object

Description
The DataTypeWorkflow.Converter object contains the object functions and parameters needed to
collect simulation and derived data, propose and apply data types to the model, and analyze results.
Use the DataTypeWorkflow.Converter object to perform the same fixed-point conversion tasks as
the Fixed-Point Tool.

Creation

Syntax
converter = DataTypeWorkflow.Converter(systemToScale)
converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel)

Description

converter = DataTypeWorkflow.Converter(systemToScale) creates a converter object for
the systemToScale.

converter = DataTypeWorkflow.Converter(referencedModelSystem,'TopModel',
topModel) creates a converter object with the specified referenced model,
referencedModelSystem, as the system to scale.

Input Arguments

systemToScale — Name of model or system to scale
character vector

Name of the model or subsystem to scale, specified as a character vector.
Example: converter = DataTypeWorkflow.Converter('ex_fixed_point_workflow');

referencedModelSystem — Name of referenced model or system inside a referenced model
character vector

Name of the referenced model or the subsystem within a referenced model to convert to fixed point,
specified as a character vector.

topModel — Name of top-level model
character vector

Name of the top-level model that references referencedModelSystem, specified as a character
vector. topModel is used during the range collection phase of conversion.

 DataTypeWorkflow.Converter

5-19

Properties
CurrentRunName — Current run in the converter object
character vector

Current run stored in the converter object, specified as a character vector.
Example: converter.CurrentRunName = 'FixedPointRun'
Data Types: char

RunNames — Names of all runs
cell array of character vectors

Names of all runs stored in the converter object, specified as a cell array of character vectors.
Example: converter.RunNames
Data Types: cell

SelectedSystemToScale — Name of model or subsystem
character vector

Name of the model or subsystem to scale, returned as a character vector.
Example: converter.SelectedSystemToScale
Data Types: char

ShortcutsForSelectedSystem — Available system shortcuts
cell array of character vectors

Available system settings shortcuts for the selected subsystem, specified as a cell array of character
vectors.
Example: converter.ShortcutsForSelectedSystem
Data Types: cell

TopModel — Name of top-level model
character vector

Name of the top-level model that references referencedModelSystem, specified as a character
vector. topModel is used during the range collection phase of conversion.
Example: converter.TopModel
Data Types: char

Object Functions
applyDataTypes Apply proposed data types to model
applySettingsFromRun Apply system settings used in previous run to model
applySettingsFromShortcut Apply settings from shortcut to model
deriveMinMax Derive range information for model
proposalIssues Get results which have comments associated with them
proposeDataTypes Propose data types for system
results Find results for selected system in converter object

5 Classes

5-20

saturationOverflows Get results where saturation occurred
simulateSystem Simulate system specified by converter object
verify Compare behavior of baseline and autoscaled systems
wrapOverflows Get results where wrapping occurred

Examples

Create a DataTypeWorkflow.Converter Object

This example shows how to create a DataTypeWorkflow.Converter object.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

The Controller subsystem uses fixed-point data types. Create a DataTypeWorkflow.Converter
object.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

You can view and edit properties of the converter object from the command line. For example, to
change the name of the current run:

converter.CurrentRunName = 'FixedPointRun'

converter =

 Converter with properties:

 CurrentRunName: 'FixedPointRun'
 RunNames: {0x1 cell}
 ShortcutsForSelectedSystem: {6x1 cell}
 TopModel: 'fxpdemo_feedback'

 DataTypeWorkflow.Converter

5-21

 SelectedSystemToScale: 'fxpdemo_feedback/Controller'

See Also
Fixed-Point Tool | DataTypeWorkflow.ProposalSettings

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

Introduced in R2014b

5 Classes

5-22

DataTypeWorkflow.DiffRunResult
Results from comparing two simulation runs

Description
The DataTypeWorkflow.DiffRunResult class manages the results from comparing two simulation
runs. A DataTypeWorkflow.DiffRunResult object contains a
DataTypeWorkflow.DiffSignalResult object for each signal compared.

Creation
The DataTypeWorkflow.Converter.compareRuns method returns a handle to a
DataTypeWorkflow.DiffRunResult object.

Properties
count — Number of compared signal results
scalar (default)

Number of compared signal results, stored as an int32.
Data Types: int32

dateCreated — Date of object creation
serial date number (default)

Date of object creation, stored in serial date number format. For more information, see now in the
MATLAB documentation.
Data Types: double

matlabVersion — Version of MATLAB used
character vector (default)

Version of MATLAB used to create instance of DataTypeWorkflow.DiffRunResult, stored as a
character vector.
Data Types: char

runName1 — Name of first run
character vector (default)

Name of first run compared, specified as a character vector.
Data Types: char

runName2 — Name of second run
character vector (default)

Name of second run compared, specified as a character vector.

 DataTypeWorkflow.DiffRunResult

5-23

Data Types: char

See Also
DataTypeWorkflow.DiffSignalResult | Simulink.sdi.DiffRunResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

5 Classes

5-24

DataTypeWorkflow.DiffSignalResult
Results from comparing two signals

Description
The DataTypeWorkflow.DiffSignalResult object manages the results from comparing two
signals. A DataTypeWorkflow.DiffSignalResult object contains the value differences of the
signals, the tolerance data, and the data after any specified synchronization methods are performed.

Creation
The DataTypeWorkflow.Converter.compareRuns method returns a handle to a
DataTypeWorkflow.DiffSignalResult object, which contains the comparison results.

Properties
diff — Value differences after synchronizing data
timeseries object (default)

A MATLAB timeseries object specifying the value differences after synchronizing the two time
series data.

match — Whether the two timeseries objects match
0 (default) | 1

Boolean indicating if the two timeseries objects match according to the specified tolerance and
time synchronization options.
Data Types: logical

result1 — Result object to compare
DataTypeWorkflow.Result object (default)

DataTypeWorkflow.Result object that is being compared.

result2 — Result object to compare
DataTypeWorkflow.Result object (default)

DataTypeWorkflow.Result object that is being compared.

sync1 — Time series 1 after synchronization has been applied
timeseries object (default)

A MATLAB timeseries object specifying time series 1 after synchronization has been applied.

sync2 — Time series 2 after synchronization has been applied
timeseries object (default)

A MATLAB timeseries object specifying time series 2 after synchronization has been applied.

 DataTypeWorkflow.DiffSignalResult

5-25

tol — Absolute tolerance value at each synchronized time point
timeseries object (default) |

A MATLAB timeseries object specifying the actual absolute tolerance value at each synchronized
time point.

See Also
DataTypeWorkflow.Result | Simulink.sdi.DiffSignalResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

5 Classes

5-26

DataTypeWorkflow.ProposalSettings
Proposal settings object for data type proposals

Description
The DataTypeWorkflow.ProposalSettings object manages the properties related to how data
types are proposed for a model, including the default floating point data type, and safety margins for
the proposed data types.

Creation

Syntax
propSettings = DataTypeWorkflow.ProposalSettings

Description

propSettings = DataTypeWorkflow.ProposalSettings creates a proposal settings object.

Properties
DefaultWordLength — Default word length for floating-point signals
16 (default) | scalar

Default word length for floating-point signals, specified as a scalar. Use this setting when the
ProposeFractionLength property is set to true.
Example: propSettings.DefaultWordLength = 16
Data Types: double

DefaultFractionLength — Default fraction length for floating-point signals
4 (default) | scalar

Default fraction length for floating-point signals, specified as a scalar. Use this setting when the
ProposeWordLength property is set to true.
Example: propSettings.DefaultFractionLength = 4
Data Types: double

ProposeFractionLength — Whether to propose fraction lengths for specified word length
true (default) | false

Whether to propose fraction lengths for the default word length specified in the
DefaultWordLength property, specified as a Boolean. Setting this property to true automatically
sets the ProposeWordLength property to false.
Example: propSettings.ProposeFractionLength = logical(true)

 DataTypeWorkflow.ProposalSettings

5-27

Data Types: logical

ProposeForInherited — Whether to propose fixed-point data types for objects with an
inherited output data type
true (default) | false

Whether to propose fixed-point data types for objects in the system with inherited output data types,
specified as a Boolean.
Example: propSettings.ProposeForInherited = logical(true)
Data Types: logical

ProposeForFloatingPoint — Whether to propose fixed-point data types for objects with a
floating-point output data type
true (default) | false

Whether to propose fixed-point data types for objects in the system with floating-point output data
types, specified as a Boolean.
Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical

ProposeSignedness — Whether to propose signedness for objects in the system
true (default) | false

Whether to propose signedness for objects in the system, specified as a Boolean.

The software bases the signedness proposal on collected range information and block constraints.
Signals that are always strictly positive are assigned an unsigned data type proposal, and gain an
additional bit of precision. If you set this property to false, the software proposes a signed data type
for all results that currently specify a floating-point or an inherited output data type unless other
constraints are present. If a result specifies a fixed-point output data type, the software will propose a
data type with the same signedness as the currently specified data type unless other constraints are
present.
Example: propSettings.ProposeForFloatingPoint = logical(true)
Data Types: logical

ProposeWordLength — Whether to propose word lengths for specified default fraction
lengths
false (default) | true

Whether to propose word lengths for the default fraction length in the DefaultFractionLength
property, specified as a Boolean. Setting this property to true automatically sets the
ProposeFractionLength property to false.
Example: propSettings.ProposeWordLength = logical(false)
Data Types: logical

SafetyMargin — Safety margin for simulation minimum and maximum values
0 (default) | scalar

Safety margin for simulation minimum and maximum values, specified as a scalar.

5 Classes

5-28

The simulation minimum and maximum values are adjusted by the percentage designated by this
parameter. This parameter allows you to specify a range different from that obtained from the
simulation run.

For example, a value of 55 specifies that a range at least 55 percent larger is desired. A value of –15
specifies that a range of up to 15 percent smaller is acceptable.
Example: propSettings.SafetyMargin = 55
Data Types: double

UseDerivedMinMax — Whether to use derived ranges to propose data types
true (default) | false

Whether to use derived ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseDerivedMinMax = logical(true)
Data Types: logical

UseSimMinMax — Whether to use simulation ranges to propose data types
true (default) | false

Whether to use simulation ranges for data type proposals, specified as a Boolean.
Example: propSettings.UseSimMinMax = logical(true)
Data Types: logical

Object Functions
addTolerance Specify numeric tolerance for converted system
clearTolerances Clear all tolerances specified by a DataTypeWorkflow.ProposalSettings object
showTolerances Show tolerances specified for a system

Alternatives
The properties of the DataTypeWorkflow.ProposalSettings object can also be controlled from
the Settings menu in the Fixed-Point Tool. For more information, see Fixed-Point Tool.

See Also
DataTypeWorkflow.Converter

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

 DataTypeWorkflow.ProposalSettings

5-29

DataTypeWorkflow.Result
Object containing run result information

Description
The DataTypeWorkflow.Result object manages the results of simulation, derivation, and data type
proposals.

Creation
The results function returns a handle to a DataTypeWorkflow.Result object.

Properties
Comments — Comments associated with the signal
cell array of character vectors

Comments associated with the signal, specified as a cell array of character vectors.
Example: results.Comments
Data Types: cell

CompiledDataType — Data type used during simulation
character vector

Data type used during simulation, specified as a character vector.
Example: results.CompiledDataType
Data Types: char

DerivedMax — Derived maximum value
scalar

Derived maximum value for the signal or internal data based on specified design maximums, specified
as a scalar.

Use the DataTypeWorkflow.ProposalSettings object and related object functions to specify and
manage numeric tolerances for signals.
Example: results.DerivedMax
Data Types: double

DerivedMin — Derived minimum value
scalar

Derived minimum value for the signal or internal data based on specified design minimums, specified
as a scalar.

5 Classes

5-30

Use the DataTypeWorkflow.ProposalSettings object and related object functions to specify and
manage numeric tolerances for signals.
Example: results.DerivedMin
Data Types: double

ProposedDataType — Proposed data type
character vector

Proposed data type for the signal or internal data type associated with this result, specified as a
character vector.
Example: results.ProposedDataType
Data Types: char

ResultName — Name of signal
character vector

Name of the signal or internal data associated with this result, specified as a character vector.
Example: results.ResultName
Data Types: char

RunName — Name of run associated with result
character vector

Name of the run associated with the result, specified as a character vector.
Example: results.RunName
Data Types: char

Saturations — Number of saturations that occurred
scalar

Number of saturations that occurred, specified as a scalar.

The number of occurrences where the signal or internal data associated with this result saturated at
the maximum or minimum of its specified data type. The value of this property is the cumulative total
of all of the run executions for this result.
Example: results.Saturations
Data Types: double

SimMax — Simulation maximum
scalar

Simulation maximum, specified as a scalar. This property represents the values obtained for the
signal or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMax
Data Types: double

SimMin — Simulation minimum
scalar

 DataTypeWorkflow.Result

5-31

Simulation minimum, specified as a scalar. This property represents the value obtained for the signal
or internal data during all of the saved executions of the run this result is associated with.
Example: results.SimMin
Data Types: double

SpecifiedDataType — Specified data type of signal
character vector

Specified data type of the signal, specified as a character vector. This property takes effect the next
time the system is run.
Example: results.SpecifiedDataType
Data Types: char

Wraps — Number of wraps that occurred
scalar

Number of wraps that occurred, specified as a scalar.

The number of occurrences where the signal or internal data associated with this result wrapped
around the maximum or minimum of its specified data type. The value of this property is the
cumulative total of all of the run executions for this result.
Example: results.Wraps
Data Types: double

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings | results

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

5 Classes

5-32

DataTypeWorkflow.VerificationResult
Verification results after converting a system to fixed point

Description
A DataTypeWorkflow.VerificationResult object contains the results after converting a system
to fixed point. The verification result object indicates whether a conversion was successful based on
the tolerances specified on the DataTypeWorkflow.ProposalSettings object used during the
conversion.

Creation

Syntax
verificationResult = verify(converter,BaselineRunName,RunName)

Description

verificationResult = verify(converter,BaselineRunName,RunName) simulates the
system specified by the DataTypeWorkflow.Converter object, converter, and stores the run
information in a new run, RunName. It returns a DataTypeWorkflow.VerificationResult object
that compares the baseline and verification runs.

The DataTypeWorkflow.Converter object contains instrumentation data from the run specified by
BaselineRunName, as well as the tolerances specified on the associated
DataTypeWorkflow.ProposalSettings object. The software determines if the behavior of the
verification run is acceptable using the tolerances specified by the ProposalSettings object.

Properties
RunName — Name of verification run to create
character vector

Name of the verification run to create during the embedded simulation, specified as a character
vector.
Example: verificationResult.RunName
Data Types: char

BaselineRunName — Baseline run to compare against
character vector

Baseline run to compare against, specified as a character vector.
Example: verificationResult.BaselineRunName
Data Types: char

 DataTypeWorkflow.VerificationResult

5-33

Status — Whether the verification run meets the specified tolerances
Pass | Warn | Fail

Whether the verification run meets the specified tolerances, returned as either Pass, Warn, or Fail.
For additional details, use explore to display logged data in the Simulation Data Inspector.

Status Description
Pass All signals with a specified tolerance on the

associated ProposalSettings object are within
the specified tolerances in the verification run.

Fail One or more signals with a specified tolerance on
the associated ProposalSettings object are
not within the specified tolerances in the
verification run.

Example: verificationResult.Status
Data Types: char

Object Functions
explore Explore comparison of baseline and fixed-point implementations

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2019a

5 Classes

5-34

fixed.DataGenerator
Creates value set and generates data

Description
Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation
inputs to test the full operating range of your designs.

Creation

Syntax
data = fixed.DataGenerator(Name, Value)

Description

data = fixed.DataGenerator(Name, Value) creates a DataGenerator object with additional
properties specified as Name, Value pair arguments.

Properties
DataSpecifications — Properties of generated data
fixed.DataSpecification object | cell array of fixed.DataSpecification objects

Properties of the data to generate, specified as a fixed.DataSpecification object.

Specifying a cell array of DataSpecification objects produces a single DataGenerator object for
input to a system with the same number of inputs and in the same order as elements in the cell array.

NumDataPointsLimit — Maximum number of data points in generated data
100000 (default) | integer-valued scalar

Maximum number of data points in generated data, specified as an integer-valued scalar. For more
information, see getNumDataPointsInfo.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
getUniqueValues Get unique values from fixed.DataGenerator object
getNumDataPointsInfo Get information about number of data points in generated data
outputAllData Get data from fixed.DataGenerator object

Examples

 fixed.DataGenerator

5-35

Create a fixed.DataGenerator object

Create a DataGenerator object by specifying a DataSpecification object in the constructor.

Create the DataSpecification object with an interval from −2π to 2π with a data type of single.

dataspec = fixed.DataSpecification('single', 'Intervals', {-2*pi, 2*pi})

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'single'
 Intervals: [-6.2832,6.2832]
 ExcludeDenormals: false
 ExcludeNegativeZero: false
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Use the DataSpecification object to create a DataGenerator object. Limit the number of data
points in the generated data to 5000 points. You can specify these properties as name-value pairs in
the constructor of the DataGenerator object.

datagen = fixed.DataGenerator('DataSpecifications', dataspec, 'NumDataPointsLimit', 5000)

datagen =
 fixed.DataGenerator with properties:

 DataSpecifications: {[1x1 fixed.DataSpecification]}
 NumDataPointsLimit: 5000

Use the outputAllData function to see the generated data.

myData = outputAllData(datagen)

myData = 1x262 single row vector

 -6.2832 -6.2832 -4.0000 -4.0000 -4.0000 -2.0000 -2.0000 -2.0000 -1.0000 -1.0000 -1.0000 -0.5000 -0.5000 -0.5000 -0.2500 -0.2500 -0.2500 -0.1250 -0.1250 -0.1250 -0.0625 -0.0625 -0.0625 -0.0313 -0.0313 -0.0156 -0.0078 -0.0078 -0.0078 -0.0039 -0.0039 -0.0039 -0.0020 -0.0020 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

Algorithms
Data Generation for One-Dimensional, Two-Dimensional, and Complex Data

When you use a DataGenerator object to generate data for a DataSpecification object with the
Dimensions property set to 1, the output data always contains the minimum and maximum values of
the specified intervals, and any values specified by the MandatoryValues property.

When you generate data for a DataSpecification object with the Dimensions property set to a
value greater than 1, the output is generated by taking a cartesian product of the one-dimensional
output.

For example, consider the following two DataSpecification objects. The two objects are identical
except that one is one-dimensional, and the other is two-dimensional.

5 Classes

5-36

dataspec_1d = fixed.DataSpecification('single',...
 'Intervals', {-1,1}, 'Dimensions',1);
dataspec_2d = fixed.DataSpecification('single',...
 'Intervals', {-1,1}, 'Dimensions',2);

Create two DataGenerator objects based on these specifications. Set the maximum number of data
points in the generated data to inf.

datagen_1d = fixed.DataGenerator('DataSpecifications', ...
 dataspec_1d, 'NumDataPointsLimit', inf);
datagen_2d = fixed.DataGenerator('DataSpecifications', ...
 dataspec_2d, 'NumDataPointsLimit', inf);

Get the size of the generated data for each of the configurations.

size_1d_data = size(outputAllData(datagen_1d))
size_2d_data = size(outputAllData(datagen_2d))

size_1d_data =

 1 244

size_2d_data =

 2 59536

The length of the two-dimensional data is exactly the squared length of the one-dimensional data.

The DataGenerator generates complex data in a similar way to the two-dimensional data. Create a
DataSpecification object with Dimensions set to 1 and the Complexity set to complex. Create
a DataGenerator object using this specification.

dataspec_complex = fixed.DataSpecification('single', ...
'Intervals', {-1,1}, 'Dimensions', 1, 'Complexity', 'complex');

datagen_complex = fixed.DataGenerator('DataSpecifications', ...
 dataspec_complex, 'NumDataPointsLimit', inf);

Get the size of the generated data from this configuration.

size_complex_data = size(outputAllData(datagen_complex))

size_complex_data =

 1 59536

The length of the output data for the one-dimensional complex data is the same as the length of the
two-dimensional real data.

See Also
Objects
fixed.DataSpecification | fixed.Interval

Introduced in R2019b

 fixed.DataGenerator

5-37

fixed.DataSpecification
Specify properties of data to generate

Description
Use the fixed.DataSpecification and fixed.DataGenerator objects to generate simulation
inputs to test the full operating range of your designs.

Creation

Syntax
dataspec = fixed.DataSpecification(numerictype)
dataspec = fixed.DataSpecification(numerictype, Name,Value)

Description

dataspec = fixed.DataSpecification(numerictype) creates a DataSpecification object
with default property values and data type specified by numerictype.

dataspec = fixed.DataSpecification(numerictype, Name,Value)creates a
DataSpecification object with data type specified by numerictype, and additional properties
specified as Name,Value pair arguments.

Input Arguments

numerictype — Data type of generated data
character vector | Simulink.NumericType object | embedded.numerictype object

Data type of the generated data, specified as a string or character vector that evaluates to a numeric
data type, or as a Simulink.NumericType or embedded.numerictype object.
Example: dataspec = fixed.DataSpecification('double')
Example: dataspec = fixed.DataSpecification('fixdt(1,16,4)')
Example: dataspec = fixed.DataSpecification(Simulink.NumericType);

Properties
DataTypeStr — Data type of generated data
character vector | Simulink.NumericType object | embedded.numerictype object

Data type of the generated data, specified as a string or character vector that evaluates to a numeric
data type, or as a Simulink.NumericType or embedded.numerictype object.

This property cannot be edited after construction.

5 Classes

5-38

Intervals — Intervals within which to generate numeric data
fixed.Interval object | array of fixed.Interval objects | cell array containing inputs to
fixed.Interval constructor

Numeric intervals in which to generate numeric data, specified as a fixed.Interval object, an
array of fixed.Interval objects, or a cell array containing inputs to the fixed.Interval
constructor.

If you do not specify an interval, the default interval uses end points equal to the minimum and
maximum representable values of the specified numeric type.
Example: dataspec.Intervals = {-1,1};
Example: dataspec.Intervals = fixed.Interval(-1,1);

ExcludeDenormals — Whether to exclude denormal numbers from generated data
false (default) | true

Whether to exclude denormal numbers from generated data, specified as a logical.

This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical

ExcludeNegativeZero — Whether to exclude negative zero from generated data
false (default) | true

Whether to exclude negative zero from generated data, specified as a logical.

This property is only applicable when the DataTypeStr property is a floating-point type.
Data Types: logical

MandatoryValues — Values to include in the generated data
<empty> (default) | scalar | vector | matrix | multidimensional array

Values to include in the generated data, specified as a scalar, vector, matrix, or multidimensional
array. If the values specified in MandatoryValues are outside the range of the data type specified in
DataTypeStr, the values are saturated to the nearest representable value.
Example: dataspec.MandatoryValues = [-215, 216];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

Complexity — Complexity of generated data
'real' (default) | 'complex'

Complexity of the generated data, specified as either 'real' or 'complex'.
Example: dataspec.Complexity = 'complex';
Data Types: char | string

Dimensions — Dimension of the generated data
1 (default) | positive scalar integer | row vector of positive integers

Dimension of the generated data, specified as a positive scalar integer or row vector of positive
integers.

 fixed.DataSpecification

5-39

Example: dataspec.Dimensions = 3;
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
contains Determine whether value domain of a DataSpecification object contains a

specified value
applyOnRootInport (To be removed) Apply properties to Inport block

Examples

Create a fixed.DataSpecification object

Create a fixed.DataSpecification object with default property values and an int16 data type.

dataspec = fixed.DataSpecification('int16')

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'int16'
 Intervals: [-32768,32767]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

The default interval of the DataSpecification object is equal to the range of the data type
specified in the constructor.

Create a fixed.DataSpecification object from a fixed.Interval object

Create a fixed.Interval object specifying a range of -π to π.

interval = fixed.Interval(-pi,pi)

interval =
 [-3.1416,3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: -3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

Create a DataSpecification object using this interval and a data type of fixdt(1,16,10).

dataspec = fixed.DataSpecification('fixdt(1,16,10)','Intervals',interval)

dataspec =
 fixed.DataSpecification with properties:

5 Classes

5-40

 DataTypeStr: 'sfix16_En10'
 Intervals: [-3.1416,3.1416]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Alternatively, you can specify the interval as a cell array of inputs to the fixed.Interval
constructor. The following code generates an equivalent DataSpecification object.

dataspec = fixed.DataSpecification('fixdt(1,16,10)','Intervals',{-pi,pi})

dataspec =
 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En10'
 Intervals: [-3.1416,3.1416]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Create a DataSpecification object that includes NaN and Inf

You can include NaN and Inf values in the generated data by specifying these values as intervals in an
Interval object.

The following code creates a DataSpecification object that references an array of interval objects
that include the values -Inf, Inf, NaN, and the range [-1, 1].

dataspec = fixed.DataSpecification('single', 'Intervals',...
 {{-Inf}, {Inf}, {NaN}, {-1,1}})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'single'
 Intervals: [-Inf] [-1,1] [Inf] [NaN]
 ExcludeDenormals: false
 ExcludeNegativeZero: false
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

See Also
Objects
fixed.DataGenerator | fixed.Interval

Introduced in R2019b

 fixed.DataSpecification

5-41

fixed.Interval
Define interval of values

Description
A fixed.Interval object defines an interval of real-world values. Use the Interval object to
specify a range of values in a fixed.DataSpecification object.

Creation
Syntax
interval = fixed.Interval
interval = fixed.Interval(a)
interval = fixed.Interval(a, b)
interval = fixed.Interval(a, b, endnotes)
interval = fixed.Interval(a, b, Name, Value)
interval = fixed.Interval(numerictype)
interval = fixed.Interval({ ___ }, ...,{ ___ })

Description

interval = fixed.Interval creates a unit interval, [0,1].

interval = fixed.Interval(a) creates a degenerate interval, containing only the value a.

interval = fixed.Interval(a, b)creates a closed interval from a to b.

interval = fixed.Interval(a, b, endnotes) creates an interval from a to b, with the
endnotes argument specifying whether the interval is open or closed.

interval = fixed.Interval(a, b, Name, Value) creates an interval from a to b with the
IsLeftClosed and IsRightClosed properties specified as Name, Value pair arguments.

interval = fixed.Interval(numerictype) creates an interval or array of intervals with end
points equal to the minimum and maximum representable values of the specified numeric type.

interval = fixed.Interval({ ___ }, ...,{ ___ }) returns an array of Interval objects,
where each cell array specifies the arguments for one or more of the objects.

Input Arguments

a — Left endpoint of interval
scalar | vector

Left endpoint of interval, specified as a scalar or vector.

b — Right endpoint of interval
scalar | vector

5 Classes

5-42

Right endpoint of interval, specified as a scalar or vector.

endnotes — Whether the interval is open or closed
'[]' (default) | '[)' | '(]' | '()'

Argument indicating whether the interval is closed, open, or half-open, specified as one of the
following character vectors.

Endnotes Description
'[]' Generates a closed set, which includes both of its

endpoints.
'[)' Generates a half-open interval, in which the first

endpoint is included, but the second is not
included in the set.

'(]' Generates a half-open interval, in which the first
endpoint is not included, but the second is
included in the set.

'()' Generates an open set, in which neither endpoint
is included in the set.

Example: interval = fixed.Interval(1, 10, '()');

numerictype — Numeric data type
Simulink.Numerictype object | embedded.numerictype object | character vector

Numeric data type whose range of representable values defines the Interval object, specified as a
Simulink.Numerictype object, an embedded.numerictype object, or a character vector
representing a numeric data type, for example, 'single'.

When numerictype is 'double', 'single', or 'half', the output Interval object is an array of
4 Interval objects with intervals [-Inf], [Inf], [NaN], and [-realmax, realmax]. For more
information on representable values of a data type, see realmax.
Example: interval = fixed.Interval('fixdt(1,16,8)');

Properties
LeftEnd — Left endpoint of interval
0 (default) | scalar

Left endpoint of interval, specified as a scalar.

This property cannot be edited after object creation.
Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | fi

RightEnd — Right endpoint of interval
1 (default) | scalar

Right endpoint of interval, specified as a scalar.

This property cannot be edited after object creation.

 fixed.Interval

5-43

Data Types: half | single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | logical | fi

IsLeftClosed — Whether the left end of the interval is closed
true (default) | false

Whether the left end of the interval is closed, specified as a logical value.

This property cannot be edited after object creation.
Data Types: logical

IsRightClosed — Whether the right end of the interval is closed
true (default) | false

Whether the right end of the interval is closed, specified as a logical value.

This property cannot be edited after object creation.
Data Types: logical

Object Functions
contains Determine if one fixed.Interval object contains another
intersect Intersection of fixed.Interval objects
isDegenerate Determine whether the left and right ends of a fixed.Interval object are degenerate
isLeftBounded Determine whether a fixed.Interval object is left-bounded
isRightBounded Determine whether the a fixed.Interval object is right-bounded
isnan Determine whether a fixed.Interval object is NaN
overlaps Determine if two fixed.Interval objects overlap
quantize Quantize interval to range of numeric data type
setdiff Set difference of fixed.Interval objects
union Union of fixed.Interval objects
unique Get set of unique values in fixed.Interval object

Examples

Create a degenerate interval

Create a degenerate interval, containing only a single point.

interval = fixed.Interval(pi)

interval =
 [3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: 3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

This is equivalent to creating an interval with two equivalent endpoints.

interval = fixed.Interval(pi, pi)

5 Classes

5-44

interval =
 [3.1416]

 1x1 fixed.Interval with properties:

 LeftEnd: 3.1416
 RightEnd: 3.1416
 IsLeftClosed: true
 IsRightClosed: true

Create an open interval

Specify end notes for an interval to create an open interval.

interval = fixed.Interval(-1, 1,'()') %#ok<*NASGU>

interval =
 (-1,1)

 1x1 fixed.Interval with properties:

 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: false
 IsRightClosed: false

To create an interval that includes the first endpoint, but not the second, specify the end notes as
'[)'

interval = fixed.Interval(-1, 1,'[)')

interval =
 [-1,1)

 1x1 fixed.Interval with properties:

 LeftEnd: -1
 RightEnd: 1
 IsLeftClosed: true
 IsRightClosed: false

Create an interval with the range of a numeric data type

When you specify a numeric data type in the constructor of the fixed.Interval object, the range of
the interval is set to the range of the data type.

Create an interval with the range of an int8 data type.

interval_int8 = fixed.Interval('int8')

interval_int8 =
 [-128,127]

 fixed.Interval

5-45

 1x1 fixed.Interval with properties:

 LeftEnd: -128
 RightEnd: 127
 IsLeftClosed: true
 IsRightClosed: true

You can also specify a Simulink.NumericType to create an interval with the same range as the
range representable by the NumericType object.

myNumericType = Simulink.NumericType;
myNumericType.DataTypeMode = "Fixed-point: binary point scaling";
myNumericType.Signedness = 'Unsigned';
myNumericType.WordLength = 16;
myNumericType.FractionLength = 14

myNumericType =
 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 16
 FractionLength: 14
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

interval_16_14 = fixed.Interval(myNumericType)

interval_16_14 =
 [0,3.9999]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 3.9999
 IsLeftClosed: true
 IsRightClosed: true

Create an array of fixed.Interval objects

To create an array of fixed.Interval objects, in the constructor of the Interval object, you can
specify a series of cell arrays, each of which contain the arguments of an Interval object.

intervalarray = fixed.Interval({-1,1},{5,10,'[)'},...
 {1000,1500,'IsLeftClosed',1,'IsRightClosed',0},...
 {'int8'})

intervalarray=1×4 object
 [-1,1] [5,10) [1000,1500) [-128,127]

 1x4 fixed.Interval with properties:

 LeftEnd

5 Classes

5-46

 RightEnd
 IsLeftClosed
 IsRightClosed

See Also
Objects
fixed.DataGenerator | fixed.DataSpecification

Introduced in R2019b

 fixed.Interval

5-47

LUTCompressionResult
Optimized lookup table data for all Lookup Table blocks in a system

Description
A LUTCompressionResult object contains the optimized lookup table data for all Lookup Table
blocks in a system. To create a LUTCompressionResult object, use the
FunctionApproximation.compressLookupTables function. To replace the lookup tables in your
system with the optimized version, use the replace function.

Creation

Syntax
CompressionResult = compressLookupTables(system)
CompressionResult = compressLookupTables(system, Name,Value)

Description

CompressionResult = compressLookupTables(system) compresses all n-D Lookup Table
blocks in the specified system. The compressed Lookup Table blocks output the same numerical
results as the original Lookup Table blocks within the bounds of the breakpoints.

You can achieve additional memory savings by compressing each Lookup Table block in the model
individually and specifying tolerances for the compressed lookup table.

CompressionResult = compressLookupTables(system, Name,Value) compresses all n-D
Lookup Table blocks in the specified system with additional properties specified by name and value
pair arguments.

Input Arguments

system — Name of model or subsystem in which to compress all Lookup Table blocks
character vector

Name of model or subsystem in which to compress all n-D Lookup Table blocks, specified as a
character vector.
Example: compressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys');

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

5 Classes

5-48

Display — Whether to display details of each iteration of the optimization
true (default) | false

Whether to display details of each iteration of the optimization, specified as a logical. A value of 1
results in information in the command window at each iteration of the approximation process. A value
of 0 does not display information until the approximation is complete.
Data Types: logical

WordLengths — Word lengths permitted in the lookup table approximate
integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types, 8, 16, and 32. The word lengths must be between 1
and 128.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

FindOptions — Options for finding lookup tables in system
Simulink.FindOptions object

Simulink.FindOptions object specifying options for finding lookup tables in the system.

Properties
MemoryUnits — Units for memory usage
'bytes' (default) | 'bits' | 'Kb' | 'Kibit' | 'KB' | 'KiB' | 'Mb' | 'Mibit' | 'MB' | 'MiB' |
'Gb' | 'Gibit' | 'GB' | 'GiB'

Units for MaxMemoryUsage property, specified as 'bits', 'bytes', or one of the other enumerated
options.
Data Types: char

MemoryUsageTable — Table summarizing the effects of compression
table

Table summarizing the effects of compression. The table contains one row for each lookup table
compressed in the system and its corresponding memory savings.
Data Types: table

NumLUTsFound — Number of lookup tables found in system
integer-valued scalar

Number of lookup tables found in the specified system, specified as an integer-valued scalar.
Data Types: double

NumImprovements — Number of lookup tables compressed
integer-valued scalar

Number of lookup tables compressed in the system, specified as an integer-valued scalar.
Data Types: double

 LUTCompressionResult

5-49

TotalMemoryUsed — Total memory of all lookup tables in system before compression
scalar

Total memory of all lookup tables in the system before compression, returned as a scalar. You can
specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemoryUsedNew — Total memory of all lookup tables in system after compression
scalar

Total memory of all lookup tables in the system after compression, returned as a scalar. You can
specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemorySavings — Difference between total memory before compression and after
compression
scalar

Difference between the total memory of all lookup tables in the system before and after compression,
returned as a scalar. You can specify the units of this property by using the MemoryUnits property.
Data Types: double

TotalMemorySavingsPercent — Percentage reduction in memory used by lookup tables in
the system
scalar

Percentage reduction in the memory used by the lookup tables in the system after compression,
returned as a scalar.
Data Types: double

SUD — System containing compressed lookup tables
character vector

System containing compressed lookup tables, returned as a character vector. SUD is the same as the
system input argument of the FunctionApproximation.compressLookupTables function.
Data Types: char

WordLengths — Word lengths used for breakpoints and table data in the compressed
lookup tables
scalar | vector

Word lengths used for breakpoints and table data in the compressed lookup tables, returned as a
scalar or vector of integers.
Data Types: double

FindOptions — Options for finding lookup tables in system
Simulink.FindOptions object

Simulink.FindOptions object specifying options for finding lookup tables in the system.

5 Classes

5-50

Object Functions
replace Replace all Lookup Table blocks with compressed lookup tables
revert Revert compressed Lookup Table blocks to original versions

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation

 LUTCompressionResult

5-51

 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]
 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

See Also
Functions
FunctionApproximation.compressLookupTables | replace | revert

Introduced in R2020a

5 Classes

5-52

FunctionApproximation.LUTMemoryUsageCalculat
or class
Package: FunctionApproximation

Calculate memory used by lookup table blocks in a system

Description
The FunctionApproximation.LUTMemoryUsageCalculator class helps to calculate the memory
used by each lookup table block, including 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup
Table, used in a model.

Construction
calculator = FunctionApproximation.LUTMemoryUsageCalculator() creates a
FunctionApproximation.LUTMemoryUsageCalculator object. Use the lutmemoryusage
method to calculate the memory used by each lookup table block in a model.

Properties
Public Properties

FindOptions — Options for finding lookup table blocks in a system
Simulink.FindOptions object

Options for finding lookup table blocks in a system, specified as a Simulink.FindOptions object.

Methods
lutmemoryusage Calculate memory used by lookup table blocks in a system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation.LUTMemoryUsageCalculator class to calculate the total
memory used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.

calculator = FunctionApproximation.LUTMemoryUsageCalculator

Use the lutmemoryusage method to get the memory used by each lookup table block in the
sldemo_fuelsys model.

 FunctionApproximation.LUTMemoryUsageCalculator class

5-53

load_system('sldemo_fuelsys')
lutmemoryusage(calculator, 'sldemo_fuelsys')

ans =

 5×2 table

 BlockPath MemoryUsage
 ___ ___________

 1 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant" 1516
 2 "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation" 1516
 3 "sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation" 1436
 4 "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation" 1364
 5 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki" 192

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare | displayallsolutions | displayfeasiblesolutions |
lutmemoryusage | solutionfromID | solve | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

5 Classes

5-54

FunctionApproximation.LUTSolution class
Package: FunctionApproximation

Optimized lookup table data or lookup table data approximating a math function

Description
A FunctionApproximation.LUTSolution object contains optimized lookup table data or lookup
table data approximating a math function. To create a FunctionApproximation.LUTSolution
object, use the solve method on a FunctionApproximation.Problem object. To generate a
subsystem containing the lookup table approximate or the optimized lookup table, use the
approximate method of the FunctionApproximation.LUTSolution object.

You can save a FunctionApproximation.LUTSolution object to a MAT-file and restore the
solution later.

Construction
solution = solve(problem) solves the problem defined by the
FunctionApproximation.Problem object, problem, and returns the approximation or
optimization, solution, as a FunctionApproximation.LUTSolution object.

Input Arguments

problem — Function to approximate, or lookup table to optimize
FunctionApproximation.Problem object

Function to approximate, or lookup table to optimize, and the constraints to consider during the
optimization, specified as a FunctionApproximation.Problem object.

Properties
ID — ID of the solution
scalar integer

ID of the solution, specified as a scalar integer.

This property is read-only.
Data Types: double

Feasible — Whether the approximation meets the constraints
true | false

Whether the approximation or optimization specified by the
FunctionApproximation.LUTSolution object, solution, meets the constraints specified in the
FunctionApproximation.Problem object, problem, and its associated
FunctionApproximation.Options.

This property is read-only.

 FunctionApproximation.LUTSolution class

5-55

Data Types: logical

AllSolutions — All solutions, including infeasible solutions
vector of FunctionApproximation.LUTSolution objects

All solutions found during the approximation, including infeasible solutions, specified as a vector of
FunctionApproximation.LUTSolution objects.

This property is read-only.

FeasibleSolutions — All solutions that meet the constraints
vector of FunctionApproximation.LUTSolution objects

All solutions meeting the specified constraints, specified as a vector of
FunctionApproximation.LUTSolution objects.

This property is read-only.

PercentReduction — Reduction in memory of lookup table
scalar

If the original FunctionApproximation.Problem object specified a lookup table block to optimize,
the PercentReduction property indicates the reduction in memory from the original lookup table.
If the original FunctionApproximation.Problem object specified a math function or function
handle, the PercentReduction is -Inf.

This property is read-only.
Data Types: double

SourceProblem — Problem object approximated by the solution
FunctionApproximation.Problem object

FunctionApproximation.Problem object that the FunctionApproximation.LUTSolution
object approximates.

This property is read-only.

TableData — Lookup table data
struct

Struct containing data related to lookup table approximation. The struct has the following fields.

• BreakpointValues - Breakpoints of the lookup table
• BreakpointDataTypes- Data type of the lookup table breakpoints
• TableValues - Values in the lookup table
• TableDataType - Data type of the table data
• IsEvenSpacing - Boolean value indicating if the breakpoints are evenly spaced.

This property is read-only.

5 Classes

5-56

Methods
approximate Generate a Lookup Table block from a

FunctionApproximation.LUTSolution
compare Compare numerical results of FunctionApproximation.LUTSolution

to original function or lookup table
displayallsolutions Display all solutions found during function approximation
displayfeasiblesolutions Display all feasible solutions found during function approximation
getErrorValue Get the total error of the lookup table approximation
replaceWithApproximate Replace block with the generated lookup table approximation
revertToOriginal Revert the block that was replaced by the approximation back to its

original state
solutionfromID Access a solution found during the approximation process
totalmemoryusage Calculate total memory used by a lookup table approximation

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation. Problem | FunctionApproximation.LUTMemoryUsageCalculator
| FunctionApproximation.Options

Functions
approximate | compare | solve

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 FunctionApproximation.LUTSolution class

5-57

FunctionApproximation.Options class
Package: FunctionApproximation

Specify additional options to use with FunctionApproximation.Problem object

Description
The FunctionApproximation.Options object contains additional options for defining a
FunctionApproximation.Problem object.

Construction
options = FunctionApproximation.Options() creates a
FunctionApproximation.Options object to use as an input to a
FunctionApproximation.Problem object. The output, options, uses default property values.

options = FunctionApproximation.Options(Name,Value) creates a
FunctionApproximation.Options object with property values specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
AbsTol — Absolute tolerance of difference between original and approximate
non-negative scalar

Maximum tolerance of the absolute value of the difference between the original output value and the
output value of the approximation, specified as a non-negative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

AllowUpdateDiagram — Whether to allow updating of the model diagram during the
approximation process
1 (default) | 0

Whether to allow updating of the model diagram during the approximation process, specified as a
logical. This property is only relevant for FunctionApproximation.Problem objects that specify a
Lookup Table block, or a Math Function block as the item to approximate.
Data Types: logical

AUTOSARCompliant — Whether the generated lookup table block is an AUTOSAR block
0 (default) | 1

Whether the generated lookup table is AUTOSAR compliant. When this property is set to 1 (true), the
generated lookup table is a Curve or Map block from the AUTOSAR Blockset. When this property is
set to 1, the data type of the table data must equal the output data type of the block.

Setting this property to 1 (true) checks out a AUTOSAR Blockset license when you use the
approximate or replaceWithApproximate methods.

5 Classes

5-58

Data Types: logical

BreakpointSpecification — Spacing of breakpoint data
ExplicitValues (default) | EvenSpacing | EvenPow2Spacing

Spacing of breakpoint data, specified as one of the following values.

Breakpoint Specification Description
ExplicitValues Lookup table breakpoints are specified explicitly.

Breakpoints can be closer together for some
input ranges and farther apart in others.

EvenSpacing Lookup table breakpoints are evenly spaced
throughout.

EvenPow2Spacing Lookup table breakpoints use power-of-two
spacing. This breakpoint specification boasts the
fastest execution speed because a bit shift can
replace the position search.

For more information on how breakpoint specification can affect performance, see “Effects of Spacing
on Speed, Error, and Memory Usage”.
Data Types: char

Display — Whether to display details of each iteration of the optimization
1 (default) | 0

Whether to display details of each iteration of the optimization, specified as a logical. A value of 1
results in information in the command window at each iteration of the approximation process. A value
of 0 does not display information until the approximation is complete.
Data Types: logical

ExploreHalf — Whether to allow exploration of half precision
true or 1 (default) | false or 0

Whether to allow the optimizer to explore half-precision data types for table data and breakpoints,
specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

Interpolation — Method when an input falls between breakpoint values
Linear (default) | Flat | Nearest | None

When an input falls between breakpoint values, the lookup table interpolates the output value using
neighboring breakpoints.

Interpolation Method Description
Linear Fits a line between the adjacent breakpoints, and

returns the point on that line corresponding to
the input.

 FunctionApproximation.Options class

5-59

Interpolation Method Description
Flat Returns the output value corresponding to the

breakpoint value that is immediately less than the
input value. If no breakpoint value exists below
the input value, it returns the breakpoint value
nearest the input value.

Nearest Returns the value corresponding to the
breakpoint that is closest to the input. If the input
is equidistant from two adjacent breakpoints, the
breakpoint with the higher index is chosen.

None Generates a Direct Lookup Table (n-D) block,
which performs table lookups without any
interpolation or extrapolation.

Note When generating a Direct Lookup Table
block, the maximum number of inputs is two.

Data Types: char

MaxMemoryUsage — Maximum amount of memory the generated lookup table can use
80000000 (default) | scalar integer

The maximum amount of memory the generated lookup table can use, in bits, specified as a scalar
integer. You can change the units of the option using the MemoryUnits property.
Data Types: double

MaxTime — Maximum amount of time for the approximation to run (in seconds)
Inf (default) | scalar

Maximum amount of time for the approximation to run, specified in seconds as a scalar number. The
approximation runs until it reaches the time specified, finds an ideal solution, or reaches another
stopping criteria.
Data Types: double

MemoryUnits — Units for maximum memory usage
'bits' (default) | 'bytes' | 'Kb' | 'Kibit' | 'KB' | 'KiB' | 'Mb' | 'Mibit' | 'MB' | 'MiB' |
'Gb' | 'Gibit' | 'GB' | 'GiB'

Units for MaxMemoryUsage property, specified as 'bits', 'bytes', or one of the other enumerated
options.
Data Types: char

OnCurveTableValues — Whether to constrain table values to the quantized output of the
function being approximated
0 (default) | 1

Whether to constrain table values to the quantized output of the function being approximated. By
setting this property to 0 and allowing off-curve table values, you may be able to reduce the memory
of the lookup table while maintaining the same error tolerances, or maintain the same memory while
reducing the error tolerances.

5 Classes

5-60

Data Types: logical

RelTol — Relative tolerance of difference between original and approximate
non-negative scalar

Maximum tolerance of the relative difference between the original output value and the output value
of the approximation, specified as a non-negative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

SaturateToOutputType — Saturate output of function to approximate to range of output
type
0 (default) | 1

Logical value specifying whether to automatically saturate the range of the output of the function to
approximate to the range of the output data type.
Example: options.SaturateToOutputType = 1;
Data Types: logical

UseParallel — Whether to run iterations in parallel
false (default) | true

Whether to run iterations of the optimization in parallel, specified as a logical. Running the iterations
in parallel requires a Parallel Computing Toolbox™ license. If you do not have a Parallel Computing
Toolbox license, or if you specify false, the iterations run in serial.
Example: options.UseParallel = true;
Data Types: logical

WordLengths — Word lengths permitted in the lookup table approximate
[8, 16, 32] (default) | integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types, 8, 16, and 32. The word lengths must be between 1
and 128.
Example: options.WordLengths = [8,16,32];
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Algorithms
When you set BreakpointSpecification to 'ExplicitValues', during the approximation
process, the algorithm also attempts to find a solution using 'EvenSpacing' and
'EvenPow2Spacing'. Likewise, when you set BreakpointSpecification to 'EvenSpacing',
the algorithm also attempts to find a solution using 'EvenPow2Spacing'. If you set the property to
'EvenPow2Spacing', the algorithm only attempts to find a solution using this spacing.

 FunctionApproximation.Options class

5-61

In cases where the BreakpointSpecification property is set to 'EvenSpacing', but the
InputUpperBounds or InputLowerBounds property of the FunctionApproximation.Problem
object is equal to the range of the InputTypes, the algorithm does not attempt to find a solution
using 'EvenPow2Spacing'.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare | displayallsolutions | displayfeasiblesolutions |
lutmemoryusage | solutionfromID | solve | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

5 Classes

5-62

FunctionApproximation.Problem class
Package: FunctionApproximation

Object defining the function to approximate, or the lookup table to optimize

Description
The FunctionApproximation.Problem object defines the function to approximate with a lookup
table, or the lookup table block to optimize. After defining the problem, use the solve method to
generate a FunctionApproximation.LUTSolution object that contains the approximation.

Construction
approximationProblem = FunctionApproximation.Problem() creates a
FunctionApproximation.Problem object with default property values. When no function input
is provided, the FunctionToApproximate property is set to 'sin'.

approximationProblem = FunctionApproximation.Problem(function) creates a
FunctionApproximation.Problem object to approximate the function, Math Function block, or
lookup table specified by function.

Input Arguments

function — Function or block to approximate, or lookup table block to optimize
'sin' (default) | math function | function handle | Math Function block | Lookup Table block |
Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function
handle, a math function, a Simulink block or subsystem, or one of the lookup table blocks (for
example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.

If you specify a math function, a function handle, or a block, the solve method generates a lookup
table approximation of the input function.

Function handles must be on the MATLAB search path, or approximation fails.

The MATLAB math functions supported for approximation are:

• 1./x
• 10.^x
• 2.^x
• acos
• acosh
• asin
• asinh
• atan

 FunctionApproximation.Problem class

5-63

• atan2
• atanh
• cos
• cosh
• exp
• log
• log10
• log2
• sin
• sinh
• sqrt
• tan
• tanh
• x.^2

Note Functions and function handles that you approximate must be vectorized, meaning that for
each input, there is exactly one output. For more information, see “Vectorization”.

Tip The process of generating a lookup table approximation is faster for a function handle than for a
subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the
function handle.

Data Types: char | function_handle

Properties
FunctionToApproximate — Function to approximate, or lookup table block to optimize
'sin' (default) | math function | function handle | Math Function block | Lookup Table block |
Subsystem block

Function or block to approximate, or the lookup table block to optimize, specified as a function
handle, a math function, a Simulink block or subsystem, or one of the lookup table blocks (for
example, 1-D Lookup Table, n-D Lookup Table).

If you specify one of the lookup table blocks, the solve method generates an optimized lookup table.

If you specify a math function, a function handle, or a block, the solve method generates a lookup
table approximation of the input function.

Function handles must be on the MATLAB search path, or approximation fails.

The MATLAB math functions supported for approximation are:

• 1./x
• 10.^x

5 Classes

5-64

• 2.^x
• acos
• acosh
• asin
• asinh
• atan
• atan2
• atanh
• cos
• cosh
• exp
• log
• log10
• log2
• sin
• sinh
• sqrt
• tan
• tanh
• x.^2

Note Functions and function handles that you approximate must be vectorized, meaning that for
each input, there is exactly one output. For more information, see “Vectorization”.

Tip The process of generating a lookup table approximation is faster for a function handle than for a
subsystem. If a subsystem can be represented by a function handle, it is faster to approximate the
function handle.

Data Types: char | function_handle

NumberOfInputs — Number of inputs to function approximation
1 | 2 | 3

Number of inputs to approximated function. This property is inferred from the
FunctionToApproximate property, therefore it is not a writable property.

If you are generating a Direct Lookup Table, the function to approximate can have no more than two
inputs.
Data Types: double

InputTypes — Desired data types of inputs to function approximation
numerictype object | vector of numerictype objects | Simulink.Numerictype object | vector of
Simulink.Numerictype objects

 FunctionApproximation.Problem class

5-65

Desired data types of the inputs to the approximated function, specified as a numerictype,
Simulink.Numerictype, or a vector of numerictype or Simulink.Numerictype objects. The
number of InputTypes specified must match the NumberOfInputs.
Example: problem.InputTypes = ["numerictype(1,16,13)", "numerictype(1,16,10)"];

InputLowerBounds — Lower limit of range of inputs to function to approximate
scalar | vector

Lower limit of range of inputs to function to approximate, specified as a scalar or vector. If you
specify inf, the InputLowerBounds used during the approximation is derived from the
InputTypes property. The dimensions of InputLowerBounds must match the NumberOfInputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

InputUpperBounds — Upper limit of range of inputs to function to approximate
scalar | vector

Upper limit of range of inputs to function to approximate, specified as a scalar or vector. If you
specify inf, the InputUpperBounds used during the approximation is derived from the
InputTypes property. The dimensions of InputUpperBounds must match the NumberOfInputs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

OutputType — Desired data type of the function approximation output
numerictype | Simulink.Numerictype

Desired data type of the function approximation output, specified as a numerictype or
Simulink.Numerictype. For example, to specify that you want the output to be a signed fixed-point
data type with 16-bit word length and best-precision fraction length, set the OutputType property to
"numerictype(1,16)".
Example: problem.OutputType = "numerictype(1,16)";

Options — Additional options and constraints to use in approximation
FunctionApproximation.Options object

Additional options and constraints to use in approximation, specified as a
FunctionApproximation.Options object.

Methods

solve Solve for optimized solution to function approximation problem

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

5 Classes

5-66

Examples
Create Problem Object to Approximate a Function Handle

Create a FunctionApproximation.Problem object, specifying a function handle that you want to
approximate.

problem = FunctionApproximation.Problem(@(x,y) sin(x)+cos(y))

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x,y)sin(x)+cos(y)
 NumberOfInputs: 2
 InputTypes: ["numerictype('double')" "numerictype('double')"]
 InputLowerBounds: [-Inf -Inf]
 InputUpperBounds: [Inf Inf]
 OutputType: "numerictype('double')"
 Options: [1×1 FunctionApproximation.Options]

The FunctionApproximation.Problem object, problem, uses default property values.

Set the range of the function inputs to be between zero and 2*pi.

problem.InputLowerBounds = [0,0];
problem.InputUpperBounds = [2*pi, 2*pi]

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x,y)sin(x)+cos(y)
 NumberOfInputs: 2
 InputTypes: ["numerictype('double')" "numerictype('double')"]
 InputLowerBounds: [0 0]
 InputUpperBounds: [6.2832 6.2832]
 OutputType: "numerictype('double')"
 Options: [1×1 FunctionApproximation.Options]

Create Problem Object to Approximate a Math Function

Create a FunctionApproximation.Problem object, specifying a math function to approximate.

problem = FunctionApproximation.Problem('log')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)log(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,10)"
 InputLowerBounds: 0.6250
 InputUpperBounds: 15.6250
 OutputType: "numerictype(1,16,13)"
 Options: [1×1 FunctionApproximation.Options]

 FunctionApproximation.Problem class

5-67

The math functions have appropriate input range, input data type, and output data type property
defaults.

Create Problem Object to Optimize a Lookup Table Block

Create a FunctionApproximation.Problem object to optimize an existing lookup table.

load_system('sldemo_fuelsys');
problem = FunctionApproximation.Problem('sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: 'sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant'
 NumberOfInputs: 2
 InputTypes: ["numerictype('single')" "numerictype('single')"]
 InputLowerBounds: [50 0.0500]
 InputUpperBounds: [1000 0.9500]
 OutputType: "numerictype('single')"
 Options: [1×1 FunctionApproximation.Options]

The software infers the properties of the Problem object from the model.

Algorithms
Required Specifications

Functions and function handles that you approximate must meet the following criteria.

• The function must be time-invariant.
• The function must operate element-wise, meaning for each input there is one output.
• The function must not contain states.

For more information, see “Vectorization”.

Infinite Upper and Lower Input Bounds

When a Problem object specifies infinite input ranges and the input type is non-floating-point, during
the approximation, the software infers upper and lower ranges based on the range of the input data
type. The resulting FunctionApproximation.LUTSolution object specifies the bounds that the
algorithm used during the approximation, not the originally specified infinite bounds.

Upper and Lower Input Bounds and Input Data Type Range

If the InputLowerBounds or InputUpperBounds specified for a Problem object fall outside the
range of the specified InputTypes, the algorithm uses the range of the data type specified by
InputTypes for the approximation.

In cases where the BreakpointSpecification property of the
FunctionApproximation.Options object is set to 'EvenSpacing', but the InputUpperBounds
or InputLowerBounds property of the FunctionApproximation.Problem object is equal to the
range of the InputTypes, the algorithm does not attempt to find a solution using
'EvenPow2Spacing'.

5 Classes

5-68

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options

Functions
approximate | compare | solve

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 FunctionApproximation.Problem class

5-69

fxpOptimizationOptions class

Specify options for data type optimization

Description
The fxpOptimizationOptions object enables you to specify options and constraints to use during
the data type optimization process.

Construction
opt = fxpOptimizationOptions() creates a fxpOptimizationOptions object with default
values.

opt = fxpOptimizationOptions(Name,Value) creates an fxpOptimizationOptions object
with property values specified by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
MaxIterations — Maximum number of iterations to perform
50 (default) | scalar integer

Maximum number of iterations to perform, specified as a scalar integer. The optimization process
iterates through different solutions until it finds an ideal solution, reaches the maximum number of
iterations, or reaches another stopping criteria.
Example: opt.MaxIterations = 75;
Data Types: double

MaxTime — Maximum amount of time for the optimization to run (in seconds)
600 (default) | scalar

Maximum amount of time for the optimization to run, specified in seconds as a scalar number. The
optimization runs until it reaches the time specified, an ideal solution, or another stopping criteria.
Example: opt.MaxTime = 1000;
Data Types: double

Patience — Maximum number of iterations where no new best solution is found
10 (default) | scalar integer

Maximum number of iterations where no new best solution is found, specified as a scalar integer. The
optimization continues as long as the algorithm continues to find new best solutions.
Example: opt.Patience = 15;
Data Types: double

5 Classes

5-70

Verbosity — Level of information displayed at the command line during the optimization
'Moderate' (default) | 'High' | 'Silent'

The level of information displayed at the command line during the optimization process, specified as
either 'High', 'Moderate', or 'Silent'.

• 'Silent' - Nothing is displayed at the command line until the optimization process is finished
• 'Moderate' - Information is displayed at each major step of the optimization process, including

when the process is in the preprocessing, modeling, and optimization phases.
• 'High' - Information is displayed at the command line at each iteration of the optimization

process, including whether a new best solution was found, and the cost of the solution.

Example: opt.Verbosity = 'High';
Data Types: char | string

AllowableWordLengths — Word lengths that can be used in your optimized system under
design
[2:128] (default) | scalar integer | vector of integers

Specify the word lengths that can be used in your optimized system under design. Use this property
to target the neighborhood search of the optimization process. The final result of the optimization
uses word lengths in the intersection of the AllowableWordLengths and word lengths compatible
with hardware constraints specified in the Hardware Implementation pane of your model.
Example: opt.AllowableWordLengths = [8:11,16,32];
Data Types: double

ObjectiveFunction — Objective function to use during optimization search
'BitWidthSum' (default) | 'OperatorCount'

Objective function to use during optimization search, specified as one of these values:

• 'BitWidthSum' — Minimize total bit width sum.
• 'OperatorCount' — Minimize estimated count of operators in generated C code.

This option may result in a lower program memory size for C code generated from Simulink
models. The 'OperatorCount' objective function is not suitable for FPGA or ASIC targets.

Note To use 'OperatorCount' as the objective function during optimization, the model must be
ready for code generation. For more information about determining code generation readiness,
see “Check Model and Configuration for Code Generation” (Embedded Coder).

Data Types: char

UseParallel — Whether to run iterations in parallel
false (default) | true

Whether to run iterations of the optimization in parallel, specified as a logical. Running the iterations
in parallel requires a Parallel Computing Toolbox license. If you do not have a Parallel Computing
Toolbox license, or if you specify false, the iterations run in serial.
Data Types: logical

 fxpOptimizationOptions class

5-71

AdvancedOptions — Additional options for optimization
struct

Additional optimization options. AdvancedOptions is a struct containing four additional properties
that can affect the optimization.

Property Description
PerformNeighborhoodSearch • 1 (default) – Perform a neighborhood search

for the optimized solution.
• 0 – Do not perform a neighborhood search.

Selecting this option can increase the speed of
the optimization process, but also increases
the chances of finding a less ideal solution.

EnforceLooseCoupling Some blocks have a parameter that forces inputs
to share a data type, or forces the output to share
the same data type as the input.

• 1 (default) – Allow the optimizer to relax this
restriction on all blocks in the system under
design. Relaxing this restriction enables the
optimizer to provide better fitting data types.

• 0 – Do not allow the optimizer to relax this
restriction on blocks in the system under
design.

UseDerivedRangeAnalysis • 0 (default) – The optimizer does not consider
ranges derived from design ranges in the
model when assessing a solution.

• 1 – The optimizer considers both observed
simulation ranges and ranges derived from
design ranges in the model when assessing a
solution.

Depending on the model configuration, derived
range analysis may take longer than simulation of
the model.

SimulationScenarios Define additional simulation scenarios to consider
during optimization using a
Simulink.SimulationInput object. For an
example, see “Optimize Data Types Using
Multiple Simulation Scenarios”.

SafetyMargin Enter a safety margin, specified as a positive
scalar value indicating the percentage increase in
the bounds of the collected range. The safety
margin is applied to the union of all collected
ranges, including simulation ranges, derived
ranges, and design ranges.

5 Classes

5-72

Property Description
DataTypeOverride Override data types specified in the model when

simulating during the range collection phase of
optimization.

• 'Off' (default) – Do not override data types
• 'Single' – Override data types with singles
• 'Double' – Override data types with doubles

HandleUnsupported Some blocks are not supported for fixed-point
conversion. For more information, see “Blocks
That Do Not Support Fixed-Point Data Types”.

• 'Isolate' (default) – Isolate unsupported
blocks with Data Type Conversion blocks.
Isolated blocks are ignored by the optimizer.

• 'Error' – Stop optimization and report an
error when the system contains blocks that
are not supported for fixed-point conversion.

PerformSlopeBiasCancellation • 0 (default) – Do not propagate slope-bias data
types.

• 1 – Propagate slope-bias data types from
outside the system under design. Slopes and
biases are chosen to reduce the complexity of
generated code.

Methods

addSpecification Specify known data types in a system
addTolerance Specify numeric tolerance for optimized system
showSpecifications Show specifications for a system
showTolerances Show tolerances specified for a system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Create an fxpOptimizationOptions object with default values

Create an fxpOptimizationObject with default property values.

options = fxpOptimizationOptions();

Edit the properties after creation using dot syntax.

options.Patience = 15;
options.AllowableWordLengths = [8,16,32]

 fxpOptimizationOptions class

5-73

options =
 fxpOptimizationOptions with properties:

 MaxIterations: 50
 MaxTime: 600
 Patience: 15
 Verbosity: High
 AllowableWordLengths: [8 16 32]
 ObjectiveFunction: BitWidthSum
 UseParallel: 0

 Advanced Options
 AdvancedOptions: [1x1 struct]

See Also
Classes
OptimizationResult | OptimizationSolution

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

5 Classes

5-74

OptimizationResult class

Result after optimizing fixed-point system

Description
An OptimizationResult object contains the results after optimizing a fixed-point system. If the
optimization process succeeds in finding a new fixed-point implementation, you can use this object to
explore the different implementations that met the specified tolerances found during the process. Use
the explore method to open the Simulation Data Inspector and view the behavior of the optimized
system.

Construction
result = fxpopt(model, sud, options) optimizes the data types in the system specified by
sud in the model, model, with additional options specified in the fxpOptimizationOptions object,
options.

Input Arguments

model — Model containing system under design
character vector

Name of the model containing the system that you want to optimize.
Data Types: char

sud — System whose data types you want to optimize
character vector

System whose data types you want to optimize, specified as a character vector containing the path to
the system.
Data Types: char

options — Additional optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying additional options to use during the data type
optimization process.

Properties
FinalOutcome — Message specifying whether a new optimal solution was found
character vector

Message specifying whether the optimization process found a new optimal solution, returned as a
character vector.
Data Types: char

 OptimizationResult class

5-75

OptimizationOptions — fxpOptimizationOptions object associated with the result
fxpOptimizationOptions object

The fxpOptimizationOptions object used as an input to the fxpopt function used to generate the
OptimizationResult.

Solutions — Vector of OptimizationSolution objects
OptimizationSolution object | vector of OptimizationSolution objects

A vector of OptimizationSolution objects found during the optimization process. If the
optimization finds a feasible solution, the vector is sorted by cost, with the lowest cost (most optimal)
solution as the first element of the vector. If the optimization does not find a feasible solution, the
vector is sorted by maximum difference from the original design.

Methods
explore Explore fixed-point implementations found during optimization process
revert Revert system data types and settings changed during optimization to

original state
openSimulationManager Inspect simulations run during optimization in Simulation Manager

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
Classes
OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

5 Classes

5-76

OptimizationSolution class
Optimized fixed-point implementation of system

Description
An OptimizationSolution object is a fixed-point implementation of a system whose data types
were optimized using the fxpopt function.

Construction
solution = explore(result) opens the Simulation Data Inspector. If the optimization found a
solution, it returns the OptimizationSolution object with the lowest cost out of the vector of
OptimizationSolution objects contained in the OptimizationResult object, result. If the
optimization did not find a solution, it returns the OptimizationSolution object with the smallest
MaxDifference.

You can also access a OptimizationSolution object by indexing the Solutions property of an
OptimizationResult object. For example, to access the solution with the second lowest cost
contained in the OptimizationResult object, result, enter

solution = result.Solutions(2)

Input Arguments

result — OptimizationResult containing the solution
OptimizationResult object

The Solutions property of the OptimizationResult object is a vector of
OptimizationSolution objects found during the optimization process. If the optimization found a
feasible solution, the vector is sorted by cost, with the lowest cost (most optimal) solution as the first
element of the vector. If the optimization did not find a feasible solution, the vector is sorted by
MaxDifference, with the solution with the smallest MaxDifference as the first element.

Properties
Cost — Sum of word lengths used in the system under design
scalar integer

Sum of all word lengths used in the solution in the system under design. The most optimal solution is
the solution with the smallest cost.
Data Types: double

Pass — Whether the solution meets specified criteria
1 | 0

Whether the solution meets the criteria specified by the associated fxpOptimizationOptions
object, specified as a logical.
Data Types: logical

 OptimizationSolution class

5-77

MaxDifference — Maximum absolute difference between baseline solution run
scalar

The maximum absolute difference between the baseline the solution.
Data Types: double

RunID — Run identifier
scalar integer

Unique numerical identification for the run used by the Simulation Data Inspector. For more
information, see “Inspect and Compare Data Programmatically”.
Data Types: double

RunName — Name of the run
character vector

Name of the run in Simulation Data Inspector.
Data Types: char

Methods
contents Get summary of changes made during data type optimization

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
Classes
OptimizationResult | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

5 Classes

5-78

Methods

6

isHeterogeneous
Class: coder.CellType
Package: coder

Determine whether cell array type represents a heterogeneous cell array

Syntax
tf = isHeterogeneous(t)

Description
tf = isHeterogeneous(t) returns true if the coder.CellType object t is heterogeneous.
Otherwise, it returns false.

Examples

Determine Whether Cell Array Type Is Heterogeneous

Create a coder.CellType object for a cell array whose elements have different classes.

t = coder.typeof({'a', 1})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 char
 f1: 1x1 double

Determine whether the coder.CellType object represents a heterogeneous cell array.

isHeterogeneous(t)

ans =

 1

Tips
• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the

cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The

6 Methods

6-2

makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

See Also
coder.newtype | coder.typeof

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

Introduced in R2015b

 isHeterogeneous

6-3

isHomogeneous
Class: coder.CellType
Package: coder

Determine whether cell array type represents a homogeneous cell array

Syntax
tf = isHomogeneous(t)

Description
tf = isHomogeneous(t) returns true if the coder.CellType object t represents a
homogeneous cell array. Otherwise, it returns false.

Examples

Determine Whether Cell Array Type Is Homogeneous.

Create a coder.CellType object for a cell array whose elements have the same class and size.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

Determine whether the coder.CellType object represents a homogeneous cell array.

isHomogeneous(t)

ans =

 1

Test for a Homogeneous Cell Array Type Before Executing Code

Write a function make_varsize. If the input type t is homogeneous, the function returns a variable-
size copy of t.

function c = make_varsize(t, n)
assert(isHomogeneous(t));
c = coder.typeof(t, [n n], [1 1]);
end

Create a heterogeneous type tc.

tc = coder.typeof({'a', 1});

6 Methods

6-4

Pass tc to make_varsize.

tc1 = make_varsize(tc, 5)

The assertion fails because tc is heterogeneous.

Create a homogeneous type tc.

tc = coder.typeof({1 2 3});

Pass tc to make_varsize.

tc1 = make_varsize(tc, 5)

tc1 =

coder.CellType
 :5x:5 homogeneous cell
 base: 1x1 double

Tips
• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the

cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods. The
makeHomogeneous method makes a homogeneous copy of a type. The makeHeterogeneous
method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification
as homogeneous and heterogeneous, respectively. You cannot later use one of these methods to
create a copy that has a different classification.

See Also
coder.newtype | coder.typeof

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

Introduced in R2015b

 isHomogeneous

6-5

makeHeterogeneous
Class: coder.CellType
Package: coder

Make a heterogeneous copy of a cell array type

Syntax
newt = makeHeterogeneous(t)
t = makeHeterogeneous(t)

Description
newt = makeHeterogeneous(t) creates a coder.CellType object for a heterogeneous cell array
from the coder.CellType object t. t cannot represent a variable-size cell array.

The classification as heterogeneous is permanent. You cannot later create a homogeneous
coder.CellType object from newt.

t = makeHeterogeneous(t) creates a heterogeneous coder.CellType object from t and
replaces t with the new object.

Examples

Replace a Homogeneous Cell Array Type with a Heterogeneous Cell Array Type

Create a cell array type t whose elements have the same class and size.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

The cell array type is homogeneous.

Replace t with a cell array type for a heterogeneous cell array.

t = makeHeterogeneous(t)

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 doublee

6 Methods

6-6

The cell array type is heterogeneous. The elements have the size and class of the original
homogeneous cell array type.

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods.

See Also
coder.newtype | coder.typeof

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

Introduced in R2015b

 makeHeterogeneous

6-7

makeHomogeneous
Class: coder.CellType
Package: coder

Create a homogeneous copy of a cell array type

Syntax
newt = makeHomogeneous(t)
t = makeHomogeneous(t)

Description
newt = makeHomogeneous(t) creates a coder.CellType object for a homogeneous cell array
newt from the coder.CellType object t.

To create newt, the makeHomogeneous method must determine a size and class that represent all
elements of t:

• If the elements of t have the same class, but different sizes, the elements of newt are variable size
with upper bounds that accommodate the elements of t.

• If the elements of t have different classes, for example, char and double, the
makeHomogeneous method cannot create a coder.CellType object for a homogeneous cell
array.

The classification as homogeneous is permanent. You cannot later create a heterogeneous
coder.CellType object from newt.

t = makeHomogeneous(t) creates a homogeneous coder.CellType object from t and replaces t
with the new object.

Examples

Replace a Heterogeneous Cell Array Type with a Homogeneous Cell Array Type

Create a cell array type t whose elements have the same class, but different sizes.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

The cell array type is heterogeneous.

Replace t with a cell array type for a homogeneous cell array.

6 Methods

6-8

t = makeHomogeneous(t)

t =

coder.CellType
 1×2 locked homogeneous cell
 base: 1×:2 double

The new cell array type is homogeneous.

Tips
• In the display of a coder.CellType object, the terms locked heterogeneous or locked

homogeneous indicate that the classification as homogeneous or heterogeneous is permanent.
You cannot later change the classification by using the makeHomogeneous or
makeHeterogeneous methods.

• coder.typeof determines whether the cell array type is homogeneous or heterogeneous. If the
cell array elements have the same class and size, coder.typeof returns a homogeneous cell
array type. If the elements have different classes, coder.typeof returns a heterogeneous cell
array type. For some cell arrays, the classification as homogeneous or heterogeneous is
ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type. The first
element is double and the second element is 1x2 double. The type can also be a 1x3 homogeneous
type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want
a different classification, use the makeHomogeneous or makeHeterogeneous methods.

See Also
coder.newtype | coder.typeof

Topics
“Code Generation for Cell Arrays”
“Specify Cell Array Inputs at the Command Line”

Introduced in R2015b

 makeHomogeneous

6-9

addApproximation
Replace floating-point function with lookup table during fixed-point conversion

Syntax
addApproximation(approximationObject)

Description
addApproximation(approximationObject) specifies a lookup table replacement in a
coder.FixptConfig object. During floating-point to fixed-point conversion, the conversion process
generates a lookup table approximation for the function specified in the approximationObject.

Input Arguments
approximationObject — Function replacement configuration object
coder.mathfcngenerator.LookupTable configuration object

Function replacement configuration object that specifies how to create an approximation for a
MATLAB function. Use the coder.FixptConfig configuration object addApproximation method
to associate this configuration object with a coder.FixptConfig object. Then use the fiaccel
function -float2fixed option with coder.FixptConfig to convert floating-point MATLAB code to
fixed-point MATLAB code.

Examples

Replace log function with an optimized lookup table replacement

Create a function replacement configuration object that specifies to replace the log function with an
optimized lookup table.

logAppx = coder.approximation('Function','log','OptimizeLUTSize',...
 true,'InputRange',[0.1,1000],'InterpolationDegree',1,...
 'ErrorThreshold',1e-3,...
 'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Create a fixed-point configuration object and associate the function replacement configuration object
with it.

fixptcfg = coder.config('fixpt');
fixptcfg.addApproximation(logAppx);

You can now generate fixed-point code using the fiaccel function.

See Also
coder.FixptConfig | fiaccel

Topics
“Replace the exp Function with a Lookup Table”

6 Methods

6-10

“Replace a Custom Function with a Lookup Table”
“Replacing Functions Using Lookup Table Approximations”

 addApproximation

6-11

addDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Add design range specification to parameter

Syntax
addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

Description
addDesignRangeSpecification(fcnName,paramName,designMin, designMax) specifies the
minimum and maximum values allowed for the parameter, paramName, in function, fcnName. The
fixed-point conversion process uses this design range information to derive ranges for downstream
variables in the code.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples
Add a Design Range Specification
% Set up the fixed-point configuration object
cfg = coder.config('fixpt');

6 Methods

6-12

cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;

% Derive ranges and generate fixed-point code
fiaccel -float2fixed cfg dti

See Also
clearDesignRangeSpecifications | coder.FixptConfig | fiaccel |
getDesignRangeSpecification | hasDesignRangeSpecification |
removeDesignRangeSpecification

 addDesignRangeSpecification

6-13

addFunctionReplacement
Class: coder.FixptConfig
Package: coder

Replace floating-point function with fixed-point function during fixed-point conversion

Syntax
addFunctionReplacement(floatFn,fixedFn)

Description
addFunctionReplacement(floatFn,fixedFn) specifies a function replacement in a
coder.FixptConfig object. During floating-point to fixed-point conversion, the conversion process
replaces the specified floating-point function with the specified fixed-point function. The fixed-point
function must be in the same folder as the floating-point function or on the MATLAB path.

Input Arguments
floatFn — Name of floating-point function
'' (default) | string

Name of floating-point function, specified as a string.

fixedFn — Name of fixed-point function
'' (default) | string

Name of fixed-point function, specified as a string.

Examples

Specify Function Replacement in Fixed-Point Conversion Configuration Object

Suppose that:

• The function myfunc calls a local function myadd.
• The test function mytest calls myfunc.
• You want to replace calls to myadd with the fixed-point function fi_myadd.

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is mytest.

fixptcfg.TestBenchName = 'mytest';

Specify that the floating-point function, myadd, should be replaced with the fixed-point function,
fi_myadd.

6 Methods

6-14

fixptcfg.addFunctionReplacement('myadd', 'fi_myadd');

Convert the floating-point MATLAB function, myfunc, to fixed-point.

fiaccel -float2fixed fixptcfg myfunc

fiaccel replaces myadd with fi_myadd during floating-point to fixed-point conversion.

See Also
coder.FixptConfig | fiaccel

 addFunctionReplacement

6-15

addFunctionReplacement
Class: coder.SingleConfig
Package: coder

Replace double-precision function with single-precision function during single-precision conversion

Syntax
addFunctionReplacement(doubleFn,singleFn)

Description
addFunctionReplacement(doubleFn,singleFn) specifies a function replacement in a
coder.SingleConfig object. During double-precision to single-precision conversion, the conversion
process replaces the specified double-precision function with the specified single-precision function.
The single-precision function must be in the same folder as the double-precision function or on the
MATLAB path. It is a best practice to provide unique names to local functions that a replacement
function calls. If a replacement function calls a local function, do not give that local function the same
name as a local function in a different replacement function file.

Input Arguments
doubleFn — Name of double-precision function
'' (default) | string

Name of double-precision function, specified as a string.

singleFn — Name of single-precision function
'' (default) | string

Name of single-precision function, specified as a string.

Examples

Specify Function Replacement in Single-Precision Conversion Configuration Object

Suppose that:

• The function myfunc calls a local function myadd.
• The test function mytest calls myfunc.
• You want to replace calls to myadd with the single-precision function single_myadd.

Create a coder.SingleConfig object, scfg, with default settings.

scfg = coder.config('single');

Set the test file name. In this example, the test file function name is mytest.

scfg.TestBenchName = 'mytest';

6 Methods

6-16

Specify that you want to replace the double-precision function, myadd, with the single-precision
function, single_myadd.

scfg.addFunctionReplacement('myadd', 'single_myadd');

Convert the double-precision MATLAB function, myfunc to a single-precision MATLAB function.

convertToSingle -config scfg myfunc

The double-precision to single-precision conversion replaces instances of myadd with
single_myadd.

See Also

Introduced in R2015b

 addFunctionReplacement

6-17

clearDesignRangeSpecifications
Class: coder.FixptConfig
Package: coder

Clear all design range specifications

Syntax
clearDesignRangeSpecifications()

Description
clearDesignRangeSpecifications() clears all design range specifications.

Examples
Clear a Design Range Specification

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now remove the design range
cfg.clearDesignRangeSpecifications()
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also
addDesignRangeSpecification | coder.FixptConfig | fiaccel |
getDesignRangeSpecification | hasDesignRangeSpecification |
removeDesignRangeSpecification

6 Methods

6-18

getDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Get design range specifications for parameter

Syntax
[designMin, designMax] = getDesignRangeSpecification(fcnName,paramName)

Description
[designMin, designMax] = getDesignRangeSpecification(fcnName,paramName) gets the
minimum and maximum values specified for the parameter, paramName, in function, fcnName.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Output Arguments
designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

 getDesignRangeSpecification

6-19

Examples
Get Design Range Specifications

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Get the design range for the 'dti' function parameter 'u_in'
[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')

designMin =

 -1

designMax =

 1

See Also
addDesignRangeSpecification | clearDesignRangeSpecifications | coder.FixptConfig
| fiaccel | hasDesignRangeSpecification | removeDesignRangeSpecification

6 Methods

6-20

hasDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Determine whether parameter has design range

Syntax
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

Description
hasDesignRange = hasDesignRangeSpecification(fcnName,paramName) returns true if the
parameter, param_name in function, fcn, has a design range specified.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Example: ‘dti’
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Example: ‘dti’
Data Types: char

Output Arguments
hasDesignRange — Parameter has design range
true | false

Parameter has design range, returned as a boolean.
Data Types: logical

Examples
Verify That a Parameter Has a Design Range Specification

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';

 hasDesignRangeSpecification

6-21

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

hasDesignRanges =

 1

See Also
addDesignRangeSpecification | clearDesignRangeSpecifications | coder.FixptConfig
| fiaccel | getDesignRangeSpecification | removeDesignRangeSpecification

6 Methods

6-22

removeDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Remove design range specification from parameter

Syntax
removeDesignRangeSpecification(fcnName,paramName)

Description
removeDesignRangeSpecification(fcnName,paramName) removes the design range
information specified for parameter, paramName, in function, fcnName.

Input Arguments
fcnName — Name of function
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Examples
Remove Design Range Specifications

% Set up the fixed-point configuration object
cfg = coder.config('fixpt');
cfg.TestBenchName = 'dti_test';
cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)
cfg.ComputeDerivedRanges = true;
% Verify that the 'dti' function parameter 'u_in' has design range
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')
% Now clear the design ranges and verify that
% hasDesignRangeSpecification returns false
cfg.removeDesignRangeSpecification('dti', 'u_in')
hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

See Also
addDesignRangeSpecification | clearDesignRangeSpecifications | coder.FixptConfig
| fiaccel | getDesignRangeSpecification | hasDesignRangeSpecification

 removeDesignRangeSpecification

6-23

applyDataTypes
Package: DataTypeWorkflow

Apply proposed data types to model

Syntax
applyDataTypes(converter,RunName)

Description
applyDataTypes(converter,RunName) applies the proposed data types for the specified run,
RunName, to the system specified by the converter object.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run to apply data types to
character vector

Name of run to apply data types to, specified as a character vector.
Example: applyDataTypes(converter,'Run1')
Data Types: char

Alternatives
The applyDataTypes object function provides functionality similar to the Fixed-Point Tool button

Apply Data Types . For more information, see Fixed-Point Tool.

See Also
DataTypeWorkflow.ProposalSettings | proposeDataTypes

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

6 Methods

6-24

applySettingsFromRun
Package: DataTypeWorkflow

Apply system settings used in previous run to model

Syntax
applySettingsFromRun(converter,RunName)

Description
applySettingsFromRun(converter,RunName) applies the data type override and
instrumentation settings used in a previous run, RunName, to the model specified in the converter
object.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of run from which to apply settings, specified as a character vector.
Example: applySettingsFromRun(converter,'Run1')
Data Types: char

See Also
DataTypeWorkflow.Converter | applySettingsFromShortcut

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

 applySettingsFromRun

6-25

applySettingsFromShortcut
Package: DataTypeWorkflow

Apply settings from shortcut to model

Syntax
applySettingsFromShortcut(converter,shortcutName)

Description
applySettingsFromShortcut(converter,shortcutName) applies settings from the specified
system shortcut, shortcutName, to a converter object.

Examples

Configure Model for Conversion Using a Shortcut

This example shows how to configure a model for fixed-point conversion using a shortcut.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Configure the model for conversion by using a shortcut. Find the shortcuts that are available for the
system by accessing the ShortcutsForSelectedSystem property of the converter object.

shortcuts = converter.ShortcutsForSelectedSystem

shortcuts =

6 Methods

6-26

 6x1 cell array

 {'Range collection using double override' }
 {'Range collection with specified data types' }
 {'Range collection using single override' }
 {'Disable range collection' }
 {'Remove overrides and disable range collection'}
 {'Range collection using scaled double override'}

To collect idealized ranges for the system, use the 'Range collection using double
override' shortcut to override the system with double-precision data types and enable
instrumentation.

applySettingsFromShortcut(converter,shortcuts{1})

This shortcut also updates the current run name property of the converter object.

converter.CurrentRunName

ans =

 'Ranges(Double)'

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

shortcutName — Name of shortcut
character vector

Name of the shortcut that specifies which settings to use, specified as a character vector.
Example: applySettingsFromShortcut(converter,'Range collection using double
override')

Data Types: char

See Also
DataTypeWorkflow.Converter | applySettingsFromRun

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

 applySettingsFromShortcut

6-27

deriveMinMax
Package: DataTypeWorkflow

Derive range information for model

Syntax
deriveMinMax(converter)

Description
deriveMinMax(converter) derives the minimum and maximum values for each block in the
system specified by the DataTypeWorkflow.Converter object based on design minimum and
maximum values.

Input Arguments
converter — Converter object for system under design
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

Tips
If any issues come up during the derivation, they can be queried using the proposalIssues object
function.

Alternatives

The deriveMinMax object function is equivalent to the Collect Ranges button () with Range
Collection Mode set to Derived Ranges in the Fixed-Point Tool. For more information, see Fixed-
Point Tool.

See Also
DataTypeWorkflow.Converter | proposalIssues | simulateSystem

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

6 Methods

6-28

proposeDataTypes
Package: DataTypeWorkflow

Propose data types for system

Syntax
proposeDataTypes(converter,RunName,propSettings)

Description
proposeDataTypes(converter,RunName,propSettings) proposes data types for the system
specified by the DataTypeWorkflow.Converter object, converter, based on the range results
stored in RunName and the settings specified in propSettings.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object, specified as a DataTypeWorkflow.Converter object, for the system under
design.

RunName — Name of run
character vector

Name of run to propose data types for, specified as a character vector.
Data Types: char

propSettings — Proposed data type settings
DataTypeWorkflow.ProposalSettings object

Proposed data type settings, specified as a DataTypeWorkflow.ProposalSettings object. Use
this object to specify proposal settings such as the default data type for all floating point signals.
Data Types: char

Alternatives
The proposeDataTypes object function provides functionality similar to the Fixed-Point Tool

Propose Data Types button. For more information, see Fixed-Point Tool.

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings | applyDataTypes

Topics
“Convert a Model to Fixed Point Using the Command Line”

 proposeDataTypes

6-29

Introduced in R2014b

6 Methods

6-30

results
Package: DataTypeWorkflow

Find results for selected system in converter object

Syntax
results = results(converter,RunName)
results = results(converter,RunName,filterFunc)

Description
results = results(converter,RunName) returns all results in the specified run, for the model
specified by the DataTypeWorkflow.Converter object, converter.

results = results(converter,RunName,filterFunc) returns the results in the specified run
that match the criteria specified by filterFunc.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of the run to query, specified as a character vector.
Data Types: char

filterFunc — Function to use to filter results
function handle

Function to use to filter results, specified as a function handle with a DataTypeWorkflow.Result
object as its input.
Data Types: function_handle

Output Arguments
results — Filtered results
array of Result objects

Filtered results, returned as an array of DataTypeWorkflow.Result objects.

 results

6-31

Alternatives
The results object function offers a command-line approach to using the Fixed-Point Tool. For more
information, see Fixed-Point Tool.

See Also
DataTypeWorkflow.Converter | proposalIssues | saturationOverflows | wrapOverflows

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

6 Methods

6-32

proposalIssues
Package: DataTypeWorkflow

Get results which have comments associated with them

Syntax
results = proposalIssues(converter,RunName)

Description
results = proposalIssues(converter,RunName) returns all results in RunName for the model
specified by a DataTypeWorkflow.Converter object, converter, that have associated comments.
The comments field of the returned results provides information related to any issues found.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for system under design, specified as a DataTypeWorkflow.Converter object.

RunName — Name of run
character vector

Name of the run to look for comments in, specified as a character vector.
Data Types: char

Output Arguments
results — Results that have associated comments
DataTypeWorkflow.Result object

Results that have associated comments, returned as a DataTypeWorkflow.Result object, for all
signals in RunName.

Alternatives
The DataTypeWorkflow.Converter.proposalIssues object function offers a command-line
approach to using the Fixed-Point Tool. See Fixed-Point Tool for more information.

See Also
DataTypeWorkflow.Converter | results | saturationOverflows | wrapOverflows

Topics
“Convert a Model to Fixed Point Using the Command Line”

 proposalIssues

6-33

Introduced in R2014b

6 Methods

6-34

saturationOverflows
Package: DataTypeWorkflow

Get results where saturation occurred

Syntax
results = saturationOverflows(converter,RunName)

Description
results = saturationOverflows(converter,RunName) returns all results in RunName, for the
model specified by the DataTypeWorkflow.Converter object, converter, that saturated during
simulation.

Examples

Get Saturation Results for Specified Run

This example shows how to get saturation results for the specified run of a
DataTypeWorkflow.Converter object.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Simulate the model and store the results in a run titled InitialRun.

converter.CurrentRunName = 'InitialRun';
simulateSystem(converter);

 saturationOverflows

6-35

Determine if there were any overflows in the run.

saturations = saturationOverflows(converter,'InitialRun')

saturations =

 Result with properties:

 ResultName: 'fxpdemo_feedback/Controller/Up Cast'
 SpecifiedDataType: 'fixdt(1,16,14)'
 CompiledDataType: 'fixdt(1,16,14)'
 ProposedDataType: ''
 Wraps: []
 Saturations: 23
 WholeNumber: 0
 SimMin: -2
 SimMax: 1.9999
 DerivedMin: []
 DerivedMax: []
 RunName: 'InitialRun'
 Comments: {'An output data type cannot be specified on this result. The output type is the same as the input type.'}

A saturation occurs in the Up Cast block of the Controller subsystem during the simulation. There are
no wrapping overflows.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

RunName — Name of run
character vector

Name of run to look for saturations in, specified as a character vector.
Example: saturations = saturationOverflows(converter,'Run 1')
Data Types: char

Output Arguments
results — Results that saturated
DataTypeWorkflow.Result object

Results that saturated, returned as a DataTypeWorkflow.Result object.

See Also
DataTypeWorkflow.Converter | proposalIssues | results | wrapOverflows

Topics
“Convert a Model to Fixed Point Using the Command Line”

6 Methods

6-36

Introduced in R2014b

 saturationOverflows

6-37

simulateSystem
Package: DataTypeWorkflow

Simulate system specified by converter object

Syntax
simOut = simulateSystem(converter)
simOut = simulateSystem(converter,Name,Value)
simOut = simulateSystem(converter,simIn)
simOut = simulateSystem(converter,ParameterStruct)
simOut = simulateSystem(converter,ConfigSet)

Description
simOut = simulateSystem(converter) simulates the system specified by the
DataTypeWorkflow.Converter object, converter.

simOut = simulateSystem(converter,Name,Value) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using additional options specified by one or
more Name,Value pair arguments. This function accepts the same Name,Value pairs as the sim
function.

simOut = simulateSystem(converter,simIn) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using the inputs specified in the
Simulink.SimulationInput object simIn.

simOut = simulateSystem(converter,ParameterStruct) simulates the system specified by
the DataTypeWorkflow.Converter object, converter, using the parameter values specified in
the structure, ParameterStruct.

simOut = simulateSystem(converter,ConfigSet) simulates the system specified by the
DataTypeWorkflow.Converter object, converter, using the configuration settings specified in
the model configuration set, ConfigSet.

Examples

Simulate a DataTypeWorkflow.Converter Object's System

This example shows how to simulate the converter object's system.

Open the fxpdemo_feedback model.

open_system('fxpdemo_feedback');

6 Methods

6-38

Create a DataTypeWorkflow.Converter object for the Controller subsystem.

converter = DataTypeWorkflow.Converter('fxpdemo_feedback/Controller');

Simulate the model.

simulateSystem(converter);

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object for the system under design, specified as a DataTypeWorkflow.Converter
object.

simIn — Simulation input for the system
Simulink.SimulationInput object | array of Simulink.SimulationInput objects

Simulation input for the system, specified as a Simulink.SimulationInput object or an array of
Simulink.SimulationInput objects.

When you use a SimulationInput object as an input to the simulateSystem function, you can
also specify the following Name,Value pair arguments.

Parameter Values
ShowSimulationManager • 'on' - Opens the Simulation Manager.

• 'off' (default) - Does not open the
Simulation Manager.

ShowProgress • 'on' - View the progress of the simulation in
the command window.

• 'off' (default) - The progress of the
simulation does not display in the command
window.

ParameterStruct — Parameter settings
structure

 simulateSystem

6-39

Names of the configuration parameters for the simulation, specified as a structure. The
corresponding values are the parameter values.
Data Types: struct

ConfigSet — Configuration set
Simulink.ConfigSet object

Configuration set, specified as a Simulink.ConfigSet object, that contains the values of the model
parameters.

Output Arguments
simOut — Simulation output
Simulink.SimulationOutput object

Simulation output, returned as a Simulink.SimulationOutput object. The returned object
includes the simulation outputs: logged time, states, and signals.

Tips
• To name your simulation run, before simulation, change the CurrentRunName property of the

DataTypeWorkflow.Converter object.
• simulateSystem provides functionality similar to the sim command, except that

simulateSystem preserves the model-wide data type override and instrumentation settings of
each run.

Note

• The SimulationMode property must be set to normal. The Fixed-Point Designer software does
collect simulation ranges in Rapid accelerator or Hot restart modes.

• The StopTime property cannot be set to inf.
• The SrcWorkspace parameter must be set to either base or current.

See Also
DataTypeWorkflow.Converter | sim

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

6 Methods

6-40

verify
Package: DataTypeWorkflow

Compare behavior of baseline and autoscaled systems

Syntax
verificationResult = verify(converter,baselineRun,verificationRunName)

Description
verificationResult = verify(converter,baselineRun,verificationRunName) simulates
the system specified by the DataTypeWorkflow.Converter object, converter, and stores the run
information in a new run, verificationRun. It returns a
DataTypeWorkflow.VerificationResult object that compares the baseline and verification
runs.

Input Arguments
converter — Converter object for system to verify
DataTypeWorkflow.Converter object

Converter object for system to verify, specified as a DataTypeWorkflow.Converter object. The
DataTypeWorkflow.Converter object contains instrumentation data from the baseline run, as well
as the tolerances specified on the associated DataTypeWorkflow.ProposalSettings object. The
software determines if the behavior of the verification run is acceptable using the tolerances specified
on the ProposalSettings object.

baselineRun — Baseline run to compare against
character vector

Baseline run to compare against, specified as a character vector.
Data Types: char | string

verificationRunName — Name of the verification run to create
character vector

Name of the verification run to create during the embedded simulation, specified as a character
vector.
Data Types: char | string

Output Arguments
verificationResult — Comparison of the baseline run and the verification run
DataTypeWorkflow.VerificationResult object

Comparison of the baseline run and the verification run, returned as a
DataTypeWorkflow.VerificationResult object.

 verify

6-41

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2019a

6 Methods

6-42

wrapOverflows
Package: DataTypeWorkflow

Get results where wrapping occurred

Syntax
results = wrapOverflows(converter,RunName)

Description
results = wrapOverflows(converter,RunName) returns all results in RunName, for the system
specified by the DataTypeWorkflow.Converter object, converter, that wrapped during
simulation.

Input Arguments
converter — Converter object
DataTypeWorkflow.Converter object

Converter object, specified as a DataTypeWorkflow.Converter object, for the system under
design.

RunName — Name of run
character vector

Name of run in which to look for wrap overflows, specified as a character vector.
Example: results = wrapOverflows(converter,'Run3')
Data Types: char

Output Arguments
results — Signals that wrapped during the specified run
DataTypeWorkflow.Result object

Signals that wrapped during the specified run, returned as a DataTypeWorkflow.Result object.

See Also
proposalIssues | results | saturationOverflows

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2014b

 wrapOverflows

6-43

addTolerance
Package: DataTypeWorkflow

Specify numeric tolerance for converted system

Syntax
addTolerance(proposalSettings,block_path,port_index,tolerance_type,
tolerance_value)

Description
addTolerance(proposalSettings,block_path,port_index,tolerance_type,
tolerance_value) adds numeric tolerance data to a DataTypeWorkflow.ProposalSettings
object for the output signal specified by block_path and port_index, with the tolerance type
specified by tolerance_type and value specified by tolerance_value.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

6 Methods

6-44

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

Add a relative tolerance of 1% to the same signal.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. You add tolerance specifications to the DataTypeWorkflow.ProposalSettings object.

block_path — Path to block for which to add tolerance
character vector

Path to the block for which to add a tolerance to, specified as a character vector.
Data Types: char | string

port_index — Index of output port of block
scalar integer

Index of the output port of the blocks, specified as a scalar integer.
Data Types: double

tolerance_type — Type of tolerance
'AbsTol' | 'RelTol' | 'TimeTol'

Type of tolerance, specified as one of these values:

• 'AbsTol' – Absolute tolerance
• 'RelTol' – Relative tolerance
• 'TimeTol' – Time tolerance

 addTolerance

6-45

Data Types: char

tolerance_value — Acceptable difference between original output and output of new
design
scalar double

Acceptable difference between the original output and the output of the new design, specified as a
scalar double.

If tolerance_type is set to 'AbsTol', then tolerance_value represents the absolute value of
the maximum acceptable difference between the original output and the output of the new design.

If tolerance_type is set to 'RelTol', then tolerance_value represents the maximum relative
difference, specified as a percentage, between the original output and the output of the new design.
For example, a value of 1e-2 indicates a maximum difference of one percent between the original
output and the output of the new design.

If tolerance_type is set to 'TimeTol', then tolerance_value defines a time interval, in
seconds, in which the maximum and minimum values define the upper and lower values to compare
against. For more information, see “How the Simulation Data Inspector Compares Data”.
Data Types: double

See Also
DataTypeWorkflow.ProposalSettings | clearTolerances | showTolerances

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

Introduced in R2019a

6 Methods

6-46

clearTolerances
Package: DataTypeWorkflow

Clear all tolerances specified by a DataTypeWorkflow.ProposalSettings object

Syntax
clearTolerances(proposalSettings)

Description
clearTolerances(proposalSettings) clears the absolute, relative, and time tolerances of a
proposalSettings object.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

Add a relative tolerance of 1% to the same signal.

 clearTolerances

6-47

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. A DataTypeWorkflow.ProposalSettings object specifies tolerances and settings to use
during the data type proposal process.

See Also
DataTypeWorkflow.ProposalSettings | addTolerance | showTolerances

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

Introduced in R2019a

6 Methods

6-48

showTolerances
Package: DataTypeWorkflow

Show tolerances specified for a system

Syntax
showTolerances(proposalSettings)

Description
showTolerances(proposalSettings) displays the absolute, relative, and time tolerances
specified for a system specified by the proposalSettings object. If the proposalSettings object
has no tolerances specified, the showTolerances object function does not display anything.

Examples

Specify Signal Tolerances

This example shows how to apply and remove tolerances from signals in a system. In this example,
you add tolerances to a DataTypeWorkflow.proposalSettings object, and then remove all
tolerances from this object.

model = 'fxpdemo_feedback';
open_system(model);

Create a DataTypeWorkflow.ProposalSettings object.

propSettings = DataTypeWorkflow.ProposalSettings;

Add an absolute tolerance of 0.05 to the output of the Down Cast block in the Controller subsystem.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'AbsTol',5e-2);

 showTolerances

6-49

Add a relative tolerance of 1% to the same signal.

addTolerance(propSettings, 'fxpdemo_feedback/Controller/Down Cast',1,'RelTol',1e-2);

Use showTolerances to see all tolerances associated with the proposal settings object.

showTolerances(propSettings)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'AbsTol'} 0.05
 {'fxpdemo_feedback/Controller/Down Cast'} 1 {'RelTol'} 0.01

Clear the tolerances stored in the ProposalSettings object.

clearTolerances(propSettings)

Using showTolerances, verify that there are no longer any tolerances stored in the
ProposalSettings object.

showTolerances(propSettings)

Input Arguments
proposalSettings — Object that contains proposal settings
DataTypeWorkflow.ProposalSettings object

Object that contains proposal settings, specified as a DataTypeWorkflow.ProposalSettings
object. This object specifies tolerances and settings to use during the data type proposal process.

See Also
DataTypeWorkflow.ProposalSettings | addTolerance | clearTolerances

Topics
“Convert a Model to Fixed Point Using the Command Line”
“The Command-Line Interface for the Fixed-Point Tool”

Introduced in R2019a

6 Methods

6-50

convertToSingle
Package: DataTypeWorkflow

Convert a double-precision system to single precision

Syntax
ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert)

Description
ConversionReport = DataTypeWorkflow.Single.convertToSingle(systemToConvert)
converts the system specified by systemToConvert to single precision and returns a report. Data
types that are specified as Boolean, fixed point, or one of the built-in integers are not affected by
conversion.

Examples

Convert a System to Single Precision

1 Open the system to convert to single precision.

addpath(fullfile(docroot,'toolbox','fixpoint','examples'))
ex_fuel_rate_calculation

2 Use the DataTypeWorkflow.Single.convertToSingle method to convert the system from
double precision to single precision.

report = DataTypeWorkflow.Single.convertToSingle('ex_fuel_rate_calculation')

The specified system now uses single-precision data types instead of double-precision data types.
Data types in the model that were specified as Boolean, fixed-point, or one of the built-in integers
remain the same after conversion.

Input Arguments
systemToConvert — System to convert to single precision
character vector

The system to convert from double-precision to single-precision, specified as a character vector. The
system must be open before using this method.
Data Types: char

Output Arguments
ConversionReport — Report containing results from the conversion
report

Report containing results from the conversion.

 convertToSingle

6-51

Alternatives
You can also use the Single Precision Converter app to convert a system from double precision to
single precision. To open the Single Precision Converter app, in the Simulink Apps tab, select Single
Precision Converter. For more information, see “Getting Started with Single Precision Converter”.

See Also
Single Precision Converter

Topics
“Convert a System to Single Precision”
“Getting Started with Single Precision Converter”

Introduced in R2016b

6 Methods

6-52

explore
Package: DataTypeWorkflow

Explore comparison of baseline and fixed-point implementations

Syntax
explore(verificationResult)

Description
explore(verificationResult) opens the Simulation Data Inspector with the logged data for the
DataTypeWorkflow.VerificationResult object specified by verificationResult.

Input Arguments
verificationResult — Object comparing behavior of a baseline run and a verification run
DataTypeWorkflow.VerificationResult object

Object comparing the behavior of a baseline run and a verification run, specified as a
DataTypeWorkflow.VerificationResult object.

See Also
DataTypeWorkflow.Converter | DataTypeWorkflow.ProposalSettings |
DataTypeWorkflow.VerificationResult

Topics
“Convert a Model to Fixed Point Using the Command Line”

Introduced in R2019a

 explore

6-53

getNumDataPointsInfo
Package: fixed

Get information about number of data points in generated data

Syntax
datainfo = getNumDataPointsInfo(datagenerator)

Description
datainfo = getNumDataPointsInfo(datagenerator) returns information about the data
points generated by the fixed.DataGenerator object, datagenerator.

Examples

Get information about number of data points in generated data

The getNumDataPointsInfo function returns information related to the number of data points in
the data generated from a fixed.DataGenerator object.

dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 20
 Next: 21
 Min: 5
 Max: 75

The output indicates that there are currently 20 data combinations in the generated data. The
maximum number of combinations that the DataGenerator object would produce is 75.

6 Methods

6-54

Get information about number of data points for multidimensional data

When the dimension of the generated data is greater than one, it can be useful to find the next
possible size of generated data.

Create a DataGenerator object where the associated DataSpecification object specifies 2-
dimensional data.

dataspec = fixed.DataSpecification('single', 'Dimensions', 2);
datagen = fixed.DataGenerator('DataSpecifications', dataspec)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 100000

The DataGenerator object uses the default limit of 100000 data points in the generated data.

Get information about the number of data points generated.

getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 99856
 Next: 100489
 Min: 81
 Max: 130321

The current size of the generated data is 99856 points. By setting the NumDataPointsLimit
property of the DataGenerator object to the value specified in Max, you can get the maximum
possible number of data combinations.

Set the NumDataPointsLimit property of the DataGenerator object to the maximum possible
number of data points.

datagen.NumDataPointsLimit = 130321;
getNumDataPointsInfo(datagen)

ans =

 struct with fields:

 Current: 130321
 Next: 130321
 Min: 81
 Max: 130321

Input Arguments
datagenerator — Object from which you want to get information
fixed.DataGenerator object

Object from which you want to get information, specified as a fixed.DataGenerator object.

 getNumDataPointsInfo

6-55

Output Arguments
datainfo — Information about the number of data points
struct

Information about the number of data points in the data generated from a fixed.DataGenerator
object, returned as a struct with the following fields.

Field Description
Current The number of data combinations in the

generated data.
Next Next possible size of data combinations.
Min Minimum number of combinations of data

required to be in the generated data.

This number is equal to the number of boundary
values and mandatory values in the
DataSpecification objects associated with the
DataGenerator object.

Max Maximum number of combinations that could be
in the generated data.

See Also
fixed.DataGenerator | getUniqueValues | outputAllData

Introduced in R2019b

6 Methods

6-56

getUniqueValues
Package: fixed

Get unique values from fixed.DataGenerator object

Syntax
data = getUniqueValues(datagenerator)

Description
data = getUniqueValues(datagenerator) returns all unique values in the data generated by
the fixed.DataGenerator object, datagenerator.

Examples

Get unique values in data from DataGenerator object

In data generated from a fixed.DataGenerator object, there can be repeated values. Use the
getUniqueValues function to get all of the unique values in the data set.

dataspec = fixed.DataSpecification('fixdt(1,16,13)',...
 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En13'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20);
getUniqueValues(datagen)

ans =

 -1.0000
 -0.9999
 -0.4999
 -0.2500
 -0.0624
 -0.0313
 -0.0039
 -0.0021
 -0.0005
 -0.0002
 0

 getUniqueValues

6-57

 0.0010
 0.0018
 0.0078
 0.0155
 0.0157
 0.1249
 0.1251
 0.9999
 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 13

Input Arguments
datagenerator — Input fixed.DataGenerator object
fixed.DataGenerator object

Input fixed.DataGenerator object to get unique values from.

Output Arguments
data — Unique set of values in data
scalar | vector | matrix

Unique set of data generated by the input fixed.DataGenerator object, returned as a scalar,
vector, or matrix.

See Also
fixed.DataGenerator | getNumDataPointsInfo | outputAllData

Introduced in R2019b

6 Methods

6-58

outputAllData
Package: fixed

Get data from fixed.DataGenerator object

Syntax
data = outputAllData(datagenerator)
data = outputAllData(datagenerator, format)

Description
data = outputAllData(datagenerator) returns the data generated by the
fixed.DataGenerator object, datagenerator.

data = outputAllData(datagenerator, format) returns the data generated by the
fixed.DataGenerator object, datagenerator, in the format specified by format.

Examples

Get data as an array

Get the data from a fixed.DataGenerator object, returned as an array of values.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 20)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 20

Use the outputAllData function to access the data in the DataGenerator object.

data = outputAllData(datagen)

data =

 1×3 int8 row vector

 -1 0 1

The function returns the data in an array with the type specified by the fixed.DataSpecification
object.

 outputAllData

6-59

Get data as a timeseries object

Get the data from a fixed.DataGenerator object, returned as a timeseries object.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1});
datagen = fixed.DataGenerator('DataSpecifications', dataspec,...
 'NumDataPointsLimit', 2000)

datagen =

 fixed.DataGenerator with properties:

 DataSpecifications: {[1×1 fixed.DataSpecification]}
 NumDataPointsLimit: 20000

Specify the format of the output type to get a timeseries object.

data = outputAllData(datagen, 'timeseries')

 timeseries

 Common Properties:
 Name: 'unnamed'
 Time: [3x1 double]
 TimeInfo: [1x1 tsdata.timemetadata]
 Data: [3x1 int8]
 DataInfo: [1x1 tsdata.datametadata]

Input Arguments
datagenerator — Object from which you want to get data
fixed.DataGenerator object

Object from which you want to get data, specified as a fixed.DataGenerator object.

format — Format in which you want data returned
'array' (default) | 'timeseries' | 'dataset'

Format in which you want data returned, specified as either 'array', 'timeseries', or
'dataset'.

Specifying 'dataset' returns a Simulink.SimulationData.Dataset object. Specifying
'timeseries' returns a timeseries object.
Example: data = outputAllData(datagen, 'timeseries');
Data Types: char

Output Arguments
data — Data from the DataGenerator object
scalar | vector | matrix | timeseries object

Data from the DataGenerator object, returned as either a scalar, vector, matrix, or timeseries
object.

6 Methods

6-60

See Also
fixed.DataGenerator | getNumDataPointsInfo | getUniqueValues

Introduced in R2019b

 outputAllData

6-61

applyOnRootInport
Package: fixed

(To be removed) Apply properties to Inport block

Note applyOnRootInport will be removed in a future release.

Syntax
applyOnRootInport(dataspec, model, inportnumber)

Description
applyOnRootInport(dataspec, model, inportnumber) applies the properties specified in
fixed.DataSpecification object, dataspec to the specified Inport block in model.

Input Arguments
dataspec — Properties to apply to Inport block
fixed.DataSpecification object

Properties to apply to Inport block, specified as a fixed.DataSpecification object.

model — Model containing Inport block
character vector

Name of the model containing the Inport block to apply settings to, specified as a character vector.
Data Types: char

inportnumber — Number of Inport block
scalar integer

Port number of root-level Inport block on which you want to apply properties from the
fixed.DataSpecification object. The following properties of the DataSpecification object
are applied to the block:

• Data type
• Complexity
• Dimensions

Data Types: double

Compatibility Considerations
applyOnRootInport will be removed
Warns starting in R2020a

applyOnRootInport will be removed in a future release.

6 Methods

6-62

See Also
contains | fixed.DataSpecification

Introduced in R2019b

 applyOnRootInport

6-63

contains
Package: fixed

Determine whether value domain of a DataSpecification object contains a specified value

Syntax
bool = contains(dataspec, value)

Description
bool = contains(dataspec, value) returns a boolean value indicating whether the value
domain of the fixed.DataSpecification object, dataspec, contains the value, value.

Examples

Determine whether a fixed.DataSpecification object contains a value

Use the contains function to determine whether a fixed.DataSpecification object contains a
specified value.

dataspec = fixed.DataSpecification('int8', 'Intervals', {-1,1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'int8'
 Intervals: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Determine whether dataspec contains the value 0.

bool = contains(dataspec, 0)

bool =

 logical

 1

Input Arguments
dataspec — fixed.DataSpecification object
fixed.DataSpecification object

Input fixed.DataSpecification object.

6 Methods

6-64

value — Value
scalar | vector

Value or values to check for in the fixed.DataSpecification object, specified as a scalar, or
vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Output Arguments
bool — Whether the fixed.DataSpecification object contains the value
true | false | vector of logical values

Whether the fixed.DataSpecification object contains the value, returned as a boolean value.

If the value argument is a vector, the output is a boolean vector of the same length.

See Also
applyOnRootInport | fixed.DataSpecification

Introduced in R2019b

 contains

6-65

contains
Package: fixed

Determine if one fixed.Interval object contains another

Syntax
bool = contains(A, B)

Description
bool = contains(A, B) returns a boolean indicating whether fixed.Interval object A contains
the fixed.Interval object B.

Examples

Determine if a fixed.Interval object contains another

Create two fixed.Interval objects. Use the contains function to determine if the intervals in
interval2 are contained within the corresponding intervals in interval1.

interval1 = fixed.Interval({0,1}, {2,3}, {3,4});
interval2 = fixed.Interval({0,0.5}, {2.5, 3}, {4,5});
bool = contains(interval1, interval2)

bool = 1x3 logical array

 1 1 0

When the second input is a scalar Interval object, contains determines whether each interval of
the first input contains the interval of the second input.

interval2 = fixed.Interval(0,1);
bool = contains(interval1, interval2)

bool = 1x3 logical array

 1 0 0

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

6 Methods

6-66

If A is an array of Interval objects, B must be a scalar Interval object or an Interval object
with the same dimensions as A.

Output Arguments
bool — Whether B is contained in A
true | false | logical array

Whether fixed.Interval object B is contained in fixed.Interval object A, returned as a logical
value.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

See Also
fixed.Interval | intersect | overlaps | setdiff | union | unique

Introduced in R2019b

 contains

6-67

intersect
Package: fixed

Intersection of fixed.Interval objects

Syntax
C = intersect(A, B)

Description
C = intersect(A, B) returns the intersection of fixed.Interval objects A and B.

Examples

Get intersection of two fixed.Interval objects

Create two fixed.Interval objects.

interval1 = fixed.Interval(-10,10)

interval1 =
 [-10,10]

 1x1 fixed.Interval with properties:

 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

interval2 = fixed.Interval(0,20)

interval2 =
 [0,20]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

Find the intersection of the two Interval objects.

intervalIntersection12 = intersect(interval1,interval2)

intervalIntersection12 =
 [0,10]

 1x1 fixed.Interval with properties:

6 Methods

6-68

 LeftEnd: 0
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

The output is an Interval object whose range is the intersection of the ranges of the two input
Interval objects.

When the ranges of the two input Interval objects do not overlap, the output is an empty
Interval object.

interval3 = fixed.Interval(100,200)

interval3 =
 [100,200]

 1x1 fixed.Interval with properties:

 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true

intervalIntersection13 = intersect(interval1,interval3)

intervalIntersection13 =

 1x0 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Intersection of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Intersection of input fixed.Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

The output Interval object contains all values in both inputs, A and B.

See Also
contains | fixed.Interval | overlaps | setdiff | union | unique

 intersect

6-69

Introduced in R2019b

6 Methods

6-70

isDegenerate
Package: fixed

Determine whether the left and right ends of a fixed.Interval object are degenerate

Syntax
bool = isDegenerate(A)

Description
bool = isDegenerate(A) returns a boolean indicating whether the left and right ends of the
fixed.Interval object A are the same, or equivalently, whether the interval contains only one
point.

Examples

Determine if a fixed.Interval object has degenerate end points

Create a fixed.Interval object. Use the isDegenerate function to determine whether the left
and right ends of the Interval object are the same.

interval = fixed.Interval({-pi,pi},{1,1});
bool = isDegenerate(interval)

bool = 1x2 logical array

 0 1

The output is a logical 0 when the left and right ends of the interval are different, and 1 when they
are the same.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether left and right ends of A are degenerate
true | false | logical array

 isDegenerate

6-71

Indicates whether the fixed.Interval object A has degenerate end points. Returns 1 (true) when
the left and right ends of A are the same, or equivalently, when the interval contains only one point,
and 0 (false) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

See Also
fixed.Interval | isLeftBounded | isRightBounded | isnan

Introduced in R2019b

6 Methods

6-72

isLeftBounded
Package: fixed

Determine whether a fixed.Interval object is left-bounded

Syntax
bool = isLeftBounded(A)

Description
bool = isLeftBounded(A) returns a boolean indicating whether the fixed.Interval object A is
left-bounded.

Examples

Determine if a fixed.Interval object is left bounded

Create a fixed.Interval object. Use the isLeftBounded function to determine whether the
interval is bounded on the left.

interval = fixed.Interval({-pi,pi},{-inf,1});
bool = isLeftBounded(interval)

bool = 1x2 logical array

 1 0

The output is a logical 1 when the left end of the interval is bounded, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether left end of A is bounded
true | false | logical array

Indicates whether the fixed.Interval object A is left-bounded, returned as a logical value. Returns
0 (false) when A contains -inf, and 1 (true) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

 isLeftBounded

6-73

See Also
fixed.Interval | isDegenerate | isRightBounded | isnan

Introduced in R2019b

6 Methods

6-74

isnan
Package: fixed

Determine whether a fixed.Interval object is NaN

Syntax
bool = isnan(A)

Description
bool = isnan(A) returns a boolean indicating whether a fixed.Interval object A is NaN.

Examples

Determine if a fixed.Interval object is NaN

Create a fixed.Interval object. Use the isnan function to determine whether the Interval
object is not a number.

interval = fixed.Interval({-pi,pi},{nan,1},{nan,nan});
bool = isnan(interval)

bool = 1x3 logical array

 0 1 1

The output is a logical 1 when the interval contains one or more NaN elements, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether elements of A are NaN
true | false | logical array

Indicates whether the fixed.Interval object A is NaN, returned as a logical value.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

 isnan

6-75

See Also
fixed.Interval | isDegenerate | isLeftBounded | isRightBounded

Introduced in R2019b

6 Methods

6-76

isRightBounded
Package: fixed

Determine whether the a fixed.Interval object is right-bounded

Syntax
bool = isRightBounded(A)

Description
bool = isRightBounded(A) returns a boolean indicating whether the fixed.Interval object A
is right-bounded.

Examples

Determine if a fixed.Interval object is right bounded

Create a fixed.Interval object. Use the isRightBounded function to determine whether the
interval is bounded on the right.

interval = fixed.Interval({-pi,pi},{-1,inf});
bool = isRightBounded(interval)

bool = 1x2 logical array

 1 0

The output is logical 1 when the right end of the interval is bounded, and 0 otherwise.

Input Arguments
A — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
bool — Indicates whether right end of A is bounded
Boolean scalar | Boolean array

Indicates whether the fixed.Interval object A is right-bounded, returned as a logical value.
Returns 0 (false) when A contains inf, and 1 (true) otherwise.

When A is an array of Interval objects, the output is an array of logical values of the same size as A.

 isRightBounded

6-77

See Also
fixed.Interval | isDegenerate | isLeftBounded | isnan

Introduced in R2019b

6 Methods

6-78

overlaps
Package: fixed

Determine if two fixed.Interval objects overlap

Syntax
bool = overlaps(A, B)

Description
bool = overlaps(A, B) returns a boolean indicating whether two fixed.Interval objects
overlap.

Examples

Determine if two fixed.Interval objects overlap

Create two fixed.Interval objects and determine if their ranges overlap.

interval1 = fixed.Interval(-1, 1);
interval2 = fixed.Interval(0, 1);
overlaps(interval1, interval2)

ans =

 logical

 1

When the ranges of the Interval objects overlap, the overlaps function returns a value of 1, or
true.

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
bool — Whether the intervals overlap
true | false | vector of logical values

Whether the input fixed.Interval objects overlap, returned as a logical value or a vector of logical
values.

 overlaps

6-79

See Also
contains | fixed.Interval | intersect | setdiff | union | unique

Introduced in R2019b

6 Methods

6-80

quantize
Package: fixed

Quantize interval to range of numeric data type

Syntax
quantizedinterval = quantize(interval, numerictype)
quantizedinterval = quantize(interval, numerictype, Name,Value)

Description
quantizedinterval = quantize(interval, numerictype) returns the quantized range of
fixed.Interval object, interval, quantized to the numeric type specified by numerictype.

quantizedinterval = quantize(interval, numerictype, Name,Value) returns the
quantized range of fixed.Interval object, interval, with additional properties specified as
name-value pairs.

Examples

Quantize a numeric interval to uint8

Create a fixed.Interval object and find the range of the Interval object quantized to an
unsigned 8-bit integer.

interval = fixed.Interval(-200,200);
quantizedInterval = quantize(interval, 'fixdt(0,8,0)')

quantizedInterval =

 1×2 uint8 row vector

 0 200

Because fixdt(0,8,0) is equivalent to uint8, the quantize function returns the quantized range
as a uint8 row vector with the endpoints within the representable range of the numeric type.

To return the quantized row vector as a fixed-point data type, set the 'PreferBuiltIn' property to
false.

quantizedInterval = quantize(interval, 'fixdt(0,8,0)',...
 'PreferBuiltIn', false)

quantizedInterval =

 0 200

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned

 quantize

6-81

 WordLength: 8
 FractionLength: 0

Input Arguments
interval — Input fixed.Interval objects to quantize
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

numerictype — Numeric data type
Simulink.Numerictype object | embedded.numerictype object | character vector

Numeric data type to quantize the Interval, specified as a Simulink.Numerictype object, an
embedded.numerictype object, or a character vector representing a numeric data type, for
example, 'single'.
Example: quantizedinterval = quantize(interval, 'fixdt(1,16,8)');

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: interval = quantize(interval, 'fixdt(1,16,0)', 'PreferBuiltIn', false,
'PreferStrict', true);

PreferBuiltIn — Quantize to built-in data type when possible
true (default) | false

When this property is true, if the specified numerictype has an equivalent built-in integer type the
software returns the built-in type. For example, when this property is true, a specified numerictype
of 'fixdt(1,8,0)' would return an int8.
Data Types: logical

PreferStrict — Quantize end points to numeric type
false (default) | true

When this property is true, all ends are quantized to the closest representable values within original
intervals regardless of whether the intervals are closed or open.
Data Types: logical

Output Arguments
quantizedinterval — Quantized interval range
N-by-2 matrix

N-by-2 matrix with rows consisting of endpoints of input Interval objects quantized to the numeric
data type specified by numerictype.

When the 'PreferStrict' property is set to false, the end points after quantization may lie
outside the original interval.

6 Methods

6-82

See Also
contains | fixed.Interval | intersect | overlaps | union | unique

Introduced in R2019b

 quantize

6-83

setdiff
Package: fixed

Set difference of fixed.Interval objects

Syntax
C = setdiff(A, B)

Description
C = setdiff(A, B) returns a fixed.Interval object containing the values in fixed.Interval
object A, but not in B.

Examples

Get set difference of two fixed.Interval objects

Create two fixed.Interval objects. Use the setdiff function to find the values that are in
Interval object interval1 but not in interval2. In this example, interval1 contains all values
between 0 and 1, but interval2 only contains values from 0 to 0.5, so the output Interval object
has an interval from 0.5 to 1.

interval1 = fixed.Interval(0,1);
interval2 = fixed.Interval(0,0.5);
intervaldiff = setdiff(interval1, interval2)

intervaldiff =
 (0.5000,1]

 1x1 fixed.Interval with properties:

 LeftEnd: 0.5000
 RightEnd: 1
 IsLeftClosed: false
 IsRightClosed: true

Create an interval object that excludes zero

You can use the setdiff function to create an interval object based on another interval, while
excluding zero.

Create an Interval object that contains zero.

myInterval = fixed.Interval(-1,1);

6 Methods

6-84

To create an interval based on the Interval object, myInterval, use the setdiff function.
Include the constructor for a degenerate Interval object containing only zero as the second
argument.

myInterval_nozero = setdiff(myInterval, {0});

myInterval_nozero =

 [-1,0) (0,1]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

The output Interval object, myInterval_nozero, contains two intervals, each with an open end
point at zero. Therefore, the interval contains all values between -1 and 1, except 0.

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Set difference of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Set difference of input fixed.Interval objects, returned as a fixed.Interval object or an array
of fixed.Interval objects.

The output Interval object contains all values in first input, A, but not in B.

See Also
contains | fixed.Interval | intersect | overlaps | union

Introduced in R2019b

 setdiff

6-85

union
Package: fixed

Union of fixed.Interval objects

Syntax
C = union(A, B)

Description
C = union(A, B) returns the union of fixed.Interval objects A and B.

Examples

Get the union of two fixed.Interval objects

Create two fixed.Interval objects.

interval1 = fixed.Interval(-10, 10)

interval1 =
 [-10,10]

 1x1 fixed.Interval with properties:

 LeftEnd: -10
 RightEnd: 10
 IsLeftClosed: true
 IsRightClosed: true

interval2 = fixed.Interval(0,20)

interval2 =
 [0,20]

 1x1 fixed.Interval with properties:

 LeftEnd: 0
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

Find the union of the two Interval objects.

intervalUnion = union(interval1, interval2)

intervalUnion =
 [-10,20]

 1x1 fixed.Interval with properties:

6 Methods

6-86

 LeftEnd: -10
 RightEnd: 20
 IsLeftClosed: true
 IsRightClosed: true

The output is an Interval object whose range is the union of the ranges of the two input objects.

When the ranges of the two input Interval objects do not overlap, the output is an array of
Interval objects covering the union of the ranges of the inputs.

interval3 = fixed.Interval(100, 200)

interval3 =
 [100,200]

 1x1 fixed.Interval with properties:

 LeftEnd: 100
 RightEnd: 200
 IsLeftClosed: true
 IsRightClosed: true

intervalUnion = union(interval1, interval3)

intervalUnion=1×2 object
 [-10,10] [100,200]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

Input Arguments
A, B — Input fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval objects, specified as fixed.Interval objects, or arrays of
fixed.Interval objects.

Output Arguments
C — Union of fixed.Interval objects
fixed.Interval object | array of fixed.Interval objects

Union of input fixed.Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

The output Interval object contains all values in A or B.

See Also
contains | fixed.Interval | intersect | overlaps | setdiff

 union

6-87

Introduced in R2019b

6 Methods

6-88

unique
Package: fixed

Get set of unique values in fixed.Interval object

Syntax
uniqueinterval = unique(interval)

Description
uniqueinterval = unique(interval) returns a vector of incrementally sorted and non
overlapping intervals that represent an equivalent value set as fixed.Interval object, interval.

Examples

Create a non-overlapping set of intervals from an array of Interval objects

Use the unique function to get a non-overlapping set of intervals from an array of Interval objects.

intervals = fixed.Interval({-5,5},{-10,10},{4,20},{50,100})

 [-5,5] [-10,10] [4,20] [50,100]

 1x4 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

The first three intervals represented in the object overlap with one another. The fourth interval is
disjointed from the set.

uniqueInterval = unique(intervals)

uniqueInterval =

 [-10,20] [50,100]

 1x2 fixed.Interval with properties:

 LeftEnd
 RightEnd
 IsLeftClosed
 IsRightClosed

 unique

6-89

The output, uniqueInterval, an array of two Interval objects, merges the three overlapping
intervals into a single Interval object.

Input Arguments
interval — fixed.Interval object
fixed.Interval object | array of fixed.Interval objects

Input fixed.Interval object, specified as a fixed.Interval object, or an array of
fixed.Interval objects.

Output Arguments
uniqueinterval — Non-overlapping set of Interval objects
fixed.Interval object | array of fixed.Interval objects

Non-overlapping set of Interval objects, returned as a fixed.Interval object or an array of
fixed.Interval objects.

When interval is a scalar Interval object, the output is the same as the input.

See Also
contains | fixed.Interval | intersect | overlaps | setdiff | union

Introduced in R2019b

6 Methods

6-90

FunctionApproximation.compressLookupTables
Compress all Lookup Table blocks in a system

Syntax
CompressionResult = FunctionApproximation.compressLookupTables(system)
CompressionResult = FunctionApproximation.compressLookupTables(system,
Name,Value)

Description
CompressionResult = FunctionApproximation.compressLookupTables(system)
compresses all n-D Lookup Table blocks in the specified system. The compressed Lookup Table blocks
output the same numerical results as the original Lookup Table blocks within the bounds of the
breakpoints.

You can achieve additional memory savings by compressing each lookup table in the model
individually and specifying tolerances for the compressed lookup table.

CompressionResult = FunctionApproximation.compressLookupTables(system,
Name,Value) compresses all n-D Lookup Table blocks in the specified system with additional
properties specified by name and value pair arguments.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

 FunctionApproximation.compressLookupTables

6-91

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]

6 Methods

6-92

 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
system — Name of model or subsystem in which to compress all Lookup Table blocks
character vector

Name of model or subsystem in which to compress all n-D Lookup Table blocks, specified as a
character vector.
Example: compressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys');

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: CompressionResult =
FunctionApproximation.compressLookupTables('sldemo_fuelsys', 'WordLengths',
[8,16,32])

Display — Whether to display details of each iteration of the optimization
true (default) | false

Whether to display details of each iteration of the optimization, specified as a logical. A value of 1
results in information in the command window at each iteration of the approximation process. A value
of 0 does not display information until the approximation is complete.
Data Types: logical

WordLengths — Word lengths permitted in the lookup table approximate
integer scalar | integer vector

Specify the word lengths, in bits, that can be used in the lookup table approximate based on your
intended hardware. For example, if you intend to target an embedded processor, you can restrict the
data types in your lookup table to native types, 8, 16, and 32. The word lengths must be between 1
and 128.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

FindOptions — Options for finding lookup tables in system
Simulink.FindOptions object

 FunctionApproximation.compressLookupTables

6-93

Simulink.FindOptions object specifying options for finding lookup tables in the system.

Output Arguments
CompressionResult — LUTCompressionResult object created during compression of
lookup tables
LUTCompressionResult object

Compression result object created during compression of the Lookup Table blocks in the model,
returned as a LUTCompressionResult object.

See Also
Classes
LUTCompressionResult

Functions
replace | revert

Introduced in R2020a

6 Methods

6-94

lutmemoryusage
Class: FunctionApproximation.LUTMemoryUsageCalculator
Package: FunctionApproximation

Calculate memory used by lookup table blocks in a system

Syntax
memory = lutmemoryusage(calculator,system)

Description
memory = lutmemoryusage(calculator,system) calculates the memory used by each lookup
table block in the specified model or subsystem.

Input Arguments
calculator — FunctionApproximation.LUTMemoryUsageCalculator object
FunctionApproximation.LUTMemoryUsageCalculator

FunctionApproximation.LUTMemoryUsageCalculator object.

system — Model or subsystem containing lookup table blocks
character vector

Model or subsystem containing lookup table blocks, specified as a character vector.
Data Types: char

Output Arguments
memory — Memory used by the lookup tables in the system
table

Table displaying the memory, in bits, used by each lookup table block in the specified system.

Examples
Calculate the Total Memory Used by Lookup Tables in a Model

Use the FunctionApproximation.LUTMemoryUsageCalculator class to calculate the memory
used by lookup table blocks in a model.

Create a FunctionApproximation.LUTMemoryUsageCalculator object.

calculator = FunctionApproximation.LUTMemoryUsageCalculator

Use the lutmemoryusage method to get the memory used by each lookup table block in the
sldemo_fuelsys model.

 lutmemoryusage

6-95

load_system('sldemo_fuelsys')
lutmemoryusage(calculator, 'sldemo_fuelsys')

ans =

 5×2 table

 BlockPath MemoryUsage
 ___ ___________

 1 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant" 1516
 2 "sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation" 1516
 3 "sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation" 1436
 4 "sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation" 1364
 5 "sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki" 192

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

6 Methods

6-96

approximate
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Generate a Lookup Table block from a FunctionApproximation.LUTSolution

Syntax
approximate(solution)

Description
approximate(solution) generates a Simulink model containing a subsystem made up of the
Lookup Table block with data and breakpoints specified by the
FunctionApproximation.LUTSolution object, solution. The generated Lookup Table block is
surrounded with Data Type Conversion blocks.

Input Arguments
solution — Solution to generate lookup table from
FunctionApproximation.LUTSolution object

The solution to generate a lookup table from, specified as a
FunctionApproximation.LUTSolution object.

Examples
Generate a Lookup Table Approximating a Function

Create a FunctionApproximation.Problem object defining the function you want to approximate.

problem = FunctionApproximation.Problem('tanh')

problem =

 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: @(x)tanh(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,12)"
 InputLowerBounds: -8
 InputUpperBounds: 8
 OutputType: "numerictype(1,16,15)"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. Approximate the tanh function using the solve method.

solution = solve(problem)

 approximate

6-97

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 9.999998e-01
1	1248	1	76	16	16	EvenSpacing	7.812500e-03, 4.368265e-03
2	1232	1	75	16	16	EvenSpacing	7.812500e-03, 4.439035e-03
3	944	1	57	16	16	EvenSpacing	7.812500e-03, 7.780470e-03
4	928	1	56	16	16	EvenSpacing	7.812500e-03, 6.110240e-03
5	656	0	39	16	16	EvenSpacing	7.812500e-03, 1.678519e-02
6	640	0	38	16	16	EvenSpacing	7.812500e-03, 1.660649e-02
7	784	0	47	16	16	EvenSpacing	7.812500e-03, 1.102459e-02
8	848	1	51	16	16	EvenSpacing	7.812500e-03, 6.211764e-03
9	816	1	49	16	16	EvenSpacing	7.812500e-03, 6.811833e-03
10	800	0	48	16	16	EvenSpacing	7.812500e-03, 1.105540e-02
11	432	0	25	16	16	EvenSpacing	7.812500e-03, 3.532625e-02
12	624	0	37	16	16	EvenSpacing	7.812500e-03, 1.870074e-02
13	720	0	43	16	16	EvenSpacing	7.812500e-03, 1.355547e-02
14	768	0	46	16	16	EvenSpacing	7.812500e-03, 1.199717e-02
15	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03
16	384	0	12	16	16	ExplicitValues	7.812500e-03, 1.196141e-02
17	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 15 | 384 | 1 | 12 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.812317e-03 |

solution =

 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 15
 Feasible: "true"

Generate a Simulink™ subsystem containing a Lookup Table block approximating the tanh function.

approximate(solution)

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

6 Methods

6-98

Functions
approximate | compare | solve

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 approximate

6-99

compare
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Compare numerical results of FunctionApproximation.LUTSolution to original function or
lookup table

Syntax
data = compare(solution)

Description
data = compare(solution) plots the difference between the data contained in the
FunctionApproximation.LUTSolution object, solution, and the original lookup table, function,
or Math Function block.

Input Arguments
solution — Solution to compare original behavior against
FunctionApproximation.LUTSolution object

The solution to compare original behavior against, specified as a
FunctionApproximation.LUTSolution object.

Output Arguments
data — Struct containing data comparing original and the solution
struct

Struct containing data comparing the original function or lookup table and the approximation
contained in the solution.

Examples
Compare Function Approximation to Original Function

Create a FunctionApproximation.Problem object defining the function you want to approximate.

problem = FunctionApproximation.Problem('tanh')

problem =
 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: @(x)tanh(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,12)"
 InputLowerBounds: -8
 InputUpperBounds: 8
 OutputType: "numerictype(1,16,15)"

6 Methods

6-100

 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. Approximate the tanh function using the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 9.999998e-01
1	1248	1	76	16	16	EvenSpacing	7.812500e-03, 4.368265e-03
2	1232	1	75	16	16	EvenSpacing	7.812500e-03, 4.439035e-03
3	944	1	57	16	16	EvenSpacing	7.812500e-03, 7.780470e-03
4	928	1	56	16	16	EvenSpacing	7.812500e-03, 6.110240e-03
5	656	0	39	16	16	EvenSpacing	7.812500e-03, 1.678519e-02
6	640	0	38	16	16	EvenSpacing	7.812500e-03, 1.660649e-02
7	784	0	47	16	16	EvenSpacing	7.812500e-03, 1.102459e-02
8	848	1	51	16	16	EvenSpacing	7.812500e-03, 6.211764e-03
9	816	1	49	16	16	EvenSpacing	7.812500e-03, 6.811833e-03
10	800	0	48	16	16	EvenSpacing	7.812500e-03, 1.105540e-02
11	432	0	25	16	16	EvenSpacing	7.812500e-03, 3.532625e-02
12	624	0	37	16	16	EvenSpacing	7.812500e-03, 1.870074e-02
13	720	0	43	16	16	EvenSpacing	7.812500e-03, 1.355547e-02
14	768	0	46	16	16	EvenSpacing	7.812500e-03, 1.199717e-02
15	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03
16	384	0	12	16	16	ExplicitValues	7.812500e-03, 1.196141e-02
17	384	1	12	16	16	ExplicitValues	7.812500e-03, 7.812317e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 15 | 384 | 1 | 12 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.812317e-03 |

solution =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 15
 Feasible: "true"

Compare the original function and the function approximation.

data = compare(solution)

 compare

6-101

data = struct with fields:
 Breakpoints: [65536x1 double]
 Original: [65536x1 double]
 Approximate: [65536x1 double]

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare | solve

6 Methods

6-102

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 compare

6-103

displayallsolutions
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Display all solutions found during function approximation

Syntax
displayallsolutions(solution)

Description
displayallsolutions(solution) displays all solutions, including the non-feasible solutions,
associated with a FunctionApproximation.LUTSolution object.

Input Arguments
solution — Solution object from which to display all associated solutions
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object from which to display all associated solutions.

Examples
Display All Solutions Found During Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Display all solutions found during the approximation process using the displayallsolutions
method.

problem = FunctionApproximation.Problem('sin')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

6 Methods

6-104

 ID: 8
 Feasible: "true"

displayallsolutions(solution)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.590463e+00
1	464	0	27	16	16	EvenPow2Spacing	7.812500e-03, 7.823061e-03
2	864	1	52	16	16	EvenPow2Spacing	7.812500e-03, 1.978726e-03
3	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.000000e+00
4	560	1	33	16	16	EvenSpacing	7.812500e-03, 4.817965e-03
5	304	0	17	16	16	EvenSpacing	7.812500e-03, 1.887217e-02
6	432	0	25	16	16	EvenSpacing	7.812500e-03, 8.513680e-03
7	496	1	29	16	16	EvenSpacing	7.812500e-03, 6.288182e-03
8	464	1	27	16	16	EvenSpacing	7.812500e-03, 7.324035e-03
9	448	0	26	16	16	EvenSpacing	7.812500e-03, 7.895832e-03
10	704	1	22	16	16	ExplicitValues	7.812500e-03, 7.323370e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 8 | 464 | 1 | 27 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.324035e-03 |

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
displayfeasiblesolutions | solutionfromID | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 displayallsolutions

6-105

displayfeasiblesolutions
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Display all feasible solutions found during function approximation

Syntax
displayfeasiblesolutions(solution)

Description
displayfeasiblesolutions(solution) displays all feasible solutions found during the
approximation process, including the best solution. Feasible solutions are defined as any solutions to
the original FunctionApproximation.Problem object that met the constraints defined in the
associated FunctionApproximation.Options object.

Input Arguments
solution — Solution object from which to display all associated feasible solutions
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object from which to display all associated feasible
solutions.

Examples
Display All Feasible Solutions Found During Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Display all feasible solutions found during the approximation process using the
displayfeasiblesolutions method.

problem = FunctionApproximation.Problem('sin')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

6 Methods

6-106

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

displayfeasiblesolutions(solution)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
2	864	1	52	16	16	EvenPow2Spacing	7.812500e-03, 1.978726e-03
4	560	1	33	16	16	EvenSpacing	7.812500e-03, 4.817965e-03
7	496	1	29	16	16	EvenSpacing	7.812500e-03, 6.288182e-03
8	464	1	27	16	16	EvenSpacing	7.812500e-03, 7.324035e-03
10	704	1	22	16	16	ExplicitValues	7.812500e-03, 7.323370e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 8 | 464 | 1 | 27 | 16 | 16 | EvenSpacing | 7.812500e-03, 7.324035e-03 |

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
compare | displayallsolutions | solutionfromID | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 displayfeasiblesolutions

6-107

getErrorValue
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Get the total error of the lookup table approximation

Syntax
memory = getErrorValue(solution)

Description
memory = getErrorValue(solution) returns the total error of the lookup table approximation
specified by solution.

Input Arguments
solution — Solution to get error of
FunctionApproximation.LUTSolution object

Solution to get error of, specified as a FunctionApproximation.LUTSolution object.

Output Arguments
error — Total error of the lookup table approximation
struct

Total error of the lookup table approximation, returned as a struct.

The struct contains two fields. The MaxErrorInSolution field specifies the maximum difference
between the original function or block and the lookup table approximation. The ErrorUpperBound
field displays the maximum error that was acceptable according to the tolerances specified on the
FunctionApproximation.Options object.

Examples

Calculate the Total Error of a Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Calculate the total error of the FunctionApproximation.LUTSolution object using the
getErrorValue method.

problem = FunctionApproximation.Problem('sin')

problem =

6 Methods

6-108

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

error = getErrorValue(solution)

error =

 struct with fields:

 MaxErrorInSolution: 0.0073
 ErrorUpperBound: 0.0078

See Also
FunctionApproximation.LUTSolution

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

Introduced in R2019a

 getErrorValue

6-109

replaceWithApproximate
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Replace block with the generated lookup table approximation

Syntax
replaceWithApproximate(solution)

Description
replaceWithApproximate(solution) replaces the simulink block with its lookup table
approximation, generated using the approximate method of the
FunctionApproximation.LUTSolution object.

Input Arguments
solution — Solution to use to replace the source block
FunctionApproximation.LUTSolution object

Solution to replace the source block, specified as a FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the
original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a
lookup table approximation.

open_system('ex_luto_approx')

Create a FunctionApproximation.Problem object specifying what you want to approximate.

problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')

problem =

 1x1 FunctionApproximation.Problem with properties:

6 Methods

6-110

 FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
 NumberOfInputs: 1
 InputTypes: "numerictype('double')"
 InputLowerBounds: -1.5083
 InputUpperBounds: 1.5083
 OutputType: "numerictype('double')"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. To approximate the block use the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	48	0	2	8	16	EvenSpacing	7.812500e-03, 1.146582e+01
1	800	0	49	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
2	1584	1	98	8	16	EvenSpacing	7.812500e-03, 1.016505e-05
3	640	0	39	8	16	EvenSpacing	7.812500e-03, 3.533199e+00
4	416	0	25	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
5	1056	0	65	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
6	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.145654e+01
7	768	1	46	16	16	EvenSpacing	7.812500e-03, 2.192364e-04
8	752	1	45	16	16	EvenSpacing	7.812500e-03, 1.220687e-04
9	592	1	35	16	16	EvenSpacing	7.812500e-03, 2.388241e-04
10	576	1	34	16	16	EvenSpacing	7.812500e-03, 6.201875e-05
11	416	0	24	16	16	EvenSpacing	7.812500e-03, 8.559014e-01
12	400	0	23	16	16	EvenSpacing	7.812500e-03, 1.008229e+00
13	496	0	29	16	16	EvenSpacing	7.812500e-03, 2.136958e-01
14	528	1	31	16	16	EvenSpacing	7.812500e-03, 1.018354e-04
15	512	0	30	16	16	EvenSpacing	7.812500e-03, 1.037605e-01
16	288	0	16	16	16	EvenSpacing	7.812500e-03, 2.391904e+00
17	464	0	27	16	16	EvenSpacing	7.812500e-03, 4.491186e-01
18	80	0	2	8	32	EvenSpacing	7.812500e-03, 1.146600e+01
19	48	0	2	8	16	EvenPow2Spacing	7.812500e-03, 1.146582e+01
20	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
21	80	0	2	8	32	EvenPow2Spacing	7.812500e-03, 1.146600e+01
22	96	0	2	16	32	EvenPow2Spacing	7.812500e-03, 1.145661e+01
23	128	0	2	32	32	EvenPow2Spacing	7.812500e-03, 1.145660e+01
24	96	0	2	32	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
25	216	1	9	8	16	ExplicitValues	7.812500e-03, 9.900552e-04
26	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
27	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
28	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
29	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
30	192	1	8	8	16	ExplicitValues	7.812500e-03, 1.383244e-03
31	144	0	2	8	64	EvenSpacing	7.812500e-03, 1.195947e+01
32	144	0	2	8	64	EvenPow2Spacing	7.812500e-03, 1.195947e+01

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 30 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 |

solution =

 1x1 FunctionApproximation.LUTSolution with properties:

 replaceWithApproximate

6-111

 ID: 30
 Feasible: "true"

Generate a Simulink™ subsystem containing the lookup table approximation using the approximate
method.

approximate(solution)

Replace the original block with the approximation.

replaceWithApproximate(solution)

You can revert the system back to its original state using the revertToOriginal method.

revertToOriginal(solution)

See Also
approximate | revertToOriginal

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

Introduced in R2018b

6 Methods

6-112

revertToOriginal
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Revert the block that was replaced by the approximation back to its original state

Syntax
reverToOriginal(solution)

Description
reverToOriginal(solution) reverts the block that was replaced by a lookup table approximation
back to its original state.

Note You can only revert a block back to its original state within a single MATLAB session.

Input Arguments
solution — Solution approximating the block you want to revert to its original state
FunctionApproximation.LUTSolution object

The solution approximating the block you want to revert to its original state, specified as a
FunctionApproximation.LUTSolution object.

Examples

Replace a Block with an Approximation

This example shows how to approximate a block using a lookup table approximation, replace the
original block with the approximation, and then revert the block back to its original state.

Open the model containing the block to approximate. In this example, replace the tan block with a
lookup table approximation.

open_system('ex_luto_approx')

Create a FunctionApproximation.Problem object specifying what you want to approximate.

problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')

problem =

 revertToOriginal

6-113

 1x1 FunctionApproximation.Problem with properties:

 FunctionToApproximate: 'ex_luto_approx/Trigonometric Function'
 NumberOfInputs: 1
 InputTypes: "numerictype('double')"
 InputLowerBounds: -1.5083
 InputUpperBounds: 1.5083
 OutputType: "numerictype('double')"
 Options: [1x1 FunctionApproximation.Options]

Use default values for all other options. To approximate the block use the solve method.

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	48	0	2	8	16	EvenSpacing	7.812500e-03, 1.146582e+01
1	800	0	49	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
2	1584	1	98	8	16	EvenSpacing	7.812500e-03, 1.016505e-05
3	640	0	39	8	16	EvenSpacing	7.812500e-03, 3.533199e+00
4	416	0	25	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
5	1056	0	65	8	16	EvenSpacing	7.812500e-03, 4.497030e-01
6	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.145654e+01
7	768	1	46	16	16	EvenSpacing	7.812500e-03, 2.192364e-04
8	752	1	45	16	16	EvenSpacing	7.812500e-03, 1.220687e-04
9	592	1	35	16	16	EvenSpacing	7.812500e-03, 2.388241e-04
10	576	1	34	16	16	EvenSpacing	7.812500e-03, 6.201875e-05
11	416	0	24	16	16	EvenSpacing	7.812500e-03, 8.559014e-01
12	400	0	23	16	16	EvenSpacing	7.812500e-03, 1.008229e+00
13	496	0	29	16	16	EvenSpacing	7.812500e-03, 2.136958e-01
14	528	1	31	16	16	EvenSpacing	7.812500e-03, 1.018354e-04
15	512	0	30	16	16	EvenSpacing	7.812500e-03, 1.037605e-01
16	288	0	16	16	16	EvenSpacing	7.812500e-03, 2.391904e+00
17	464	0	27	16	16	EvenSpacing	7.812500e-03, 4.491186e-01
18	80	0	2	8	32	EvenSpacing	7.812500e-03, 1.146600e+01
19	48	0	2	8	16	EvenPow2Spacing	7.812500e-03, 1.146582e+01
20	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
21	80	0	2	8	32	EvenPow2Spacing	7.812500e-03, 1.146600e+01
22	96	0	2	16	32	EvenPow2Spacing	7.812500e-03, 1.145661e+01
23	128	0	2	32	32	EvenPow2Spacing	7.812500e-03, 1.145660e+01
24	96	0	2	32	16	EvenPow2Spacing	7.812500e-03, 1.145654e+01
25	216	1	9	8	16	ExplicitValues	7.812500e-03, 9.900552e-04
26	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
27	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
28	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
29	192	0	8	8	16	ExplicitValues	7.812500e-03, 1.142949e-02
30	192	1	8	8	16	ExplicitValues	7.812500e-03, 1.383244e-03
31	144	0	2	8	64	EvenSpacing	7.812500e-03, 1.195947e+01
32	144	0	2	8	64	EvenPow2Spacing	7.812500e-03, 1.195947e+01

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 30 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 |

solution =

6 Methods

6-114

 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 30
 Feasible: "true"

Generate a Simulink™ subsystem containing the lookup table approximation using the approximate
method.

approximate(solution)

Replace the original block with the approximation.

replaceWithApproximate(solution)

You can revert the system back to its original state using the revertToOriginal method.

revertToOriginal(solution)

See Also
approximate | replaceWithApproximate

Topics
“Approximate Functions with a Direct Lookup Table”
“Optimize Lookup Tables for Memory-Efficiency Programmatically”

Introduced in R2018b

 revertToOriginal

6-115

solutionfromID
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Access a solution found during the approximation process

Syntax
other_solution = solutionfromID(solution,id)

Description
other_solution = solutionfromID(solution,id) returns the solution associated with the
FunctionApproximation.LUTSolution object, solution, with the ID specified by id.

Input Arguments
solution — Solution object
FunctionApproximation.LUTSolution object

The solution object containing the solution you want to explore, specified as a
FunctionApproximation.LUTSolution object.

id — ID of the solution
scalar integer

ID of the solution that you want to explore, specified as a scalar integer.
Data Types: double

Output Arguments
other_solution — FunctionApproximation.LUTSolution specified by id
FunctionApproximation.LUTSolution object

FunctionApproximation.LUTSolution object associated with the specified ID.

Examples
Examine Infeasible Function Approximation Solution

This example shows how to use the solutionfromID method of the
FunctionApproximation.LUTSolution object to examine other approximation solutions.

Create a FunctionApproximation.Problem object defining a math function to approximate. Then
use the solve method to get a FunctionApproximation.LUTSolution object.

problem = FunctionApproximation.Problem('sin')

problem =
 1x1 FunctionApproximation.Problem with properties:

6 Methods

6-116

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1x1 FunctionApproximation.Options]

solution = solve(problem)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.000000e+00
1	784	1	47	16	16	EvenSpacing	7.812500e-03, 5.388912e-03
2	768	1	46	16	16	EvenSpacing	7.812500e-03, 4.534419e-03
3	608	1	36	16	16	EvenSpacing	7.812500e-03, 4.089765e-03
4	592	1	35	16	16	EvenSpacing	7.812500e-03, 4.272461e-03
5	416	1	24	16	16	EvenSpacing	7.812500e-03, 6.201693e-03
6	400	1	23	16	16	EvenSpacing	7.812500e-03, 6.836819e-03
7	224	0	12	16	16	EvenSpacing	7.812500e-03, 4.013411e-02
8	304	0	17	16	16	EvenSpacing	7.812500e-03, 1.887217e-02
9	352	0	20	16	16	EvenSpacing	7.812500e-03, 1.361513e-02
10	368	0	21	16	16	EvenSpacing	7.812500e-03, 1.219313e-02
11	384	0	22	16	16	EvenSpacing	7.812500e-03, 1.121192e-02
12	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.315166e+00
13	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03
14	512	0	16	16	16	ExplicitValues	7.812500e-03, 1.190175e-02
15	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 6 | 400 | 1 | 23 | 16 | 16 | EvenSpacing | 7.812500e-03, 6.836819e-03 |

solution =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 6
 Feasible: "true"

Display all feasible solutions found during the approximation process.

displayfeasiblesolutions(solution)

ID	Memory (bits)	Feasible	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
1	784	1	47	16	16	EvenSpacing	7.812500e-03, 5.388912e-03
2	768	1	46	16	16	EvenSpacing	7.812500e-03, 4.534419e-03
3	608	1	36	16	16	EvenSpacing	7.812500e-03, 4.089765e-03
4	592	1	35	16	16	EvenSpacing	7.812500e-03, 4.272461e-03
5	416	1	24	16	16	EvenSpacing	7.812500e-03, 6.201693e-03
6	400	1	23	16	16	EvenSpacing	7.812500e-03, 6.836819e-03
13	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03
15	576	1	18	16	16	ExplicitValues	7.812500e-03, 7.803448e-03

Best Solution
| ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 6 | 400 | 1 | 23 | 16 | 16 | EvenSpacing | 7.812500e-03, 6.836819e-03 |

 solutionfromID

6-117

Solution with ID 5 is not listed as a feasible solution in the table. Explore this solution to see why it is
not feasible.

solution5 = solutionfromID(solution, 5)

solution5 =
 1x1 FunctionApproximation.LUTSolution with properties:

 ID: 5
 Feasible: "true"

Compare the numerical behavior of the solution with ID 5.

compare(solution5)

ans = struct with fields:
 Breakpoints: [51473x1 double]
 Original: [51473x1 double]
 Approximate: [51473x1 double]

You can see from the plot that the solution does not meet the required tolerances.

6 Methods

6-118

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
displayallsolutions | displayfeasiblesolutions | totalmemoryusage

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 solutionfromID

6-119

totalmemoryusage
Class: FunctionApproximation.LUTSolution
Package: FunctionApproximation

Calculate total memory used by a lookup table approximation

Syntax
memory = totalmemoryusage(solution,units)

Description
memory = totalmemoryusage(solution,units) returns the total memory used by the lookup
table approximation specified by solution, in the units specified by units.

Input Arguments
solution — Solution to get memory of
FunctionApproximation.LUTSolution object

Solution to get memory of, specified as a FunctionApproximation.LUTSolution object.

units — Units in which to display the total memory used
'bits' (default) | 'bytes' | 'GiB' | 'KiB' | 'MiB'

Units in which to display the total memory used, specified as a character vector.
Data Types: char

Output Arguments
memory — total memory used by a lookup table approximation
scalar

Total memory used by a lookup table approximation, returned as a scalar.

Examples
Calculate the Total Memory Used by a Lookup Table Approximation

Create a FunctionApproximation.Problem object defining a math function to approximate. Then,
use the solve method to get a FunctionApproximation.LUTSolution object.

Calculate the total memory used by the FunctionApproximation.LUTSolution object using the
totalmemoryusage method.

problem = FunctionApproximation.Problem('sin')

problem =

6 Methods

6-120

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

solution = solve(problem)

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 8
 Feasible: "true"

totalmemoryusage(solution, 'bytes')

ans =

 58

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
compare | displayallsolutions | displayfeasiblesolutions | solutionfromID

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 totalmemoryusage

6-121

solve
Class: FunctionApproximation.Problem
Package: FunctionApproximation

Solve for optimized solution to function approximation problem

Syntax
solution = solve(problem)

Description
solution = solve(problem) solves the optimization problem defined by the
FunctionApproximation.Problem object, problem, and returns the optimized result, solution,
as a FunctionApproximation.LUTSolution object.

Input Arguments
problem — Optimization problem
FunctionApproximation.Problem

Optimization problem specified as a FunctionApproximation.Problem object defining the
function or Math Function block to approximate, or the Lookup Table block to optimize, and other
parameters and constraints to use during the optimization process.

Output Arguments
solution — Approximation solution
FunctionApproximation.LUTSolution object

Approximation solution, returned as a FunctionApproximation.LUTSolution object.

Examples
Approximate a Math Function

Create a FunctionApproximation.Problem object, specifying a math function to approximate.

problem = FunctionApproximation.Problem('log')

problem =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)log(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(1,16,10)"
 InputLowerBounds: 0.6250
 InputUpperBounds: 15.6250

6 Methods

6-122

 OutputType: "numerictype(1,16,13)"
 Options: [1×1 FunctionApproximation.Options]

Use default values for all other options.

Use the solve method to generate an approximation of the function.

solution = solve(problem)

ID	Memory (bits)	ConstraintMet	Table Size	Breakpoints WLs	TableData WL	BreakpointSpecification	Error(Max,Current)
0	64	0	2	16	16	EvenPow2Spacing	7.812500e-03, 1.178125e+00
1	1984	1	122	16	16	EvenPow2Spacing	7.812500e-03, 4.192649e-03
2	1024	0	62	16	16	EvenPow2Spacing	7.812500e-03, 1.416713e-02
3	1968	1	121	16	16	EvenPow2Spacing	7.812500e-03, 4.192649e-03
4	64	0	2	16	16	EvenSpacing	7.812500e-03, 1.138984e+00
5	416	1	13	16	16	ExplicitValues	7.812500e-03, 7.310789e-03

Best Solution
| ID | Memory (bits) | ConstraintMet | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) |
| 5 | 416 | 1 | 13 | 16 | 16 | ExplicitValues | 7.812500e-03, 7.310789e-03 |

solution =

 FunctionApproximation.LUTSolution with properties

 ID: 5
 Feasible: "true"

You can then use the approximate method to generate a subsystem containing the lookup table
approximation.

See Also
Apps
Lookup Table Optimizer

Classes
FunctionApproximation.LUTMemoryUsageCalculator |
FunctionApproximation.LUTSolution | FunctionApproximation.Options |
FunctionApproximation.Problem

Functions
approximate | compare

Topics
“Optimize Lookup Tables for Memory-Efficiency Programmatically”
“Optimize Lookup Tables for Memory-Efficiency”

Introduced in R2018a

 solve

6-123

addSpecification
Class: fxpOptimizationOptions

Specify known data types in a system

Syntax
addSpecification(options,'BlockParameter',block_param)

Description
addSpecification(options,'BlockParameter',block_param) specifies a known data type
for a block parameter. After specifying these known parameters, if you optimize the data types in a
system, the optimization process will not change the specified block parameter data type.

You can use this method in cases where parts of a system are known to always be a certain data type.
For example, if the input to your system comes from an 8-bit sensor.

Input Arguments
options — Associated fxpOptimizationOptions object
fxpOptimizationOptions object

fxpOptimizationOptions object in which to specify a known data type for a system.

block_param — Block parameters
Simulink.Simulation.BlockParameter object | array of
Simulink.Simulation.BlockParameter objects

Simulink.Simulation.BlockParameter objects specifying the data types of block parameters
that should not change during the optimization.

Examples

Specify Known Data Types for a System Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system. Load
the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

To specify that the input to the system you are converting will always be an eight-bit integer, create a
BlockParameter object that specifies the block parameter, and the data type.

bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal', 'OutDataTypeStr', 'int8');

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization.
To specify the data type of the input to the system, use the addSpecification method.

6 Methods

6-124

opt = fxpOptimizationOptions;
addSpecification(opt, 'BlockParameter', bp)

You can view all specifications added to a fxpOptimizationOptions object using the
showSpecifications method.

showSpecifications(opt)

 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

ans=1×4 table
 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

See Also
Classes
OptimizationResult | OptimizationSolution | Simulink.Simulation.BlockParameter |
fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2020a

 addSpecification

6-125

addTolerance
Class: fxpOptimizationOptions

Specify numeric tolerance for optimized system

Syntax
addTolerance(options,block_path,port_index,tolerance_type,tolerance_value)

Description
addTolerance(options,block_path,port_index,tolerance_type,tolerance_value)
specifies a numeric tolerance for the output signal specified by block_path and port_index, with
the tolerance type specified by tolerance_type and value specified by tolerance_value.

Input Arguments
options — Associated fxpOptimizationOptions object
fxpOptimizationOptions

fxpOptimizationOptions object to add a tolerance specification.

block_path — Path to block for which to add tolerance
block path name

Path to the block to add a tolerance to, specified as a character vector.
Data Types: char | string

port_index — Index of output port of block
scalar integer

Index of output port of the block specified by block_path for which you want to specify a tolerance,
specified as a scalar integer.
Data Types: double

tolerance_type — Type of tolerance to specify
'AbsTol' | 'RelTol' | 'TimeTol'

Type of tolerance to add to the port indicated specified as either absolute tolerance, AbsTol, relative
tolerance, RelTol, or time tolerance, TimeTol.
Data Types: char

tolerance_value — Difference between the original output and the output of the new
design
scalar double

Acceptable level of tolerance for the signal specified by block_path and port_index.

6 Methods

6-126

If tolerance_type is set to 'AbsTol', then tolerance_value represents the absolute value of
the maximum acceptable difference between the original output, and the output of the new design.

If tolerance_type is set to 'RelTol', then tolerance_value represents the maximum relative
difference, specified as a percentage, between the original output, and the output of the new design.
For example, a value of 1e-2 indicates a maximum difference of one percent between the original
output, and the output of the new design.

If tolerance_type is set to 'TimeTol', then tolerance_value defines a time interval, in
seconds, in which the maximum and minimum values define the upper and lower values to compare
against. For more information, see “How the Simulation Data Inspector Compares Data”.
Data Types: double

Examples
Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

Create a fxpOptimizationOptions object with default property values.

options = fxpOptimizationOptions;

To specify a required numeric tolerance to use during the optimization process, use the
addTolerance method of the fxpOptimizationOptions object. To specify several tolerance
constraints, call the method once per constraint. You can specify either relative, or absolute tolerance
constraints.

addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);

Use the showTolerances method to display all tolerance constraints added to a specified
fxpOptimizationOptions object.

showTolerances(options)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

ans =

 2x4 table

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05

 addTolerance

6-127

 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

6 Methods

6-128

showSpecifications
Class: fxpOptimizationOptions

Show specifications for a system

Syntax
showSpecifications(options)

Description
showSpecifications(options) displays all parameters that were specified for a system using the
addSpecification method of the fxpOptimizationOptions class. If the options object has no
parameters specified, the showSpecifications method does not display anything.

Input Arguments
options — Optimization options
fxpOptimizationOptions object

Optimization options, specified as an fxpOptimizationOptions object with known data types
specified for a system.

Examples

Specify Known Data Types for a System Before Data Type Optimization

This example shows how to specify known data types for block parameters within your system. Load
the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

To specify that the input to the system you are converting will always be an eight-bit integer, create a
BlockParameter object that specifies the block parameter, and the data type.

bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal', 'OutDataTypeStr', 'int8');

The fxpOptimizationOptions object, opt, specifies options to use during data type optimization.
To specify the data type of the input to the system, use the addSpecification method.

opt = fxpOptimizationOptions;
addSpecification(opt, 'BlockParameter', bp)

You can view all specifications added to a fxpOptimizationOptions object using the
showSpecifications method.

showSpecifications(opt)

 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 showSpecifications

6-129

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

ans=1×4 table
 Index Name BlockPath Value
 _____ ______________ ____________________________________ ______

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'int8'

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2020a

6 Methods

6-130

showTolerances
Class: fxpOptimizationOptions

Show tolerances specified for a system

Syntax
showTolerances(options)

Description
showTolerances(options) displays the absolute and relative tolerances specified for a system
using the addTolerance method of the fxpOptimizationOptions class. If the options object
has no tolerances specified, the showTolerances method does not display anything.

Input Arguments
options — Optimization options
fxpOptimizationOptions object

fxpOptimizationOptions object specifying options and tolerances to use during the data type
optimization process.

Examples
Specify required numeric tolerance for optimized system

Load the system for which you want to optimize the data types.

load_system('ex_auto_gain_controller');

Create a fxpOptimizationOptions object with default property values.

options = fxpOptimizationOptions;

To specify a required numeric tolerance to use during the optimization process, use the
addTolerance method of the fxpOptimizationOptions object. To specify several tolerance
constraints, call the method once per constraint. You can specify either relative, or absolute tolerance
constraints.

addTolerance(options, 'ex_auto_gain_controller/output_signal', 1, 'AbsTol', 5e-2);
addTolerance(options, 'ex_auto_gain_controller/input_signal', 1, 'RelTol', 1e-2);

Use the showTolerances method to display all tolerance constraints added to a specified
fxpOptimizationOptions object.

showTolerances(options)

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 showTolerances

6-131

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

ans =

 2x4 table

 Path Port_Index Tolerance_Type Tolerance_Value
 ___ __________ ______________ _______________

 {'ex_auto_gain_controller/output_signal'} 1 {'AbsTol'} 0.05
 {'ex_auto_gain_controller/input_signal' } 1 {'RelTol'} 0.01

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

6 Methods

6-132

replace
Replace all Lookup Table blocks with compressed lookup tables

Syntax
replace(compressionResult)
replace(compressionResult, index)

Description
replace(compressionResult) replaces all n-D Lookup Table blocks in a system with the
compressed versions described in the LUTCompressionResult object compressionResult.

replace(compressionResult, index) replaces the lookup tables at the indices specified by
index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

 replace

6-133

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]

6 Methods

6-134

 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
compressionResult — Results of lookup table compression
LUTCompressionResult object

Results of lookup table compression, specified as a LUTCompressionResult object.

index — Index of Lookup Table blocks to replace
scalar | vector

Index of the Lookup Table blocks to replace in the system, specified as an integer-valued scalar or
vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of
the LUTCompressionResult object.
Data Types: double

See Also
Classes
LUTCompressionResult

Functions
FunctionApproximation.compressLookupTables | revert

Introduced in R2020a

 replace

6-135

revert
Revert compressed Lookup Table blocks to original versions

Syntax
revert(compressionResult)
replace(compressionResult, index)

Description
revert(compressionResult) reverts the Lookup Table blocks compressed by the
FunctionApproximation.compressLookupTables function back to their original state.

replace(compressionResult, index) reverts the lookup tables at the indices specified by
index.

Examples

Compress All Lookup Table Blocks in a System

This example shows how to compress all Lookup Table blocks in a system.

Open the model containing the lookup tables that you want to compress.

system = 'sldemo_fuelsys';
open_system(system)

6 Methods

6-136

Use the FunctionApproximation.compressLookupTables function to compress all of the lookup
tables in the model. The output specifies all blocks that are modified and the memory savings for
each.

compressionResult = FunctionApproximation.compressLookupTables(system)

- Found 5 supported lookup tables
- Percent reduction in memory for compressed solution
 - 2.37% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Pumping Constant
 - 2.37% for sldemo_fuelsys/fuel_rate_control/control_logic/Throttle.throttle_estimate/Throttle Estimation
 - 3.55% for sldemo_fuelsys/fuel_rate_control/control_logic/Speed.speed_estimate/Speed Estimation
 - 6.38% for sldemo_fuelsys/fuel_rate_control/control_logic/Pressure.map_estimate/Pressure Estimation
 - 9.38% for sldemo_fuelsys/fuel_rate_control/airflow_calc/Ramp Rate Ki

compressionResult =

 LUTCompressionResult with properties:

 MemoryUnits: bytes
 MemoryUsageTable: [5x5 table]
 NumLUTsFound: 5
 NumImprovements: 5
 TotalMemoryUsed: 6024
 TotalMemoryUsedNew: 5796
 TotalMemorySavings: 228
 TotalMemorySavingsPercent: 3.7849
 SUD: 'sldemo_fuelsys'
 WordLengths: [8 16 32]
 FindOptions: [1x1 Simulink.internal.FindOptions]

 revert

6-137

 Display: 1

Use the replace function to replace each Lookup Table block with a block containing the original
and compressed version of the lookup table.

replace(compressionResult);

You can revert the lookup tables back to their original state using the revert function.

revert(compressionResult);

Input Arguments
compressionResult — Results of lookup table compression
LUTCompressionResult object

Results of lookup table compression, specified as a LUTCompressionResult object.

index — Index of Lookup Table blocks to revert
scalar | vector

Index of the Lookup Table blocks to revert in the system, specified as an integer-valued scalar or
vector.

The index of each lookup table corresponds to the ID column in the MemoryUsageTable property of
the LUTCompressionResult object.
Data Types: double

See Also
Classes
LUTCompressionResult

Functions
FunctionApproximation.compressLookupTables | replace

Introduced in R2020a

6 Methods

6-138

explore
Class: OptimizationResult

Explore fixed-point implementations found during optimization process

Syntax
explore(result)
solution = explore(result)
solution = explore(result, n)
solution = explore(result, n, i)

Description
explore(result) opens the Simulation Data Inspector with logging data displayed for the
OptimizationResult object specified by result.

solution = explore(result) opens the Simulation Data Inspector and returns an
OptimizationSolution object, solution.

solution = explore(result, n)returns the nth OptimizationSolution object contained in
result.

solution = explore(result, n, i)returns the nth OptimizationSolution object, using the
ith simulation scenario contained in result.

Input Arguments
result — OptimizationResult to explore
OptimizationResult

OptimizationResult object to explore.

If the optimization finds a feasible solution, the vector of OptimizationSolution objects contained
in the result object is sorted by cost, with the lowest cost (most optimal) solution as the first
element of the vector. If the optimization does not find a feasible solution, the vector is sorted by
maximum difference from the original design.

n — Index of solution to explore
scalar integer

Index of the solution to explore, specified as a scalar integer. For example, if the optimization found a
solution, solution = explore(result, 3) returns the solution with the 3rd lowest cost.
Data Types: double

i — Index of simulation scenario to explore
scalar integer

 explore

6-139

Index of the simulation scenario to explore, specified as a scalar integer. For example, if the
optimization found a solution, solution = explore(result, 3, 2) returns the solution with the
3rd lowest cost, using the simulation scenario with index two.
Data Types: double

Output Arguments
solution — OptimizationSolution containing information related to fixed-point
implementation for system
OptimizationSolution

OptimizationSolution object containing information related to the optimal fixed-point
implementation for the system, including total cost of the implementation and the maximum
difference between the baseline and the solution.

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

Introduced in R2018a

6 Methods

6-140

revert
Class: OptimizationResult

Revert system data types and settings changed during optimization to original state

Syntax
revert(result)

Description
revert(result) reverts the changes made during optimization, including system settings and data
types, to their original state.

Input Arguments
result — OptimizationResult to revert
OptimizationResult object

OptimizationResult object to revert to its state before optimization.

Considerations
If the system you are optimizing contains a MATLAB Function block, the optimization replaces the
block with a Variant Subsystem, Variant Model block in which one variant contains the original
MATLAB Function block and the other variant contains the block with the optimized, fixed-point data
types. When you revert a system containing a MATLAB Function block, the variant containing the
original MATLAB Function block is set as the active variant.

Similarly, if the system you are optimizing contains a Stateflow® chart, the optimization process first
replaces all data types in the chart with Simulink.NumericType objects. When you revert a system
containing a Stateflow chart, the data type of the Simulink.NumericType objects are restored to
their original data type, but the NumericType objects still exist in the model.

In both of these cases, when you revert your system, the model behaves numerically identically to
how it did before the optimization, however, the model is not actually identical to its state before
optimization.

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | fxpopt | showTolerances

Topics
“Optimize Fixed-Point Data Types for a System”

 revert

6-141

Introduced in R2020a

6 Methods

6-142

openSimulationManager
Class: OptimizationResult

Inspect simulations run during optimization in Simulation Manager

Syntax
openSimulationManager(result)

Description
openSimulationManager(result) opens Simulation Manager with simulations displayed for the
OptimizationResult object specified by result.

Input Arguments
result — OptimizationResult to inspect
OptimizationResult

OptimizationResult object containing simulations to inspect in Simulation Manager.

See Also
Classes
OptimizationResult | OptimizationSolution | fxpOptimizationOptions

Functions
addTolerance | explore | fxpopt | revert | showTolerances

Topics
Simulation Manager
“Optimize Fixed-Point Data Types for a System”

Introduced in R2020b

 openSimulationManager

6-143

contents
Class: OptimizationSolution

Get summary of changes made during data type optimization

Syntax
contents(Solution)
contents(Solution, index)

Description
contents(Solution) returns a summary of the changes made during optimization contained in the
OptimizationSolution object, Solution, including model settings, block parameters, and data
types in the model.

contents(Solution, index) returns a summary of the changes made during optimization in the
simulation scenario specified by index.

Input Arguments
Solution — Solution to data type optimization
OptimizationSolution object

Solution to data type optimization, specified as an OptimizationSolution object.

index — Index of simulation scenario
scalar integer

Index of simulation scenario, specified as a scalar integer.
Data Types: double

See Also

Introduced in R2020a

6 Methods

6-144

Selected Bibliography
[1] Burrus, C.S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler,

Computer-Based Exercises for Signal Processing Using MATLAB, Prentice Hall, Englewood
Cliffs, New Jersey, 1994.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second
Edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1990.

[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F. Kaiser, John Wiley & Sons,
Inc., New York, 1993.

[4] Hanselmann, H., “Implementation of Digital Controllers — A Survey,” Automatica, Vol. 23, No. 1,
pp. 7-32, 1987.

[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition, Kluwer Academic Publishers,
Seventh Printing, Norwell, Massachusetts, 1993.

[6] Middleton, R. and G. Goodwin, Digital Control and Estimation — A Unified Approach, Prentice
Hall, Englewood Cliffs, New Jersey. 1990.

[7] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,” Cleve's Corner, The
MathWorks, Inc., 1996. You can find this article at https://www.mathworks.com/
company/newsletters/news_notes/clevescorner/index.html.

[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1995.

[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1987.

A

https://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html
https://www.mathworks.com/company/newsletters/articles/floating-points-ieee-standard-unifies-arithmetic-model.html

	Apps
	Fixed-Point Converter
	Fixed-Point Tool
	Lookup Table Optimizer
	Single Precision Converter

	Blocks
	Complex Burst Matrix Solve Using Q-less QR Decomposition
	Complex Burst Matrix Solve Using QR Decomposition
	Complex Burst Q-less QR Decomposition
	Complex Burst QR Decomposition
	Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
	Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Complex Partial-Systolic Matrix Solve Using QR Decomposition
	Complex Partial-Systolic Q-less QR Decomposition
	Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
	Complex Partial-Systolic QR Decomposition
	Hyperbolic Tangent HDL Optimized
	Normalized Reciprocal HDL Optimized
	Real Burst Matrix Solve Using Q-less QR Decomposition
	Real Burst Q-less QR Decomposition
	Real Burst Matrix Solve Using QR Decomposition
	Real Burst QR Decomposition
	Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
	Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
	Real Partial-Systolic Matrix Solve Using QR Decomposition
	Real Partial-Systolic Q-less QR Decomposition
	Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
	Real Partial-Systolic QR Decomposition

	Properties
	fi Object Properties
	bin
	data
	dec
	double
	fimath
	hex
	int
	NumericType
	oct
	Value

	quantizer Object Properties
	DataMode
	Format
	OverflowMode
	RoundingMode

	Functions
	abs
	accumneg
	accumpos
	add
	assignmentquantizer
	atan2
	autofixexp
	bin
	bin2num
	bitand
	bitandreduce
	bitcmp
	bitconcat
	bitget
	bitor
	bitorreduce
	bitreplicate
	bitrol
	bitror
	bitset
	bitshift
	bitsliceget
	bitsll
	bitsra
	bitsrl
	bitxor
	bitxorreduce
	buildInstrumentedMex
	cast
	cast64BitFiToInt
	cast64BitIntToFi
	castFiToInt
	castFiToMATLAB
	castIntToFi
	ceil
	clearInstrumentationResults
	coder.approximation
	coder.allowpcode
	coder.ArrayType
	coder.config
	coder.const
	coder.Constant
	coder.EnumType
	coder.extrinsic
	coder.FiType
	coder.FixptConfig
	coder.ignoreConst
	coder.inline
	coder.load
	coder.mexconfig
	coder.newtype
	coder.nullcopy
	coder.PrimitiveType
	coder.resize
	coder.screener
	coder.StructType
	coder.target
	coder.Type
	coderTypeEditor
	coder.typeof
	coder.unroll
	coder.varsize
	colon, :
	complex
	conj
	conv
	convergent
	convertToSingle
	copyobj
	cordicabs
	cordicacos
	cordicangle
	cordicasin
	cordicatan2
	cordiccart2pol
	cordiccexp
	cordiccos
	cordicpol2cart
	cordicrotate
	cordicsin
	cordicsincos
	cordicsqrt
	cordictanh
	cos
	ctranspose
	CustomFloat
	DataTypeWorkflow.findDecoupledSubsystems
	dec
	denormalmax
	denormalmin
	divide
	double
	embedded.fi
	embedded.fimath
	embedded.numerictype
	eps
	eq
	errmean
	errpdf
	errvar
	exponentbias
	exponentlength
	exponentmax
	exponentmin
	eye
	fi
	fiaccel
	filter
	fimath
	fipref
	fix
	fixed.aggregateType
	fixed.backwardSubstitute
	fixed.forwardSubstitute
	fixed.qlessQR
	fixed.qlessQRMatrixSolve
	fixed.qlessQRUpdate
	fixed.qrAB
	fixed.qrMatrixSolve
	fixed.Quantizer
	fixpt_instrument_purge
	floor
	fma
	for
	fractionlength
	fxpopt
	fxptdlg
	ge
	get
	getlsb
	getmsb
	globalfimath
	gt
	half
	hex
	hex2num
	horzcat
	innerprodintbits
	int
	int8
	int16
	int32
	int64
	intmax
	intmin
	isboolean
	isdouble
	isequal
	isequivalent
	isfi
	isfimath
	isfimathlocal
	isfipref
	isfixed
	isfloat
	isnumerictype
	ispropequal
	isquantizer
	isscaleddouble
	isscaledtype
	isscalingbinarypoint
	isscalingslopebias
	isscalingunspecified
	issigned
	issingle
	isslopebiasscaled
	le
	logreport
	lowerbound
	lsb
	lt
	mat2str
	max
	maxlog
	mean
	median
	min
	minlog
	minus
	mod
	mpower
	mpy
	mrdivide
	mtimes
	ne
	nearest
	nextpow2
	nnz
	noperations
	normalizedReciprocal
	noverflows
	nts
	num2bin
	num2hex
	num2int
	num2str
	numel
	numerictype
	NumericTypeScope
	nunderflows
	oct
	ones
	plus
	pow10
	pow2
	power
	qr
	quantize
	quantizenumeric
	quantize method
	quantizer
	randquant
	range
	rdivide
	realmax
	realmin
	reinterpretcast
	removefimath
	rescale
	reset
	resetglobalfimath
	removeglobalfimathpref
	resetlog
	round
	rsqrt
	savefipref
	sdec
	set
	setfimath
	sfi
	shiftdata
	showfixptsimerrors
	showfixptsimranges
	showInstrumentationResults
	sin
	sign
	single
	sort
	sqrt
	storedInteger
	storedIntegerToDouble
	stripscaling
	sub
	subsasgn
	subsref
	sum
	times, .*
	toeplitz
	tostring
	ufi
	uint8
	uint16
	uint32
	uint64
	uminus
	unitquantize
	unitquantizer
	unshiftdata
	upperbound
	vertcat
	wordlength
	zeros

	Classes
	coder.CellType
	coder.ClassType
	coder.MexConfig
	coder.SingleConfig
	DataTypeWorkflow.Converter
	DataTypeWorkflow.DiffRunResult
	DataTypeWorkflow.DiffSignalResult
	DataTypeWorkflow.ProposalSettings
	DataTypeWorkflow.Result
	DataTypeWorkflow.VerificationResult
	fixed.DataGenerator
	fixed.DataSpecification
	fixed.Interval
	LUTCompressionResult
	FunctionApproximation.LUTMemoryUsageCalculator
	FunctionApproximation.LUTSolution
	FunctionApproximation.Options
	FunctionApproximation.Problem
	fxpOptimizationOptions
	OptimizationResult
	OptimizationSolution

	Methods
	coder.CellType.isHeterogeneous
	coder.CellType.isHomogeneous
	coder.CellType.makeHeterogeneous
	coder.CellType.makeHomogeneous
	coder.FixptConfig.addApproximation
	coder.FixptConfig.addDesignRangeSpecification
	coder.FixptConfig.addFunctionReplacement
	coder.SingleConfig.addFunctionReplacement
	coder.FixptConfig.clearDesignRangeSpecifications
	coder.FixptConfig.getDesignRangeSpecification
	coder.FixptConfig.hasDesignRangeSpecification
	coder.FixptConfig.removeDesignRangeSpecification
	applyDataTypes
	applySettingsFromRun
	applySettingsFromShortcut
	deriveMinMax
	proposeDataTypes
	results
	proposalIssues
	saturationOverflows
	simulateSystem
	verify
	wrapOverflows
	addTolerance
	clearTolerances
	showTolerances
	convertToSingle
	explore
	getNumDataPointsInfo
	getUniqueValues
	outputAllData
	applyOnRootInport
	contains
	contains
	intersect
	isDegenerate
	isLeftBounded
	isnan
	isRightBounded
	overlaps
	quantize
	setdiff
	union
	unique
	FunctionApproximation.compressLookupTables
	FunctionApproximation.LUTMemoryUsageCalculator.lutmemoryusage
	FunctionApproximation.LUTSolution.approximate
	FunctionApproximation.LUTSolution.compare
	FunctionApproximation.LUTSolution.displayallsolutions
	FunctionApproximation.LUTSolution.displayfeasiblesolutions
	FunctionApproximation.LUTSolution.getErrorValue
	FunctionApproximation.LUTSolution.replaceWithApproximate
	FunctionApproximation.LUTSolution.revertToOriginal
	FunctionApproximation.LUTSolution.solutionfromID
	FunctionApproximation.LUTSolution.totalmemoryusage
	FunctionApproximation.Problem.solve
	fxpOptimizationOptions.addSpecification
	fxpOptimizationOptions.addTolerance
	fxpOptimizationOptions.showSpecifications
	fxpOptimizationOptions.showTolerances
	replace
	revert
	OptimizationResult.explore
	OptimizationResult.revert
	OpimizationResult.openSimulationManager
	OptimizationSolution.contents

	Selected Bibliography

